Label-Free Anti-Human IgG Biosensor Based on Chemical Modification of a Long Period Fiber Grating Surface †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Reagents
2.2. Synthesis of the SiO2 Nanoparticles
2.3. Immobilization of the Biorecognition Molecule onto the SiO2 Surface
2.4. Working Principle of the Evanescent Wave Based Sensors, Long-Period Fiber Grating Fabrication and Surface Modification
2.5. Affinity and Selectivity Assays
3. Results and Discussion
3.1. SiO2 Nanoparticles Bare, SiO2-NH2 and SiO2-NH2-IgG FTIR-ATR Spectra
3.2. Affinity and Slectivity Assays
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tertis, M.; Hosu, O.; Florea, A.; Cristea, C. Biosensors for Clinical Samples: Consideration and Approaches. In Immunodiagnostic Technologies from Laboratory to Point-Of-Care Testing; Suman, P., Chandra, P., Eds.; Springer: Singapore, 2021. [Google Scholar]
- Chocarro-Ruiz, B.; Fernandez-Gavela, A.; Herranz, S.; Lechuga, L.M. Nanophotonic label-free biosensors for environmental monitoring. Curr. Opin. Biotechnol. 2017, 45, 175–183. [Google Scholar] [CrossRef] [Green Version]
- Balbinot, S.; Srivastav, A.M.; Vidic, J.; Abdulhalim, I.; Manzano, M. Plasmonic biosensors for food control. Trends Food Sci. Technol. 2021, 111, 128–140. [Google Scholar] [CrossRef]
- Peltomaa, R.; Glahn-Martínez, B.; Benito-Peña, E.; Moreno-Bondi, M.C. Optical Biosensors for Label-Free Detection of Small Molecules. Sensors 2018, 18, 4126. [Google Scholar] [CrossRef] [Green Version]
- Wollenberger, U. Chapter 2 Third generation biosensors—Integrating recognition and transduction in electrochemical sensors. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2005; pp. 65–130. [Google Scholar]
- Ong, J.J.; Pollard, T.D.; Goyanes, A.; Gaisford, S.; Elbadawi, M.; Basit, A.W. Optical biosensors—Illuminating the path to personalized drug dosing. Biosens. Bioelectron. 2021, 188, 113331. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, J.; Yang, Z.; Wilkinson, J.S.; Zhou, X. Optical biosensors based on refractometric sensing schemes: A review. Biosens. Bioelectron. 2019, 144, 111693. [Google Scholar] [CrossRef]
- Chen, C.; Wang, J. Optical biosensors: An exhaustive and comprehensive review. Analyst 2020, 145, 1605–1628. [Google Scholar] [CrossRef]
- Khansili, N.; Rattu, G.; Krishna, P.M. Label-free optical biosensors for food and biological sensor applications. Sens. Actuators B Chem. 2018, 265, 35–49. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhu, Z.-W.; Xiao, W.; Deng, Q.-X. Review of fiber optic sensors in geotechnical health monitoring. Opt. Fiber Technol. 2020, 54, 102127. [Google Scholar] [CrossRef]
- Monfared, Y.E. Overview of Recent Advances in the Design of Plasmonic Fiber-Optic Biosensors. Biosensors 2020, 10, 77. [Google Scholar] [CrossRef]
- Lobry, M.; Lahem, D.; Loyez, M.; Debliquy, M.; Chah, K.; David, M.; Caucheteur, C. Non-enzymatic D-glucose plasmonic optical fiber grating biosensor. Biosens. Bioelectron. 2019, 142, 111506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liyanage, T.; Lai, M.; Slaughter, G. Label-free tapered optical fiber plasmonic biosensor. Anal. Chim. Acta 2021, 1169, 338629. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Xu, B.; Zhou, L.; Sun, Z.; Mao, H.; Zhao, J.; Zhang, L.; Chen, X. Graphene oxide functionalized long period fiber grating for highly sensitive hemoglobin detection. Sens. Actuators B Chem. 2018, 261, 91–96. [Google Scholar] [CrossRef] [Green Version]
- Chiavaioli, F.; Zubiate, P.; Del Villar, I.; Zamarreño, C.R.; Giannetti, A.; Tombelli, S.; Trono, C.; Arregui, F.J.; Matias, I.R.; Baldini, F. Femtomolar Detection by Nanocoated Fiber Label-Free Biosensors. ACS Sens. 2018, 3, 936–943. [Google Scholar] [CrossRef]
- Dey, T.; Tombeli, S.; Biswas, P.; Giannetti, A.; Basumallick, N.; Baldini, F.; Bandyopadhyay, S.; Trono, C. Realization of enhanced evanescent field long period fiber grating near turn around point for label-free immunosensing. In Proceedings of the 1st International Electronic Conference on Biosensors, Basel, Siwtzerland, 2–17 November 2020. [Google Scholar]
- Liu, L.; Marques, L.; Correia, R.; Morgan, S.P.; Lee, S.-W.; Tighe, P.; Fairclough, L.; Korposh, S. Highly sensitive label-free antibody detection using a long period fibre grating sensor. Sens. Actuators B Chem. 2018, 271, 24–32. [Google Scholar] [CrossRef]
- Stöber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26, 62–69. [Google Scholar] [CrossRef]
- Tadanaga, K.; Morita, K.; Mori, K.; Tatsumisago, M. Synthesis of monodispersed silica nanoparticles with high concentration by the Stöber process. J. Sol-Gel Sci. Technol. 2013, 68, 341–345. [Google Scholar] [CrossRef]
- Rego, G. Arc-Induced Long Period Fiber Gratings. J. Sens. 2016, 2016, 3598634. [Google Scholar] [CrossRef] [Green Version]
- Feifel, S.C.; Lisdat, F. Silica nanoparticles for the layer-by-layer assembly of fully electro-active cytochrome c multilayers. J. Nanobiotechnol. 2011, 9, 59. [Google Scholar] [CrossRef] [Green Version]
- Hernandez-Leon, S.G.; Sarabia-Sainz, J.A.-I.; Montfort, G.R.-C.; Guzman-Partida, A.M.; Robles-Burgueño, M.D.R.; Vazquez-Moreno, L. Novel Synthesis of Core-Shell Silica Nanoparticles for the Capture of Low Molecular Weight Proteins and Peptides. Molecules 2017, 22, 1712. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.-T.; Wang, Q. An interferometric optical fiber biosensor with high sensitivity for IgG/anti-IgG immunosensing. Opt. Commun. 2018, 426, 388–394. [Google Scholar] [CrossRef]
- Han, C.; Wang, X.; Zhao, Q.; Teng, L.; Zhang, S.; Lv, H.; Liu, J.; Ma, H.; Wang, Y. Solidly mounted resonator sensor for biomolecule detections. RSC Adv. 2019, 9, 21323–21328. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendes, J.P.; Coelho, L.C.C.; Pereira, V.P.; Azenha, M.A.; Jorge, P.A.S.; Pereira, C.M. Label-Free Anti-Human IgG Biosensor Based on Chemical Modification of a Long Period Fiber Grating Surface. Chem. Proc. 2021, 5, 48. https://doi.org/10.3390/CSAC2021-10454
Mendes JP, Coelho LCC, Pereira VP, Azenha MA, Jorge PAS, Pereira CM. Label-Free Anti-Human IgG Biosensor Based on Chemical Modification of a Long Period Fiber Grating Surface. Chemistry Proceedings. 2021; 5(1):48. https://doi.org/10.3390/CSAC2021-10454
Chicago/Turabian StyleMendes, João P., Luís C. C. Coelho, Viviana P. Pereira, Manuel A. Azenha, Pedro A. S. Jorge, and Carlos M. Pereira. 2021. "Label-Free Anti-Human IgG Biosensor Based on Chemical Modification of a Long Period Fiber Grating Surface" Chemistry Proceedings 5, no. 1: 48. https://doi.org/10.3390/CSAC2021-10454
APA StyleMendes, J. P., Coelho, L. C. C., Pereira, V. P., Azenha, M. A., Jorge, P. A. S., & Pereira, C. M. (2021). Label-Free Anti-Human IgG Biosensor Based on Chemical Modification of a Long Period Fiber Grating Surface. Chemistry Proceedings, 5(1), 48. https://doi.org/10.3390/CSAC2021-10454