Transceiver Optimization for Multiuser Multiple-Input Multiple-Output Full-Duplex Amplify-and-Forward Relay Downlink Communications
Abstract
:1. Introduction
2. System Model
3. Optimization Problem Solution
Algorithm 1: Iterative Design of , , and . |
4. Numerical Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
MIMO | Multiple-Input Multiple-Output; |
FD | Full-Duplex; |
HD | Half-Duplex; |
LI | Loop Interference. |
References
- Xu, W.; Dong, X.; Lu, W. Joint precoding optimization for multiuser multi-antenna relaying downlinks using quadratic programming. IEEE Trans. Commun. 2011, 59, 1228–1235. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Z.; Qiu, Z. Joint MMSE transceiver design for multiuser non-regenerative MIMO relay downlink systems. In Proceedings of the 2011 7th International Wireless Communications and Mobile Computing Conference, Istanbul, Turkey, 4–8 July 2011; pp. 877–882. [Google Scholar] [CrossRef]
- Liu, J.; Gao, F.; Qiu, Z. Robust transceiver design for downlink multiuser MIMO AF relay systems. IEEE Trans. Wirel. Commun. 2015, 14, 1228–1235. [Google Scholar] [CrossRef]
- Xu, D.; Huang, Y.; Yang, L.; Li, B. Linear transceiver design for multiuser MIMO downlink. In Proceedings of the 2008 IEEE International Conference on Communications, Beijing, China, 19–23 May 2008; pp. 761–765. [Google Scholar] [CrossRef]
- Zhai, C.; Li, X.; Hei, Y. A novel decomposed transceiver design for multiuser MIMO relay downlink systems. In Proceedings of the 2012 IEEE Wireless Communications and Networking Conference (WCNC), Paris, France, 1–4 April 2012; pp. 1921–1924. [Google Scholar] [CrossRef]
- Gopal, L.; Rong, Y.; Zang, Z. Robust MMSE transceiver design for nonregenerative multicasting MIMO relay systems. IEEE Trans. Vehic. Tech. 2017, 66, 8979–8989. [Google Scholar] [CrossRef]
- Nguyen, K.X.; Rong, Y.; Nordholm, S. Transceiver optimization for interference MIMO relay systems using the structure of relay matrix. In Proceedings of the 2015 24th Wireless and Optical Communication Conference (WOCC), Taipei, Taiwan, 23–24 October 2015; pp. 29–33. [Google Scholar] [CrossRef]
- Kang, Y.Y.; Cho, J.H. Capacity of MIMO wireless channel with full-duplex amplify-and-forward relay. In Proceedings of the 2009 IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications, Tokyo, Japan, 13–16 September 2009; pp. 117–121. [Google Scholar] [CrossRef]
- Bharadia, D.; McMilin, E.; Katti, S. Full duplex radios. ACM SIGCOMM Comput. Commun. Rev. 2013, 43, 375–386. [Google Scholar] [CrossRef]
- Riihonen, T.; Werner, S.; Wichman, R. Mitigation of loopback self-interference in full-duplex MIMO relays. IEEE Trans. Sig. Process. 2011, 59, 5983–5993. [Google Scholar] [CrossRef]
- Cirik, A.C.; Biswas, S.; Vuppala, S.; Ratnarajah, T. Robust transceiver design for full duplex multiuser MIMO systems. IEEE Wirel. Commun. Lett. 2016, 5, 260–263. [Google Scholar] [CrossRef]
- Lin, C.T.; Tseng, F.S.; Wu, W.R.; Jheng, F.J. Joint precoders design for full-duplex MIMO relay systems with QR-SIC detector. In Proceedings of the 2015 IEEE Global Communications Conference (GLOBECOM), San Diego, CA, USA, 6–10 December 2015. [Google Scholar] [CrossRef]
- Stenhammar, O.; Fodor, G.; Fischione, C. A comparison of neural networks for wireless channel prediction. IEEE Wirel. Commun. 2024; early access. [Google Scholar] [CrossRef]
- Sohrabi, F.; Attiah, K.M.; Yu, W. Deep learning for distributed channel feedback and multiuser precoding in FDD massive MIMO. IEEE Trans. Wirel. Commun. 2021, 20, 4044–4057. [Google Scholar] [CrossRef]
- Darabi, M.; Cirik, A.C.; Lampe, L. Transceiver design in millimeter wave full-duplex multi-user massive MIMO communication systems. IEEE Access 2021, 9, 165394–165408. [Google Scholar] [CrossRef]
- Xia, X.; Fan, Z.; Luo, W.; Lu, A.; Wang, D.; Zhao, X.; You, X. Joint uplink power control, downlink beamforming, and mode selection for secrecy cell-free massive MIMO with network-assisted full duplexing. IEEE Syst. J. 2023, 17, 720–731. [Google Scholar] [CrossRef]
- Luo, H.; Garg, N.; Ratnarajah, T. Beamforming design for in-band full-duplex multi-cell multi-user MIMO networks with global and local CSI. IEEE Trans. Veh. Technol. 2023, 72, 10218–10233. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, W.; Wu, Q.; Liu, Z.; Li, J. Performance of RIS-assisted full-duplex space shift keying with imperfect self-interference cancellation. IEEE Wirel. Commun. Lett. 2024, 13, 128–132. [Google Scholar] [CrossRef]
- Shao, Y.; Gulliver, T.A. Precoding for multiuser MIMO full-duplex amplify-and-forward relay uplink communication systems. SN Appl. Sci. 2020, 2, 694. [Google Scholar] [CrossRef]
- Rodriguez, L.J.; Tran, N.H.; Le-Ngoc, T. Performance of full-duplex AF relaying in the presence of residual self-interference. IEEE J. Sel. Areas Commun. 2014, 32, 1752–1764. [Google Scholar] [CrossRef]
- Grant, M.C.; Boyd, S.P. CVX: Matlab Software for Disciplined Convex Programming. March 2014. Available online: http://cvxr.com/cvx/ (accessed on 1 January 2023).
Symbol | Description |
---|---|
Signal vector for the kth source | |
Linear transceiver matrix at the source for the kth user | |
Channel between source k and the relay node | |
Loop interference (LI) channels | |
i.i.d. additive white Gaussian noise (AWGN) matrix | |
Linear combiner at the destination | |
Transceiver matrix at the relay for the kth user | |
Linear combiners at the destinations for the kth user | |
R | Achievable rate |
Parameter | Value |
---|---|
Downlink/uplink users | 2 |
Relay antennas | 2 × 2 |
Downlink/uplink user antennas | 2 × 2 |
LI levels | 0 dB, 5 dB, 10 dB |
No. of independent channel realizations | 1000 |
Source–relay and relay–source SNR | 0 dB, 5 dB, 10 dB, 15 dB, 20 dB, 25 dB, 30 dB |
Residual LI | = 30 dB with = 27 dB | = 27 dB with = 30 dB |
---|---|---|
FD No LI | ||
FD LI = 0 dB | ||
FD LI = 5 dB | ||
FD LI = 10 dB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, Y.; Gulliver, T.A. Transceiver Optimization for Multiuser Multiple-Input Multiple-Output Full-Duplex Amplify-and-Forward Relay Downlink Communications. Telecom 2024, 5, 216-227. https://doi.org/10.3390/telecom5010011
Shao Y, Gulliver TA. Transceiver Optimization for Multiuser Multiple-Input Multiple-Output Full-Duplex Amplify-and-Forward Relay Downlink Communications. Telecom. 2024; 5(1):216-227. https://doi.org/10.3390/telecom5010011
Chicago/Turabian StyleShao, Yunlong, and Thomas Aaron Gulliver. 2024. "Transceiver Optimization for Multiuser Multiple-Input Multiple-Output Full-Duplex Amplify-and-Forward Relay Downlink Communications" Telecom 5, no. 1: 216-227. https://doi.org/10.3390/telecom5010011
APA StyleShao, Y., & Gulliver, T. A. (2024). Transceiver Optimization for Multiuser Multiple-Input Multiple-Output Full-Duplex Amplify-and-Forward Relay Downlink Communications. Telecom, 5(1), 216-227. https://doi.org/10.3390/telecom5010011