Ecological Half-Life of 137Cs in Fungi
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Sites
2.2. Preparation of the Fungal Fruit Bodies Samples
2.3. Radiometry
2.4. Calculation of the Ecological Half-Life of 137Cs
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Venturi, S. Cesium in Biology, Pancreatic Cancer, and Controversy in High and Low Radiation Exposure Damage—Scientific, Environmental, Geopolitical, and Economic Aspects. Int. J. Environ. Res. Public Health 2021, 18, 8934. [Google Scholar] [CrossRef] [PubMed]
- Svendsen, E.R.; Kolpakov, I.E.; Stepanova, Y.I.; Vdovenko, V.Y.; Naboka, M.V.; Mousseau, T.A.; Mohr, L.C.; Hoel, D.G.; Karmaus, W.J.J. 137-Cesium Exposure and Spirometry Measures in Ukrainian Children Affected by the Chernobyl Nuclear Incident. Environ. Health Perspect. 2010, 118, 720–725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, H.W.; Hutchison-Benson, E.; Svoboda, J. Search for Latitudinal Trends in the Effective Half-Life of Fallout 137Cs in Vegetation of the Canadian Arctic. Can. J. Bot. 1985, 63, 792–796. [Google Scholar] [CrossRef]
- Paller, M.H.; Jannik, G.T.; Baker, R.A. Effective Half-Life of Caesium-137 in Various Environmental Media at the Savannah River Site. J. Environ. Radioact. 2014, 131, 81–88. [Google Scholar] [CrossRef]
- Škrkal, J.; Rulík, P.; Fantínová, K.; Burianová, J.; Helebrant, J. Long-Term 137cs Activity Monitoring of Mushrooms in Forest Ecosystems of the Czech Republic. Radiat. Prot. Dosimetry 2013, 157, 579–584. [Google Scholar] [CrossRef]
- Zibold, G.; Klemt, E. Ecological Half-Times of 137Cs and 90Sr in Forest and Freshwater Ecosystems. Radioprotection 2005, 40, S497–S502. [Google Scholar] [CrossRef] [Green Version]
- AMAP. AMAP Assessment 2002: Radioactivity in the Arctic; AMAP: Tromsø, Norway, 2004; p. 22. ISBN 8279710191. [Google Scholar]
- Bé, M.-M.; Chisté, V.; Dulieu, C.; Browne, E.; Baglin, C.; Chechev, V.; Kuzmenko, N.; Helmer, R.; Kondev, F.; MacMahon, D.; et al. Table of Radionuclides, Cs-137; Monographie BIPM-5; Bureau International des Poids et Mesures: Sèvres, France, 2006; Volume 3, ISBN 92-822-2218-7. [Google Scholar]
- Dementyev, D.; Bolsunovsky, A. A Long-Term Study of Radionuclide Concentrations in Mushrooms in the 30-Km Zone around the Mining-and-Chemical Combine (Russia). Isotopes Environ. Health Stud. 2020, 56, 83–92. [Google Scholar] [CrossRef]
- Oloś, G.; Dołhańczuk-Śródka, A. Effective and Environmental Half-Lives of Radiocesium in Game from Poland. J. Environ. Radioact. 2022, 248, 106870. [Google Scholar] [CrossRef]
- Falandysz, J.; Saniewski, M.; Fernandes, A.R.; Meloni, D.; Cocchi, L.; Strumińska-Parulska, D.; Zalewska, T. Radiocaesium in Tricholoma Spp. from the Northern Hemisphere in 1971–2016. Sci. Total Environ. 2022, 802, 149829. [Google Scholar] [CrossRef]
- Zarubina, N.E.; Burdo, O.S.; Ponomarenko, L.P.; Shatrova, O.V. Two Stages in the Accumulation of 137Cs by Mushroom Suillus Luteus after the Chornobyl Accident. Nucl. Phys. At. Energy 2021, 22, 294–299. [Google Scholar] [CrossRef]
- Zarubina, N. The Influence of Biotic and Abiotic Factors on 137 Cs Accumulation in Higher Fungi after the Accident at Chernobyl NPP. J. Environ. Radioact. 2016, 161, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Katengeza, E.W.; Sanada, Y.; Yoshimura, K.; Ochi, K.; Iimoto, T. The Ecological Half-Life of Radiocesium in Surficial Bottom Sediments of Five Ponds in Fukushima Based on: In Situ Measurements with Plastic Scintillation Fibers. Environ. Sci. Process. Impacts 2020, 22, 1566–1576. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, M.; Akama, A. Difference of Ecological Half-Life and Transfer Coefficient in Aquatic Invertebrates between High and Low Radiocesium Contaminated Streams. Sci. Rep. 2020, 10, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Baltas, H.; Sirin, M.; Dalgic, G.; Cevik, U. An Overview of the Ecological Half-Life of the 137Cs Radioisotope and a Determination of Radioactivity Levels in Sediment Samples after Chernobyl in the Eastern Black Sea, Turkey. J. Mar. Syst. 2018, 177, 21–27. [Google Scholar] [CrossRef]
- Paller, M.H.; Jannik, G.T.; Fledderman, P.D. Changes in 137Cs Concentrations in Soil and Vegetation on the Floodplain of the Savannah River over a 30 Year Period. J. Environ. Radioact. 2008, 99, 1302–1310. [Google Scholar] [CrossRef] [Green Version]
- Saka, A.Z.; Çevik, U.; Bacaksiz, E.; Kopya, A.Í.; Tiraşoǧlu, E. Levels of Cesium Radionuclides in Lichens and Mosses from the Province of Ordu in the Eastern Black Sea Area of Turkey. J. Radioanal. Nucl. Chem. 1997, 222, 87–92. [Google Scholar] [CrossRef]
- Cevik, U.; Celik, N. Ecological Half-Life of 137Cs in Mosses and Lichens in the Ordu Province, Turkey by Cevik and Celik. J. Environ. Radioact. 2009, 100, 23–28. [Google Scholar] [CrossRef]
- Machart, P.; Hofmann, W.; Türk, R.; Steger, F. Ecological Half-Life of 137Cs in Lichens in an Alpine Region. J. Environ. Radioact. 2007, 97, 70–75. [Google Scholar] [CrossRef]
- Monte, L. Evaluation of Radionuclide Transfer Functions from Drainage Basins of Fresh Water Systems. J. Environ. Radioact. 1995, 26, 71–82. [Google Scholar] [CrossRef]
- Ronda, O.; Grządka, E.; Ostolska, I.; Orzeł, J.; Cieślik, B.M. Accumulation of Radioisotopes and Heavy Metals in Selected Species of Mushrooms. Food Chem. 2022, 367, 130670. [Google Scholar] [CrossRef]
- Ernst, A.L.; Reiter, G.; Piepenbring, M.; Bässler, C. Spatial Risk Assessment of Radiocesium Contamination of Edible Mushrooms—Lessons from a Highly Frequented Recreational Area. Sci. Total Environ. 2022, 807, 150861. [Google Scholar] [CrossRef] [PubMed]
- Tagami, K.; Yasutaka, T.; Takada, M.; Uchida, S. Aggregated Transfer Factor of 137Cs in Wild Edible Mushrooms Collected in 2016–2020 for Long-Term Internal Dose Assessment Use. J. Environ. Radioact. 2021, 237, 106664. [Google Scholar] [CrossRef] [PubMed]
- Guido-Garcia, F.; Sakamoto, F.; David, K.; Kozai, N.; Grambow, B. Radiocesium in Shiitake Mushroom: Accumulation in Living Fruit Bodies and Leaching from Dead Fruit Bodies. Chemosphere 2021, 279, 130511. [Google Scholar] [CrossRef] [PubMed]
- Komatsu, M.; Suzuki, N.; Ogawa, S.; Ota, Y. Spatial Distribution of 137Cs Concentrations in Mushrooms (Boletus Hiratsukae) and Their Relationship with Soil Exchangeable Cation Contents. J. Environ. Radioact. 2020, 222, 106364. [Google Scholar] [CrossRef] [PubMed]
- Nemoto, Y.; Oomachi, H.; Saito, R.; Kumada, R.; Sasaki, M.; Takatsuki, S. Effects of 137Cs Contamination after the TEPCO Fukushima Dai-Ichi Nuclear Power Station Accident on Food and Habitat of Wild Boar in Fukushima Prefecture. J. Environ. Radioact. 2020, 225, 106342. [Google Scholar] [CrossRef]
- Komatsu, M.; Nishina, K.; Hashimoto, S. Extensive Analysis of Radiocesium Concentrations in Wild Mushrooms in Eastern Japan Affected by the Fukushima Nuclear Accident: Use of Open Accessible Monitoring Data. Environ. Pollut. 2019, 255, 113236. [Google Scholar] [CrossRef]
- Büntgen, U.; Jäggi, M.; Egli, S.; Heule, M.; Peter, M.; Zagyva, I.; Krusic, P.J.; Zimermann, S.; Bagi, I. No Radioactive Contamination from the Chernobyl Disaster in Hungarian White Truffles (Tuber Magnatum). Environ. Pollut. 2019, 252, 1643–1647. [Google Scholar] [CrossRef]
- Pröhl, G.; Ehlken, S.; Fiedler, I.; Kirchner, G.; Klemt, E.; Zibold, G. Ecological Half-Lives of 90Sr and 137Cs in Terrestrial and Aquatic Ecosystems. J. Environ. Radioact. 2006, 91, 41–72. [Google Scholar] [CrossRef]
- Koivurova, M.; Leppänen, A.P.; Kallio, A. Transfer Factors and Effective Half-Lives of 134Cs and 137Cs in Different Environmental Sample Types Obtained from Northern Finland: Case Fukushima Accident. J. Environ. Radioact. 2015, 146, 73–79. [Google Scholar] [CrossRef]
- Koval, G.M.; Shatrova, N.E. The Content of Radionuclides of Accidental Origin in Fungi (Macromycetes) of the Chornobyl Exclusion Zone (in Ukrainian). In Chornobyl. The Exclusion Zone; Naukova Dumka: Kyiv, Ukraine, 2001; pp. 378–407. [Google Scholar]
- Portoghesi, L. European Forest Types (Categories and Types for Sustainable Forest Management Reporting and Policy). Available online: https://www.eea.europa.eu/publications/technical_report_2006_9 (accessed on 10 December 2022).
- Pohrebniak, P.S. Basis of Forest Typology; Publishing House of Academy of Science of USSR: Kyiv, Ukraine, 1955. (In Russian) [Google Scholar]
- Cort, M.; Dubois, G.; Fridman, S.D.; Germenchuk, M.G.; Izrael, Y.A.; Janssens, A.; Jones, A.R.; Kelly, G.N.; Kvasnikova, E.V.; Matveenko, I.I.; et al. Atlas of Caesium Deposition on Europe after the Chernobyl Accident; Office for Official Publications of the European Communities: Luxembourg, 1998; p. 66 (plate No. 19). ISBN 92-828-3140-X. [Google Scholar]
- Lux, D.; Kammerer, L.; Rühm, W.; Wirth, E. Cycling of Pu, Sr, Cs, and Other Longliving Radionuclides in Forest Ecosystems of the 30-Km Zone around Chernobyl. Sci. Total Environ. 1995, 173/174, 375–384. [Google Scholar] [CrossRef]
- Orlov, O.O.; Kurbet, T.V.; Kalish, O.B.; Pryshchepa, O.L. Peculiarities of 137Cs Accumulation by Macromycetes in Dry Pinewoods of Ukrainian Polissia. In Proceedings of the Collection of research papers of the Institute for Nuclear Research; Scientific Papers of the Institute for Nuclear Research: Kyiv, Ukraine, 2001; pp. 112–114. ISSN 1606-6723. (In Russian) [Google Scholar]
- Olsen, R.A.; Joner, E.; Bakken, L.R. Soil Fungi and the Fate of Radiocaesium in the Soil Ecosystem. In Transfer of Radionuclides in Natural and Semi-Natural Environment; Desmet, G., Nassimbeni, P., Belli, M., Eds.; Elsevier Applied Science: England, UK, 1990; pp. 657–663. ISBN 1-85166-539-0. [Google Scholar]
- Dahlberg, A.; Nikolova, I.; Johanson, K.-J. Intraspecific Variation in 137Cs Activity Concentration in Sporocarps of Suillus Variegatus in Seven Swedish Populations. Mycol. Res. 1997, 101, 545–551. [Google Scholar] [CrossRef]
- Boonstra, R.; Manzon, R.G.; Mihok, S.; Helson, J.E. Hormetic Effects of Gamma Radiation on the Stress Axis of Natural Populations of Meadow Voles (Microtus Pennsylvanicus). Environ. Toxicol. Chem. 2005, 24, 334–343. [Google Scholar] [CrossRef] [PubMed]
- Song, K.E.; Lee, S.H.; Jung, J.G.; Choi, J.E.; Jun, W.; Chung, J.-W.; Hong, S.H.; Shim, S. Hormesis Effects of Gamma Radiation on Growth of Quinoa (Chenopodium Quinoa). Int. J. Radiat. Biol. 2021, 97, 906–915. [Google Scholar] [CrossRef] [PubMed]
- Belli, M.; Indovina, L. The Response of Living Organisms to Low Radiation Environment and Its Implications in Radiation Protection. Front. Public Heal. 2020, 8, 601711. [Google Scholar] [CrossRef] [PubMed]
- Buldakov, L.A.; Kalistratova, V.S. Radiation Effects on the Organism—Positive Effects; Inform-Atom: San Francisco, CA, USA, 2005; ISBN 5891070421. (In Russian) [Google Scholar]
- Grodzinskiy, D.M. Radiobiology (in Ukrainian); 2nd ed.; Lybid: Kyiv, Ukraine, 2001; ISBN 966-06-0204-9. [Google Scholar]
Sampling Site | GPS Coordinates | Distance from ChNPP | HT (µSv/h) | |
---|---|---|---|---|
1 | Yaniv | 30.06408 E, 51.39017 N | 2.2 km | 10.00 |
2 | Prypiat | 30.02982 E, 51.41249 N | 5.2 km | 2.50 |
3 | Novoshepelychi | 30.01030 E, 51.41910 N | 6.7 km | 2.00 |
4 | Leliv | 30.15856 E, 51.32505 N | 8.5 km | 1.20 |
5 | Paryshiv | 30.32473 E, 51.30069 N | 18.8 km | 0.30 |
6 | Opachychi | 30.30404 E, 51.197143 N | 25.0 km | 0.25 |
7 | Dytyatky | 30.12449 E, 51.13088 N | 29.9 km | 0.25 |
8 | Stare | 30.99528 E, 50.06785 N | 159.8 km | 0.18 |
9 | Staiky | 30.98756 E, 50.05959 N | 160.6 km | 0.15 |
10 | Rzhyshchiv | 31.08317 E, 50.01686 N | 167.5 km | 0.15 |
Sampling Site | Fungi Species | ||||
---|---|---|---|---|---|
S. luteus | B. edulis | I. badia | P. involutus | ||
1 | Yaniv | 2.46 (2.27) | |||
2 | Prypiat | 3.54 (3.17) | |||
3 | Novoshepelychi | 3.14 (2.84) | 1.73 (1.64) | 0.93 (0.90) | 1.16 (1.12) |
4 | Leliv | 5.89 (4.92) | |||
5 | Paryshiv | 7.76 (6.17) | 3.66 (3.26) | 3.53 (3.16) | 6.68 (5.47) |
6 | Opachychi | 4.48 (3.90) | |||
7 | Dytyatky | 5.43 (4.60) | 5.01 (4.29) | 3.05 (2.77) | 2.83 (2.59) |
8 | Stare | 8.85 (6.84) | 4.61 (4.00) | ||
9 | Staiky | 5.94 (4.96) | 7.56 (6.04) | 3.36 (3.02) | 3.35 (3.01) |
10 | Rzhyshchiv | 8.21 (6.45) | 2.79 (2.55) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zarubina, N.E.; Semak, V.; Burdo, O.S.; Ponomarenko, L.P. Ecological Half-Life of 137Cs in Fungi. Ecologies 2023, 4, 11-19. https://doi.org/10.3390/ecologies4010002
Zarubina NE, Semak V, Burdo OS, Ponomarenko LP. Ecological Half-Life of 137Cs in Fungi. Ecologies. 2023; 4(1):11-19. https://doi.org/10.3390/ecologies4010002
Chicago/Turabian StyleZarubina, Nataliia E., Vladislav Semak, Oleg S. Burdo, and Liliia P. Ponomarenko. 2023. "Ecological Half-Life of 137Cs in Fungi" Ecologies 4, no. 1: 11-19. https://doi.org/10.3390/ecologies4010002
APA StyleZarubina, N. E., Semak, V., Burdo, O. S., & Ponomarenko, L. P. (2023). Ecological Half-Life of 137Cs in Fungi. Ecologies, 4(1), 11-19. https://doi.org/10.3390/ecologies4010002