Daily Triglyceride Kinetics When Consuming a Realistic Western Diet in at-Risk Individuals across the Metabolic Spectrum: A Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Meal Intervention
2.4. Data Analysis
3. Results
3.1. Participant Characteristics
3.2. Postprandial Metabolic Outcomes
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Bansal, S.; Buring, J.E.; Rifai, N.; Mora, S.; Sacks, F.M.; Ridker, P.M. Fasting compared with nonfasting triglycerides and risk of cardiovascular events in women. JAMA 2007, 298, 309–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varbo, A.; Nordestgaard, B.G. Remnant cholesterol and triglyceride-rich lipoproteins in atherosclerosis progression and cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emerson, S.R.; Kurti, S.P.; Teeman, C.S.; Emerson, E.M.; Cull, B.J.; Haub, M.D.; Rosenkranz, S.K. Realistic Test-Meal Protocols Lead to Blunted Postprandial Lipemia but Similar Inflammatory Responses Compared with a Standard High-Fat Meal. Curr. Dev. Nutr. 2017, 1, e000232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heath, R.B.; Karpe, F.; Milne, R.W.; Burdge, G.C.; Wootton, S.A.; Frayn, K.N. Dietary fatty acids make a rapid and substantial contribution to VLDL-triacylglycerol in the fed state. Am. J. Physiol. Endocrinol. Metab. 2007, 292, E732–E739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Oostrom, A.; Castro Cabezas, M.; Ribalta, J.; Masana, L.; Twickler, T.B.; Remijnse, T.; Erkelens, D. Diurnal triglyceride profiles in healthy normolipidemic male subjects are associated to insulin sensitivity, body composition and diet. Eur. J. Clin. Investig. 2000, 30, 964–971. [Google Scholar] [CrossRef] [PubMed]
- Hinnouho, G.-M.; Czernichow, S.; Dugravot, A.; Nabi, H.; Brunner, E.J.; Kivimaki, M.; Singh-Manoux, A. Metabolically healthy obesity and the risk of cardiovascular disease and type 2 diabetes: The Whitehall II cohort study. Eur. Heart J. 2015, 36, 551–559. [Google Scholar] [CrossRef] [PubMed]
- Fox, C.S. Cardiovascular disease risk factors, type 2 diabetes mellitus, and the Framingham Heart Study. Trends Cardiovasc. Med. 2010, 20, 90–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romero-Corral, A.; Somers, V.K.; Sierra-Johnson, J.; Korenfeld, Y.; Boarin, S.; Korinek, J.; Jensen, M.D.; Parati, G.; Lopez-Jimenez, F. Normal weight obesity: A risk factor for cardiometabolic dysregulation and cardiovascular mortality. Eur. Heart J. 2010, 31, 737–746. [Google Scholar] [CrossRef] [PubMed]
- Oliveros, E.; Somers, V.K.; Sochor, O.; Goel, K.; Lopez-Jimenez, F. The concept of normal weight obesity. Prog. Cardiovasc. Dis. 2014, 56, 426–433. [Google Scholar] [CrossRef] [PubMed]
- The IDF Consensus Wordwide Definition of the Metabolic Syndrome. Available online: https://www.idf.org/e-library/consensus-statements/60-idfconsensus-worldwide-definitionof-the-metabolic-syndrome (accessed on 15 February 2021).
- Keirns, B.H.; Hart, S.M.; Sciarrillo, C.M.; Poindexter, K.L.; Clarke, S.L.; Emerson, S.R. Postprandial Triglycerides, Flow-Mediated Dilation, and the Inflammatory Cytokine Milieu in Metabolically Healthy Obesity: A Cross-Sectional Pilot Study. Obesities 2021, 1, 58–71. [Google Scholar] [CrossRef]
- Sciarrillo, C.M.; Keirns, B.H.; Elliott, D.C.; Emerson, S.R. The effect of black coffee on fasting metabolic markers and an abbreviated fat tolerance test. Clin. Nutr. ESPEN 2021, 41, 439–442. [Google Scholar] [CrossRef] [PubMed]
- Kolovou, G.D.; Mikhailidis, D.P.; Kovar, J.; Lairon, D.; Nordestgaard, B.G.; Chye Ooi, T.; Perez-Martinez, P.; Bilianou, H.; Anagnostopoulou, K.; Panotopoulos, G. Assessment and clinical relevance of non-fasting and postprandial triglycerides: An expert panel statement. Curr. Vasc. Pharmacol. 2011, 9, 258–270. [Google Scholar] [CrossRef] [PubMed]
NWO | MetS | T2D | |
---|---|---|---|
Participant Characteristics | |||
Age (years) | 37 | 57 | 54 |
Mass (kg) | 82.0 | 118.6 | 104.8 |
Height (cm) | 182.9 | 188.0 | 176.5 |
BMI (kg/m2) | 24.5 | 33.6 | 33.2 |
Waist Circumference (cm) | 91.4 | 113.0 | 116.8 |
Body Fat (%) | 29.7 | 34.8 | 38.1 |
Fat Mass (kg) | 24.3 | 41.2 | 40.0 |
Muscle (%) | 34.3 | 32.1 | 31.0 |
Muscle Mass (kg) | 28.1 | 38.1 | 32.5 |
Blood Pressure (mmHg) | 129/86 | 148/87 | 129/86 |
Fasting Triglycerides (mg/dL) | 100 | 69 | 100 |
Fasting Glucose (mg/dL) | 98 | 91 | 147 |
Fasting Total-C (mg/dL) | 254 | 174 | 129 |
Fasting LDL-C (mg/dL) | 169 | 135 | 63 |
Fasting HDL-C (mg/dL) | 65 | 25 | 46 |
Meal Characteristics | |||
Breakfast kcal | 840 | 648 | 840 |
Breakfast fat (g) | 60 | 46 | 60 |
SFA (%) | 33 | 33 | 33 |
USFA (%) | 67 | 67 | 67 |
Breakfast CHO (g) | 36 | 20 | 36 |
Breakfast Pro (g) | 42 | 23 | 42 |
Lunch kcal | 1381 | 1720 | 1720 |
Lunch fat (g) | 72 | 88 | 88 |
SFA (%) | 33 | 30 | 30 |
USFA (%) | 67 | 70 | 70 |
Lunch CHO (g) | 130 | 175 | 175 |
Lunch Pro (g) | 57 | 62 | 62 |
Dinner kcal | 1094 | 1658 | 1376 |
Dinner fat (g) | 45 | 67 | 56 |
SFA (%) | 42 | 42 | 42 |
USFA (%) | 58 | 58 | 58 |
Dinner CHO (g) | 123 | 187 | 155 |
Dinner Pro (g) | 52 | 79 | 65 |
Snack kcal | 380 | 380 | 380 |
Snack fat (g) | 28 | 28 | 28 |
SFA (%) | 86 | 86 | 86 |
USFA (%) | 14 | 14 | 14 |
Snack CHO (g) | 30 | 30 | 30 |
Snack Pro (g) | 9 | 9 | 9 |
Total kcal | 3696 | 4406 | 4316 |
Total fat (g) | 205 | 229 | 232 |
SFA (%) | 44 | 42 | 41 |
USFA (%) | 56 | 58 | 59 |
Total CHO (g) | 319 | 412 | 396 |
Total Pro (g) | 154 | 167 | 172 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keirns, B.H.; Sciarrillo, C.M.; Poindexter, K.L.; Emerson, S.R. Daily Triglyceride Kinetics When Consuming a Realistic Western Diet in at-Risk Individuals across the Metabolic Spectrum: A Case Study. Obesities 2021, 1, 107-112. https://doi.org/10.3390/obesities1020010
Keirns BH, Sciarrillo CM, Poindexter KL, Emerson SR. Daily Triglyceride Kinetics When Consuming a Realistic Western Diet in at-Risk Individuals across the Metabolic Spectrum: A Case Study. Obesities. 2021; 1(2):107-112. https://doi.org/10.3390/obesities1020010
Chicago/Turabian StyleKeirns, Bryant H., Christina M. Sciarrillo, Kara L. Poindexter, and Sam R. Emerson. 2021. "Daily Triglyceride Kinetics When Consuming a Realistic Western Diet in at-Risk Individuals across the Metabolic Spectrum: A Case Study" Obesities 1, no. 2: 107-112. https://doi.org/10.3390/obesities1020010
APA StyleKeirns, B. H., Sciarrillo, C. M., Poindexter, K. L., & Emerson, S. R. (2021). Daily Triglyceride Kinetics When Consuming a Realistic Western Diet in at-Risk Individuals across the Metabolic Spectrum: A Case Study. Obesities, 1(2), 107-112. https://doi.org/10.3390/obesities1020010