Comprehensive Study on Hydrogen Production for Sustainable Transportation Planning: Strategic, Techno-Economic, and Environmental Impacts
Abstract
:1. Introduction
- Apply the Shlaer–Mellor method for the strategic analysis of hydrogen energy production in different regions, including Europe, the USA, and China.
- Conduct a techno-economic analysis of solar and biogas energy sources coupled with hydrogen production in the USA.
- Simulate air pollution emissions from different fuel resources in transportation systems, with a focus on hydrogen fuel.
- Provide managerial insights through foresight analysis regarding the application of hydrogen in transportation systems.
2. Methodology
- Gray hydrogen is produced from natural gas through steam methane reforming (SMR) without carbon capture, making it the most cost-effective but also the highest in carbon emissions.
- Blue hydrogen follows the same SMR process but incorporates carbon capture and storage (CCS) to reduce CO2 emissions, making it a lower-carbon alternative to gray hydrogen.
- Green hydrogen is generated via electrolysis using renewable energy sources such as solar and wind power. This method is completely carbon-free but remains the most expensive due to the high cost of renewable electricity and electrolyzer technology.
2.1. Shlaer–Mellor Method
2.2. Techno-Economic Analysis
2.3. Fuel Life-Cycle Environmental and Economic Transportation Simulation
2.4. Monte Carlo Simulations
3. Results and Discussions
3.1. Policymaking of Hydrogen Energy Production in Countries
3.2. Techno-Economic Assessment of Hydrogen Energy Production in USA
3.3. Sustainability Assessment and Hydrogen Energy Production in the USA
3.4. Practical Barriers to Hydrogen Adoption and Study Limitations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Pereira, J.; Souza, R.; Oliveira, J.; Moita, A. Hydrogen Production, Transporting and Storage Processes—A Brief Review. Clean Technol. 2024, 6, 1260–1313. [Google Scholar] [CrossRef]
- Stenina, I.; Yaroslavtsev, A. Modern Technologies of Hydrogen Production. Processes 2022, 11, 56. [Google Scholar] [CrossRef]
- Wawrzyńczak, A.; Feliczak-Guzik, A. Hydrogen Production Using Modern Photocatalysts. Coatings 2024, 14, 366. [Google Scholar] [CrossRef]
- Dawood, F.; Anda, M.; Shafiullah, G.M. Hydrogen Production for Energy: An Overview. Int. J. Hydrogen Energy 2020, 45, 3847–3869. [Google Scholar] [CrossRef]
- Dorel, S.; Lucian, M.; Gheorghe, L.; Cristian, L.G. Green Hydrogen, a Solution for Replacing Fossil Fuels to Reduce CO2 Emissions. Processes 2024, 12, 1651. [Google Scholar] [CrossRef]
- Bresa, Q.; Kovač, A.; Marciuš, D. Introduction of Hydrogen in the Kosovo Transportation Sector. Energies 2022, 15, 7275. [Google Scholar] [CrossRef]
- Yan, X.; Zheng, W.; Wei, Y.; Yan, Z. Current Status and Economic Analysis of Green Hydrogen Energy Industry Chain. Processes 2024, 12, 315. [Google Scholar] [CrossRef]
- Nikolaidis, P.; Poullikkas, A. A Comparative Overview of Hydrogen Production Processes. Renew. Sustain. Energy Rev. 2017, 67, 597–611. [Google Scholar] [CrossRef]
- Kayfeci, M.; Keçebaş, A.; Bayat, M. Hydrogen Production. In Solar Hydrogen Production; Elsevier: Amsterdam, The Netherlands, 2019; pp. 45–83. ISBN 9780128148532. [Google Scholar]
- Turner, J.; Sverdrup, G.; Mann, M.K.; Maness, P.-C.; Kroposki, B.; Ghirardi, M.; Evans, R.J.; Blake, D. Renewable Hydrogen Production. Int. J. Energy Res. 2008, 32, 379–407. [Google Scholar] [CrossRef]
- Singh, S.B.; De, M. Scope of Doped Mesoporous (<10 Nm) Surfactant-modified Alumina Templated Carbons for Hydrogen Storage Applications. Int. J. Energy Res. 2019, 43, 4264–4280. [Google Scholar] [CrossRef]
- Singh, S.B.; De, M. Thermally Exfoliated Graphene Oxide for Hydrogen Storage. Mater. Chem. Phys. 2020, 239, 122102. [Google Scholar] [CrossRef]
- Statista Research Department. Global Clean Hydrogen Volume Announced by Region 2030; Statista Research Department: Hamburg, Germany, 2024. [Google Scholar]
- Włodarczyk, R.; Kaleja, P. Modern Hydrogen Technologies in the Face of Climate Change—Analysis of Strategy and Development in Polish Conditions. Sustainability 2023, 15, 12891. [Google Scholar] [CrossRef]
- Kurc, B.; Gross, X.; Szymlet, N.; Rymaniak, Ł.; Woźniak, K.; Pigłowska, M. Hydrogen-Powered Vehicles: A Paradigm Shift in Sustainable Transportation. Energies 2024, 17, 4768. [Google Scholar] [CrossRef]
- Shahabuddin, M.; Rhamdhani, M.A.; Brooks, G.A. Technoeconomic Analysis for Green Hydrogen in Terms of Production, Compression, Transportation and Storage Considering the Australian Perspective. Processes 2023, 11, 2196. [Google Scholar] [CrossRef]
- Revinova, S.; Lazanyuk, I.; Gabrielyan, B.; Shahinyan, T.; Hakobyan, Y. Hydrogen in Energy Transition: The Problem of Economic Efficiency, Environmental Safety, and Technological Readiness of Transportation and Storage. Resources 2024, 13, 92. [Google Scholar] [CrossRef]
- Adaikalam, K.; Vikraman, D.; Karuppasamy, K.; Kim, H.-S. Solar Hydrogen Production and Storage in Solid Form: Prospects for Materials and Methods. Nanomaterials 2024, 14, 1560. [Google Scholar] [CrossRef]
- Knight, M.; Blanco-Davis, E.; Platt, O.; Armin, M. Life-Cycle and Applicational Analysis of Hydrogen Production and Powered Inland Marine Vessels. J. Mar. Sci. Eng. 2023, 11, 1611. [Google Scholar] [CrossRef]
- Oliveira, L.G.; Do Nascimento, C.T.; Cazula, B.B.; Tait, A.; De Oliveira, C.D.J.; Souza, G.E.Q.; Gasparrini, L.J.; Alencar, Á.D.O.; Ritter, G.; Jorge, N.N.; et al. Nickel-Stage Addition in Si-MCM-41 Synthesis for Renewable Hydrogen Production. Processes 2024, 12, 1836. [Google Scholar] [CrossRef]
- Pompodakis, E.E.; Orfanoudakis, G.I.; Katsigiannis, Y.A.; Karapidakis, E.S. Hydrogen Production from Wave Power Farms to Refuel Hydrogen-Powered Ships in the Mediterranean Sea. Hydrogen 2024, 5, 494–518. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, Y. Research on the Stability of Salt Cavern Hydrogen Storage and Natural Gas Storage under Long-Term Storage Conditions. Processes 2024, 12, 2080. [Google Scholar] [CrossRef]
- Macingwane, Z.; Schönborn, A. Techno-Economic Analysis of Green Hydrogen Production as Maritime Fuel from Wave Energy. Energies 2024, 17, 4683. [Google Scholar] [CrossRef]
- Lei, J.; Zhang, H.; Pan, J.; Zhuo, Y.; Chen, A.; Chen, W.; Yang, Z.; Feng, K.; Li, L.; Wang, B.; et al. Techno-Economic Assessment of a Full-Chain Hydrogen Production by Offshore Wind Power. Energies 2024, 17, 2447. [Google Scholar] [CrossRef]
- Godini, H.R.; Huy, N.D.; Ramponi, L.; Son, N.X.; Mokhtarani, B.; Repke, J.-U.; Penteado, A.; Manzolini, G.; Orjuela, A.; Gallucci, F. Techno-Economic Analysis of Ethylene Adsorptive Separation Using Zeolite 13X in Oxidative Coupling of Methane Integrated Process. Processes 2024, 12, 1759. [Google Scholar] [CrossRef]
- Stecuła, K.; Olczak, P.; Kamiński, P.; Matuszewska, D.; Duong Duc, H. Towards Sustainable Transport: Techno-Economic Analysis of Investing in Hydrogen Buses in Public Transport in the Selected City of Poland. Energies 2022, 15, 9456. [Google Scholar] [CrossRef]
- Ghasemi, A.; Nikafshan Rad, H.; Akrami, M. Biomass-to-Green Hydrogen: A Review of Techno-Economic-Enviro Assessment of Various Production Methods. Hydrogen 2024, 5, 474–493. [Google Scholar] [CrossRef]
- Fakhreddine, O.; Gharbia, Y.; Derakhshandeh, J.F.; Amer, A.M. Challenges and Solutions of Hydrogen Fuel Cells in Transportation Systems: A Review and Prospects. World Electr. Veh. J. 2023, 14, 156. [Google Scholar] [CrossRef]
- Xu, Z.; Zhao, N.; Hillmansen, S.; Roberts, C.; Yan, Y. Techno-Economic Analysis of Hydrogen Storage Technologies for Railway Engineering: A Review. Energies 2022, 15, 6467. [Google Scholar] [CrossRef]
- Muñoz Díaz, M.T.; Chávez Oróstica, H.; Guajardo, J. Economic Analysis: Green Hydrogen Production Systems. Processes 2023, 11, 1390. [Google Scholar] [CrossRef]
- Granovskii, M.; Dincer, I.; Rosen, M.A. Environmental and Economic Aspects of Hydrogen Production and Utilization in Fuel Cell Vehicles. J. Power Sources 2006, 157, 411–421. [Google Scholar] [CrossRef]
- Aminov, R.Z.; Bairamov, A.N.; Filippov, S.P. Comprehensive Assessment of the Effectiveness of the Hydrogen Production and Transportation System. Int. J. Hydrogen Energy 2024, 86, 1358–1375. [Google Scholar] [CrossRef]
- Qureshi, F.; Yusuf, M.; Arham Khan, M.; Ibrahim, H.; Ekeoma, B.C.; Kamyab, H.; Rahman, M.M.; Nadda, A.K.; Chelliapan, S. A State-of-The-Art Review on the Latest Trends in Hydrogen Production, Storage, and Transportation Techniques. Fuel 2023, 340, 127574. [Google Scholar] [CrossRef]
- Balat, M. Potential Importance of Hydrogen as a Future Solution to Environmental and Transportation Problems. Int. J. Hydrogen Energy 2008, 33, 4013–4029. [Google Scholar] [CrossRef]
- Sun, P.; Young, B.; Elgowainy, A.; Lu, Z.; Wang, M.; Morelli, B.; Hawkins, T. Criteria Air Pollutants and Greenhouse Gas Emissions from Hydrogen Production in U.S. Steam Methane Reforming Facilities. Environ. Sci. Technol. 2019, 53, 7103–7113. [Google Scholar] [CrossRef]
- Alves, H.J.; Junior, C.B.; Niklevicz, R.R.; Frigo, E.P.; Frigo, M.S.; Coimbra-Araújo, C.H. Overview of hydrogen production technologies from biogas and the applications in fuel cells. Int. J. Hydrogen Energy 2013, 38, 5215–5225. [Google Scholar] [CrossRef]
- Gopinath, M.; Marimuthu, R. A review on solar energy-based indirect water-splitting methods for hydrogen generation. Int. J. Hydrog. Energy 2022, 47, 37742–37759. [Google Scholar] [CrossRef]
- Tatarewicz, I.; Skwierz, S.; Lewarski, M.; Jeszke, R.; Pyrka, M.; Sekuła, M. Mapping the Future of Green Hydrogen: Integrated Analysis of Poland and the EU’s Development Pathways to 2050. Energies 2023, 16, 6261. [Google Scholar] [CrossRef]
- Marzouk, O.A. 2030 Ambitions for Hydrogen, Clean Hydrogen, and Green Hydrogen. Eng. Proc. 2023, 56, 14. [Google Scholar] [CrossRef]
- Yang, L.; Wang, S.; Zhang, Z.; Lin, K.; Zheng, M. Current Development Status, Policy Support and Promotion Path of China’s Green Hydrogen Industries under the Target of Carbon Emission Peaking and Carbon Neutrality. Sustainability 2023, 15, 10118. [Google Scholar] [CrossRef]
- Gheibi, M.; Khaleghiabbasabadi, M.; Wacławek, S.; Černík, M. Policy-Making of Hydrogen Energy Production in Countries with the Application of the Shlaer—Mellor Technique. In Proceedings of the Hydrogen Days 2023, Prague, Czech Republic, 29–31 March 2023. [Google Scholar]
- Zemite, L.; Backurs, A.; Starikovs, A.; Laizans, A.; Jansons, L.; Vempere, L.; Bode, I.; Broks, A. A Comprehensive Overview of the Europen and Baltic Landscape for Hydrogen Applications and Innovations. Latv. J. Phys. Tech. Sci. Sciendo 2023, 60, 33. [Google Scholar] [CrossRef]
- Wieringa, R.J.; Saake, G. Formal Analysis of the Shlaer-Mellor Method: Towards a Toolkit of Formal and Informal Requirements Specification Techniques. Requir. Eng. 1996, 1, 106–131. [Google Scholar] [CrossRef]
- Tang, N.; Lee, S.-M. (Eds.) Statistical Methods in Data Science and Applications; MDPI: Basel, Switzerland, 2024; ISBN 9783725807482/9783725807475. [Google Scholar]
- Burnham, A. Alternative Fuel Life-Cycle Environmental and Economic Transportation (AFLEET) Tool 2016; Argonne National Laboratory: Lemont, IL, USA, 2016. [Google Scholar]
- Available online: https://afdc.energy.gov/ (accessed on 17 February 2025).
- Prakash, A.; Jha, S.K.; Prasad Mohanty, R. Scenario Planning for Service Quality: A Monte Carlo Simulation Study. J. Strategy Manag. 2012, 5, 331–352. [Google Scholar] [CrossRef]
- MATLAB. 9.7.0.1190202 (R2019b); The MathWorks Inc.: Natick, MA, USA, 2018. [Google Scholar]
- Gripsborn, C. Multitrådad Schemaläggning avxtUML Modeller: Utfört på Saab Dynamics. 2022. Available online: https://www.diva-portal.org/smash/get/diva2:1689748/FULLTEXT01.pdf (accessed on 17 February 2025).
- Volkov, V.; Loboda, Y. Object Information Models of Complicated Systems in Control Problems. In Proceedings of the ISIT 2021: II International Scientific and Practical Conference Intellectual Systems and Information Technologies, Odesa, Ukraine, 13–19 September 2021; 2021; pp. 137–142. Available online: https://ceur-ws.org/Vol-3126/paper20.pdf (accessed on 17 February 2025).
- Solomon, B.D.; Banerjee, A. A Global Survey of Hydrogen Energy Research, Development and Policy. Energy Policy 2006, 34, 781–792. [Google Scholar] [CrossRef]
- Liu, J.; Chen, T.; Hu, B. Consumer Acceptance under Hydrogen Energy Promotion Policy: Evidence from Yangtze River Delta. Int. J. Hydrogen Energy 2023, 48, 11104–11112. [Google Scholar] [CrossRef]
- Bednarczyk, J.L.; Brzozowska-Rup, K.; Luściński, S. Opportunities and Limitations of Hydrogen Energy in Poland against the Background of the European Union Energy Policy. Energies 2022, 15, 5503. [Google Scholar] [CrossRef]
- Gnann, T.; Speth, D.; Krail, M.; Wietschel, M.; Oberle, S. Pathways to Carbon-Free Transport in Germany until 2050. World Electr. Veh. J. 2022, 13, 136. [Google Scholar] [CrossRef]
- Pinto, M.C. Opportunities and Challenges of Green Hydrogen in the Energy Transition Framework: Analysis of Potential Cross-Border Cooperations Through a Multi-Dimensional Approach. Ph.D. Thesis, Politecnico di Torino, Turin, Italy, 2024. [Google Scholar]
- Bade, S.O.; Tomomewo, O.S. A review of governance strategies, policy measures, and regulatory framework for hydrogen energy in the United States. Int. J. Hydrogen Energy 2024, 78, 1363–1381. [Google Scholar] [CrossRef]
- Chai, S.; Zhang, G.; Li, G.; Zhang, Y. Industrial hydrogen production technology and development status in China: A review. Clean Technol. Environ. Policy 2021, 23, 1931–1946. [Google Scholar] [CrossRef]
- Bleischwitz, R.; Bader, N. Policies for the transition towards a hydrogen economy: The EU case. Energy Policy 2010, 38, 5388–5398. [Google Scholar] [CrossRef]
- Benalcazar, P.; Komorowska, A. Techno-economic analysis and uncertainty assessment of green hydrogen production in future exporting countries. Renew. Sustain. Energy Rev. 2024, 199, 114512. [Google Scholar] [CrossRef]
- Benefits, Hydrogen Fuel Cell Partnership. Available online: https://h2fcp.org/benefits (accessed on 17 March 2025).
- Ghaebi Panah, P.; Bornapour, M.; Cui, X.; Guerrero, J.M. Investment Opportunities: Hydrogen Production or BTC Mining? Int. J. Hydrogen Energy 2022, 47, 5733–5744. [Google Scholar] [CrossRef]
- Lucas, T.R.; Ferreira, A.F.; Santos Pereira, R.B.; Alves, M. Hydrogen Production from the WindFloat Atlantic Offshore Wind Farm: A Techno-Economic Analysis. Appl. Energy 2022, 310, 118481. [Google Scholar] [CrossRef]
- Hydrogen Resource Data, Tools, and Maps|Geospatial Data Science|Nrel. Available online: https://www2.nrel.gov/gis/hydrogen (accessed on 14 December 2024).
- Hydrogen Potential from Renewable Resources in the United States. Maps|Data Basin. Available online: https://databasin.org/maps/new/#datasets=99f129e835a5419eadb863c6bca430e8 (accessed on 25 March 2025).
- Clean Hydrogen Global Supply by Technology 2050. Available online: https://www.statista.com/statistics/1401926/global-clean-hydrogen-supply-forecast-by-technology/ (accessed on 20 November 2024).
- Innovative Data Energy Applications. Available online: https://maps.nrel.gov/ (accessed on 14 December 2024).
- Klassen, V.; Blifernez-Klassen, O.; Hoekzema, Y.; Mussgnug, J.H.; Kruse, O. A novel one-stage cultivation/fermentation strategy for improved biogas production with microalgal biomass. J. Biotechnol. 2015, 215, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Obileke, K.; Makaka, G.; Nwokolo, N. Recent Advancements in Anaerobic Digestion and Gasification Technology. Appl. Sci. 2023, 13, 5597. [Google Scholar] [CrossRef]
- Chiaramonti, D.; Prussi, M.; Buffi, M.; Rizzo, A.M.; Pari, L. Review and experimental study on pyrolysis and hydrothermal liquefaction of microalgae for biofuel production. Appl. Energy 2017, 185, 963–972. [Google Scholar] [CrossRef]
- Tabatabaei, M.; Aghbashlo, M.; Valijanian, E.; Panahi, H.K.S.; Nizami, A.S.; Ghanavati, H.; Sulaiman, A.; Mirmohamadsadeghi, S.; Karimi, K. A comprehensive review on recent biological innovations to improve biogas production, part 1: Upstream strategies. Renew. Energy 2020, 146, 1204–1220. [Google Scholar] [CrossRef]
- Tabatabaei, M.; Aghbashlo, M.; Valijanian, E.; Panahi, H.K.S.; Nizami, A.S.; Ghanavati, H.; Sulaiman, A.; Mirmohamadsadeghi, S.; Karimi, K. A comprehensive review on recent biological innovations to improve biogas production, Part 2: Mainstream and downstream strategies. Renew. Energy 2020, 146, 1392–1407. [Google Scholar] [CrossRef]
- Demirel, B. Major pathway of methane formation from energy crops in agricultural biogas digesters. Crit. Rev. Environ. Sci. Technol. 2014, 44, 199–222. [Google Scholar] [CrossRef]
- Khan, I.U.; Othman, M.H.D.; Hashim, H.; Matsuura, T.; Ismail, A.F.; Rezaei-DashtArzhandi, M.; Azelee, I.W. Biogas as a renewable energy fuel—A review of biogas upgrading, utilisation and storage. Energy Convers. Manag. 2017, 150, 277–294. [Google Scholar] [CrossRef]
- Zohuri, B. Hydrogen Energy: Challenges and Solutions for a Cleaner Future; Springer International Publishing: Cham, Switzerland, 2019; ISBN 9783319934600/9783319934617. [Google Scholar]
- Gavrilyuk, A. (Ed.) Hydrogen Energy for Beginners; Jenny Stanford Publishing: Singapore, 2013; ISBN 9780429071133. [Google Scholar]
- Bigdeloo, M.; Teymourian, T.; Kowsari, E.; Ramakrishna, S.; Ehsani, A. Sustainability and Circular Economy of Food Wastes: Waste Reduction Strategies, Higher Recycling Methods, and Improved Valorization. Mater. Circ. Econ. 2021, 3, 3. [Google Scholar] [CrossRef]
- Teymourian, T.; Teymoorian, T.; Kowsari, E.; Ramakrishna, S. Challenges, Strategies, and Recommendations for the Huge Surge in Plastic and Medical Waste during the Global COVID-19 Pandemic with Circular Economy Approach. Mater. Circ. Econ. 2021, 3, 6. [Google Scholar] [CrossRef]
- Akbarian, H.; Jalali, F.M.; Gheibi, M.; Hajiaghaei-Keshteli, M.; Akrami, M.; Sarmah, A.K. A Sustainable Decision Support System for Soil Bioremediation of Toluene Incorporating UN Sustainable Development Goals. Environ. Pollut. 2022, 307, 119587. [Google Scholar] [CrossRef] [PubMed]
- Qian, S.; Li, L. A comparison of well-to-wheels energy use and emissions of hydrogen fuel cell, electric, LNG, and diesel-powered logistics vehicles in China. Energies 2023, 16, 5101. [Google Scholar] [CrossRef]
- Vivanco-Martín, B.; Iranzo, A. Analysis of the European Strategy for Hydrogen: A Comprehensive Review. Energies 2023, 16, 3866. [Google Scholar] [CrossRef]
- Li, Y.; Shi, X.; Phoumin, H. A strategic roadmap for large-scale green hydrogen demonstration and commercialisation in China: A review and survey analysis. Int. J. Hydrogen Energy 2022, 47, 24592–24609. [Google Scholar] [CrossRef]
- Available online: https://energy.maryland.gov/transportation/Documents/CFTA%20Cumberland%20Electrification%20Analysis.pdf (accessed on 17 March 2025).
- Available online: https://www.itf-oecd.org/sites/default/files/docs/analysis-vehicle-fuel-systems-anl.pdf (accessed on 17 March 2025).
- Available online: https://afleet.esia.anl.gov/home/ (accessed on 17 March 2025).
- Available online: https://afdc.energy.gov/files/u/publication/afleet-fact-sheet.pdf?d3685d8c2f (accessed on 17 March 2025).
- Available online: https://afdc.energy.gov/files/u/publication/tools.pdf (accessed on 17 March 2025).
- IEA. Energy Technology Perspectives 2020; IEA: Paris, France, 2020; Available online: https://www.iea.org/reports/energy-technology-perspectives-2020 (accessed on 17 March 2025).
- Wong, E.Y.C.; Ho, D.C.K.; So, S.; Tsang, C.W.; Chan, E.M.H. Life cycle assessment of electric vehicles and hydrogen fuel cell vehicles using the greet model—A comparative study. Sustainability 2021, 13, 4872. [Google Scholar] [CrossRef]
Study | Technology | Hydrogen Properties | Production Values |
---|---|---|---|
Ghasemi et al. [27] | Thermochemical (e.g., gasification) | High scalability but requires optimization for biomass-based methods | Biomass-based hydrogen less competitive without advancements |
Fakhreddine et al. [28] | Hydrogen fuel cells (HFCs) | High efficiency, zero emissions | Suitable for auxiliary power in large airplanes; potential for widespread adoption |
Zhan et al. [29] | Compressed, liquid hydrogen, ammonia | Compressed: most mature; liquid/ammonia: higher storage densities | Hydrogen storage improves rail transport decarbonization |
Muñoz Díaz et al. [30] | Green hydrogen via renewable sources | Renewable-based, high environmental potential | Current cost in Chile: USD 3.5/kg; requires optimization for competitiveness |
Granovskii et al. [31] | Wind and solar-based electrolysis; natural gas reforming | Wind: Low GHG emissions; natural gas: cost-effective but emits CO2 | Wind-based electrolysis mitigates GHG; natural gas reforming remains cost-effective |
Aminov et al. [32] | Electrolysis integrated with nuclear power | High purity, versatile for industrial use | Competitive costs using excess nuclear electricity |
Qureshi et al. [33] | Steam reforming, plasma reforming, photoelectrolysis | Clean-burning, high energy density | Challenges in storage and handling; diverse methods yet with techno-economic hurdles |
Balat [34] | Electrolysis, steam methane reforming (SMR) | SMR: economical; electrolysis: cleaner | SMR dominant due to cost; solar-powered electrolysis promising for future advances |
Sun et al. [35] | Steam methane reforming (SMR) | Low tailpipe emissions, GHG from production | Quantified GHG and CAP emissions at national and state levels in the U.S. |
Statistical Parameter | H2 Production Potential from Biomass per Area (kg/yr/km2) | H2 Production Potential from Solar Energy per Area (kg/yr/km2) |
---|---|---|
Mean | 5687.13 | 704,322.29 |
Standard Error | 190.99 | 9014.83 |
Median | 3493.43 | 695,664.39 |
Standard Deviation | 10,703.81 | 505,232.67 |
Sample Variance | 114,571,589.30 | 2.55 × 1011 |
Kurtosis | 548.46 | −0.99 |
Skewness | 18.73 | 0.22 |
Range | 378,552.12 | 2,488,632.34 |
Minimum | 0.01 | 0.00 |
Maximum | 378,552.13 | 2,488,632.34 |
Sum | 17,863,286.94 | 2,212,276,320.00 |
Count | 3141 | 3141 |
Largest (1) | 378,552.13 | 2,488,632.34 |
Smallest (1) | 0.01 | 0.00 |
Confidence Level (95.0%) | 374.47 | 17,675.55 |
Statistical Parameter | H2 Production Potential from Biomass per Capita | H2 Production Potential from Solar Energy per Capita |
---|---|---|
Mean | 6079.608091 | 330,513.5182 |
Standard Error | 5588.06564 | 77,084.13268 |
Median | 146.6650848 | 34,365.33452 |
Standard Deviation | 313,181.0437 | 4,320,151.315 |
Sample Variance | 98,082,366,122 | 1.86637 × 1013 |
Kurtosis | 3140.944786 | 2092.130645 |
Skewness | 56.04388654 | 43.26649232 |
Range | 17,552,517.17 | 218,000,900.3 |
Minimum | 11.51462183 | 0 |
Maximum | 17,552,528.68 | 218,000,900.3 |
Sum | 19,096,049.01 | 1,038,142,961 |
Count | 3141 | 3141 |
Largest (1) | 17,552,528.68 | 218,000,900.3 |
Smallest (1) | 11.51462183 | 0 |
Confidence Level (95.0%) | 10,956.63078 | 151,140.383 |
Fuel | Fuel Unit | Price/Fuel Unit |
---|---|---|
Gasoline | Gallon | USD 3.01 |
Diesel | Gallon | USD 2.99 |
Electricity (Hybrid Electric Vehicles-HEVs) | kWh | USD 0.19 |
Gaseous H2 (Fuel Cell Vehicle—FCV) | kg | USD 13.50 |
Biodiesel (B20) | Gallon | USD 2.61 |
Biodiesel (B100) | Gallon | USD 4.36 |
Renewable Diesel (RD20) | Gallon | USD 2.96 |
Renewable Diesel (RD100) | Gallon | USD 2.95 |
Ethanol (E85) | Gallon | USD 2.37 |
Propane | Gallon | USD 2.67 |
Compressed Natural Gas (CNG) | GGE | USD 1.72 |
Liquefied Petroleum Gas (LNG) | Gallon | USD 1.10 |
Diesel Exhaust Fluid (DEF) | Gallon | USD 2.80 |
State | Specification |
---|---|
Annual Mileage | 12,400 |
Biodiesel Feedstock Source | Soy |
Renewable Diesel Feedstock Source | Soy |
Ethanol Feedstock Source | Corn |
CNG Feedstock Source | North American NG |
LNG Feedstock Source | North American NG |
Conventional NG Feedstock Source | 66% |
NG LPG Feedstock Source | 69% |
Source of Electricity | Western Electricity Coordinating Council (WECC) |
Gaseous H2 Production Process | Refueling Station SMR (On-site) |
Diesel In-Use Multiplier | No |
Use Low NOX Engines? | Yes |
Petroleum Use, GHGs and Air Pollutants Options | Well-to-Wheels Petroleum Use and GHGs and Vehicle Operation Air Pollutants |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ganji, M.; Gheibi, M.; Aldaghi, A.; Dhoska, K.; Vito, S.; Atari, S.; Moezzi, R. Comprehensive Study on Hydrogen Production for Sustainable Transportation Planning: Strategic, Techno-Economic, and Environmental Impacts. Hydrogen 2025, 6, 24. https://doi.org/10.3390/hydrogen6020024
Ganji M, Gheibi M, Aldaghi A, Dhoska K, Vito S, Atari S, Moezzi R. Comprehensive Study on Hydrogen Production for Sustainable Transportation Planning: Strategic, Techno-Economic, and Environmental Impacts. Hydrogen. 2025; 6(2):24. https://doi.org/10.3390/hydrogen6020024
Chicago/Turabian StyleGanji, Mohammadamin, Mohammad Gheibi, Alireza Aldaghi, Klodian Dhoska, Sonila Vito, Sina Atari, and Reza Moezzi. 2025. "Comprehensive Study on Hydrogen Production for Sustainable Transportation Planning: Strategic, Techno-Economic, and Environmental Impacts" Hydrogen 6, no. 2: 24. https://doi.org/10.3390/hydrogen6020024
APA StyleGanji, M., Gheibi, M., Aldaghi, A., Dhoska, K., Vito, S., Atari, S., & Moezzi, R. (2025). Comprehensive Study on Hydrogen Production for Sustainable Transportation Planning: Strategic, Techno-Economic, and Environmental Impacts. Hydrogen, 6(2), 24. https://doi.org/10.3390/hydrogen6020024