Intramolecular Cyclization of Alkenyl Alcohols: Towards the Synthesis of Oxacycles †
Abstract
:1. Introduction
2. Methods
2.1. General Procedure of Silylcupration of Alkynes and Reaction with A,Β-Unsaturated Ketone
2.1.1. (E)-6-Dimethylphenylsilyl-4-phenyl-5-trimethylsilylhex-5-en-2-one (1)
2.1.2. (Z)-5-Butyl-6-dimethylphenylsilyl-4-phenyl-hex-5-en-2-one (2)
2.1.3. (Z)-4-Isopropyl-6-phenyldimethylsilyl-5-hexen-2-one (3)
2.2. Synthesis of Alkenyl Ketones
4-Phenylhex-5-en-2-one (4)
2.3. General Procedure for the Synthesis of Alkenyl Epoxides
2.3.1. (E)-2-Methyl-6-dimethylphenylsilyl-4-phenyl-5-trimethylsilylhex-5-ene (5)
2.3.2. (Z)-5-Butyl-2-methyl-6-dimethylphenylsilyl-4-phenyl-1,2-epoxy-hex-5-ene 6
2.3.3. (Z)-4-Isopropyl-6-phenyldimethylsilyl-2-methy-1,2-epoxy-5-hexene (7)
2.3.4. 1,2-epoxy-2-methyl-4-phenylhex-5-ene (8)
2.4. Procedure of Synthesis of Primary Alcohols
2,2-dimethyl-4-phenylhex-5-en-1-ol (12)
2.5. Synthesis of Tetrahydropyrans
2.5.1. 3-Isopropy-5,5-dimethyl-2-dimethylphenylsilylmethyltetrahydropyran (13)
2.5.2. 2-Butyl-2,5,5-trimethyl-3-phenyltetrahydropyran (14)
3. Results and Discussion
3.1. Silylcupration of Alkynes and Reaction with α,β-Unsaturated Ketone
3.2. Synthesis of Alkenyl Ketones
3.3. Synthesis of Alkenyl Epoxides
3.4. Formation of Primary Alkenyl Alcohols
3.5. Intramolecular Cyclization of Vinylalcohols
4. Conclusions
Institutional Review Board Statement
References
- Lohsen, S.; Stephens, D.S. Antibiotic Drug Resistance; John Wiley & Sons: Hoboken, NJ, USA, 2020; pp. 97–117. ISBN 978-1-119-28254-9. [Google Scholar]
- Larrosa, I.; Romea, P.; Urpi, F. Synthesis of six-membered oxygenated heterocycles through carbon–oxygen bond-forming reactions. Tetrahedron 2008, 64, 2683–2723. [Google Scholar] [CrossRef]
- Coulombel, L.; Duñach, E. Triflic acid-catalysed cyclisation of unsaturated alcohols. Green Chem. 2004, 6, 499–501. [Google Scholar] [CrossRef]
- Coulombel, L.; Favier, I.; Duñach, E. Catalytic formation of C–O bonds by alkene activation: Lewis acid-cycloisomerisation of olefinic alcohols. Chem. Commun. 2005, 2286–2288. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, D.C.; Shekharm, S.; Takemiya, A.; Utsunomiya, M.; Hartwig, J.F. Hydroamination and Hydroalkoxylation Catalyzed by Triflic Acid. Parallels to Reactions Initiated with Metal Triflates. Org. Lett. 2006, 8, 4179–4182. [Google Scholar] [CrossRef] [PubMed]
- Diez-Varga, A.; Barbero, H.; Pulido, F.J.; González-Ortega, A.; Barbero, A. Competitive Silyl–Prins Cyclization versus Tandem Sakurai–Prins Cyclization: An Interesting Substitution Effect. Chem. Eur. J. 2014, 20, 14112–14119. [Google Scholar] [CrossRef] [PubMed]
- Díez-Poza, C.; Barbero, A.; Diez-Varga, A. The Silyl-Prins Reaction as an Emerging Method for the Synthesis of Heterocycles. In Progress in Heterocyclic Chemistry; Elsevier: Oxford, UK, 2018; Volume 30, pp. 13–41. [Google Scholar]
- Yamamoto, Y. Selective Synthesis by Use of Lewis Acids in the Presence of Organocopper and Related Reagents. New Synthetic Methods. Angew. Chem. Int. Ed. Engl. 1986, 25, 947–959. [Google Scholar] [CrossRef]
- Ibuka, T.; Yamamoto, Y. Organocopper Reagents. A Practical Approach; Taylor, R.J.K., Ed.; Oxford University Press: Oxford, UK, 1994; Chapter 7. [Google Scholar]
- Lipshutz, B.H.; Ellsworth, E.L.; Siahaan, T.J. The role of boron trifluoride etherate in reactions of lower order (Gilman) organocuprates. J. Am. Chem. Soc. 1989, 111, 1351–1358. [Google Scholar] [CrossRef]
- Rüedi, G.; Hansen, H.-J. Diradical-Promoted Two-Carbon Ring-Expansion Reactions by Thermal Isomerization: Synthesis of Functionalized Macrocyclic Ketones. Helv. Chim. Acta 2004, 87, 1628–1665. [Google Scholar] [CrossRef]
- Suzuki, T.; Saimoto, H.; Tomioka, H.; Oshima, K.; Nozaki, H. Regio- and stereoselective ring opening of epoxy alcohols with organoaluminium compounds leading to 1,2-diols. Tetrahedron Lett. 1982, 23, 3597–3600. [Google Scholar] [CrossRef]
- Roush, W.R.; Adam, M.A.; Peseckis, S.M. Regioselectivity of the reactions of trialkylaluminum reagents with 2,3-epoxyalcohols: Application to the synthesis of α-chiral aldehydes. Tetrahedron Lett. 1983, 24, 1377–1380. [Google Scholar] [CrossRef]
- Pfaltz, A.; Mattenberger, A. Regioselective Opening of α- and β-Alkoxyepoxides with Trimethylaluminum. Angew. Chem. Int. Ed. Engl. 1982, 21, 71–72. [Google Scholar] [CrossRef]
- Miyashita, M.; Hoshino, M.; Yoshikoshi, A. Stereospecific methylation of γ,δ-epoxy acrylates by trimethylaluminum: A method for the iterative construction of polypropionate chains. J. Org. Chem. 1991, 56, 6483–6485. [Google Scholar] [CrossRef]
- Miyazawa, M.; Ishibashi, N.; Ohnuma, S.; Miyashita, M. Stereospecific internal alkylation of terminal γ,δ-epoxy acrylates. Tetrahedron Lett. 1997, 38, 3419–3422. [Google Scholar] [CrossRef]
- Abe, N.; Hanawa, H.; Maruoka, K.; Sasaki, M.; Miyashita, M. Highly efficient alkylation of epoxides with R3Al/H2O systems based on the double activation of epoxy oxygens. Tetrahedron Lett. 1999, 40, 5369–5372. [Google Scholar] [CrossRef]
- Schneider, C.; Brauner, J. Lewis Base-Catalyzed Addition of Trialkylaluminum Compounds to Epoxides. Eur. J. Org. Chem. 2001, 4445–4450. [Google Scholar] [CrossRef]
- Díez-Poza, C.; Val, P.; Pulido, F.J.; Barbero, A. Synthesis of Polysubstituted Tetrahydropyrans by Stereoselective Hydroalkoxylation of Silyl Alkenols. En Route to Tetrahydropyranyl Marine Analogues. Mar. Drugs 2018, 16, 421. [Google Scholar] [CrossRef] [PubMed]
Acid | Temperature/°C | Solvent | Yield/% |
TMS·OTf | −78 | CH2Cl2 | Complex mixture |
TMS·OTf | −78 | Et2O | Complex mixture |
p-TsOH | 40 | CH2Cl2 | 64 |
BF3·OEt2 | −78 | CH2Cl2 | n.r. |
R | Acid | Quantity/Eq | Temperature/°C | Product (Yield) |
Bu | p-TsOH | 1 | r.t. | 14 (51) |
Me3Si | p-TsOH | 1 | r.t. | n.r. |
Me3Si | p-TsOH | 1 | 40 | n.r. |
Me3Si | BF3·OEt2 | 1 | 0 | n.r. |
Me3Si | TfOH | 0.05 | 40 | Complex mixture |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Andrés, P.; Díez-Poza, C.; Fernández-Peña, L.; Cherubin, A.; Blanco, Y.; Barbero, A. Intramolecular Cyclization of Alkenyl Alcohols: Towards the Synthesis of Oxacycles. Chem. Proc. 2021, 3, 117. https://doi.org/10.3390/ecsoc-24-08462
González-Andrés P, Díez-Poza C, Fernández-Peña L, Cherubin A, Blanco Y, Barbero A. Intramolecular Cyclization of Alkenyl Alcohols: Towards the Synthesis of Oxacycles. Chemistry Proceedings. 2021; 3(1):117. https://doi.org/10.3390/ecsoc-24-08462
Chicago/Turabian StyleGonzález-Andrés, Paula, Carlos Díez-Poza, Laura Fernández-Peña, Alberto Cherubin, Yolanda Blanco, and Asunción Barbero. 2021. "Intramolecular Cyclization of Alkenyl Alcohols: Towards the Synthesis of Oxacycles" Chemistry Proceedings 3, no. 1: 117. https://doi.org/10.3390/ecsoc-24-08462
APA StyleGonzález-Andrés, P., Díez-Poza, C., Fernández-Peña, L., Cherubin, A., Blanco, Y., & Barbero, A. (2021). Intramolecular Cyclization of Alkenyl Alcohols: Towards the Synthesis of Oxacycles. Chemistry Proceedings, 3(1), 117. https://doi.org/10.3390/ecsoc-24-08462