Study of a New Hydrazone System with Ion Complexation Capacity Suitable for Selective Detection †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental
2.2. Computational
3. Results and Discussion
Spectral Data
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fernández-González, A.; Guardia, L. Reconocimiento molecular mediante materiales biomiméticos: Impresión molecular. An. Quím. 2007, 103, 14–22. [Google Scholar]
- Pioquinto-Mendoza, J.; Mendoza-Olvera, D.; Andrade-López, N.; Alvarado-Rodríguez, J.; Moreno-Esparza, R.; Flores-Álamo, M.J. Synthesis and structural characterization of mono- and dinuclear NiII and PdII complexes derived from tetradentate 1,7-bis-(pyridin-2-yl)-2,6-diaza-1,6-heptadiene. Coord. Chem. 2013, 66, 2477–2488. [Google Scholar] [CrossRef]
- Uhlenheuer, D.A.; Petkau, K.; Brunsveld, L. Combining supramolecular chemistry with biology. Chem. Soc. Rev. 2010, 39, 2817–2826. [Google Scholar] [CrossRef] [PubMed]
- Thakura, A.; Bhatta, S.R.; Mondal, B.; Kakash, D.; Chawla, P. Naphthalene-glycine conjugate: An extremely selective colorimetric chemosensor for iodide ion in aqueous solution. Sens. Actuators B. Chem. 2018, 267, 617–626. [Google Scholar] [CrossRef]
- Lo-Presti, M.; El-Sayed, S.; Martínez-Máñez, R.; Costero, A.M.; Gil, S.; Parra, M.; Sancenón, F. Selective chromo-fluorogenic detection of trivalent cations in aqueous environments using a dehydration reaction. New J. Chem. 2016, 11, 14–17. [Google Scholar] [CrossRef]
- Skoog, D.A.; Holler, F.J.; Nieman, T.A. Principles of Instrumental Analysis, 6th ed.; Cengage: Mexico City, Mexico, 2008; ISBN 0-495-01201-7. [Google Scholar]
- Balamurugan, R.; Liu, J.; Liu, B. A review of recent developments in fluorescent sensors for the selective detection of palladium ions. Coord. Chem. Rev. 2018, 376, 196–224. [Google Scholar] [CrossRef]
- Su, X.; Aprahamian, I. Hydrazone-based switches, metallo-assemblies and sensors. Chem. Soc. Rev. 2014, 43, 1963. [Google Scholar] [CrossRef] [PubMed]
- Gründler, P. Chemical Sensors. An Introduction for Scientists and Engineers; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
VBTH | VBTH-Cu2+ | |
---|---|---|
Total energy [Kcal/mol] | −1292.51 | −2932.91 |
GAP [Kcal/mol] | 89.14 | 75.80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ormachea, C.M.; Ferretti, C.A.; Gutierrez, L.; Kneeteman, M.N. Study of a New Hydrazone System with Ion Complexation Capacity Suitable for Selective Detection. Chem. Proc. 2021, 3, 134. https://doi.org/10.3390/ecsoc-24-08392
Ormachea CM, Ferretti CA, Gutierrez L, Kneeteman MN. Study of a New Hydrazone System with Ion Complexation Capacity Suitable for Selective Detection. Chemistry Proceedings. 2021; 3(1):134. https://doi.org/10.3390/ecsoc-24-08392
Chicago/Turabian StyleOrmachea, Carla M., Cristián A. Ferretti, Leandro Gutierrez, and María N. Kneeteman. 2021. "Study of a New Hydrazone System with Ion Complexation Capacity Suitable for Selective Detection" Chemistry Proceedings 3, no. 1: 134. https://doi.org/10.3390/ecsoc-24-08392
APA StyleOrmachea, C. M., Ferretti, C. A., Gutierrez, L., & Kneeteman, M. N. (2021). Study of a New Hydrazone System with Ion Complexation Capacity Suitable for Selective Detection. Chemistry Proceedings, 3(1), 134. https://doi.org/10.3390/ecsoc-24-08392