Maximizing the Downlink Data Rates in Massive Multiple Input Multiple Output with Frequency Division Duplex Transmission Mode Using Power Allocation Optimization Method with Limited Coherence Time
Abstract
:1. Introduction
1.1. Paper Contributions
- This paper addresses the challenge of channel estimation with a very large antenna and short coherence time with an objective to maximize the DASR.
- This paper proposes a low-complexity solution for CSI estimation by utilizing the statistical information of the channel covariance matrix, which is considered to be locally stationary and varying more slowly than the instantaneous channel.
- This paper proposes a power allocation optimization strategy that is based on dividing the energy nonuniformly between the data transmission and training sequence transmission with LCT, with an objective function to maximize the DASR of MMIMO systems with the FDD transmission mode.
- We derive an analytical closed-form expression for the DASR with a regularized zero-forcing precoder (ZFBF) using a theory based on the random matrix method.
- This paper conducts comparisons for the DASR performance results between the proposed power optimization method and the conventional method with uniform power allocation. The results show that the proposed low-complexity power allocation optimization approach markedly improves the DASR over the conventional method across a wide range of configurations considered. This success in maximizing the DASR signifies the feasibility of applying the proposed method in practical systems utilizing URLLC and LCT scenarios.
1.2. Paper Organization and Notation
2. System Model of Downlink FDD MMIMO
3. Power Allocation Optimization and Problem Formulations
3.1. MMSE Channel Estimation in Downlink FDD Systems
3.2. Training Sequence Design in Downlink FDD Systems
3.3. Power Allocation Optimization Process
3.4. Power Allocation Formulation
3.5. Formulation of the DASR Maximization Problem
4. Analytical Expression for the DASR of RZFP in FDD Systems
Simplified Analytical Expression for the DASR of RZFP
5. Results of the Proposed Power Allocation Scheme
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alsabah, M.; Naser, M.A.; Mahmmod, B.M.; Abdulhussain, S.H.; Eissa, M.R.; Al-Baidhani, A.; Noordin, N.K.; Sait, S.M.; Al-Utaibi, K.A.; Hashim, F. 6G wireless communications networks: A comprehensive survey. IEEE Access 2021, 9, 148191–148243. [Google Scholar] [CrossRef]
- Simsek, M.; Aijaz, A.; Dohler, M.; Sachs, J.; Fettweis, G. 5G-enabled tactile internet. IEEE J. Sel. Areas Commun. 2016, 34, 460–473. [Google Scholar] [CrossRef]
- Zong, B.; Fan, C.; Wang, X.; Duan, X.; Wang, B.; Wang, J. 6G technologies: Key drivers, core requirements, system architectures, and enabling technologies. IEEE Veh. Technol. Mag. 2019, 14, 18–27. [Google Scholar] [CrossRef]
- Liu, H.; Deng, H.; Yi, Y.; Zhu, Z.; Liu, G.; Zhang, J. Energy Efficiency Optimization Based on Power Allocation in Massive MIMO Downlink Systems. Symmetry 2022, 14, 1145. [Google Scholar] [CrossRef]
- Marzetta, T.L. Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas. IEEE Trans. Wirel. Commun. 2010, 9, 3590–3600. [Google Scholar] [CrossRef]
- Rusek, F.; Persson, D.; Lau, B.K.; Larsson, E.G.; Marzetta, T.L.; Edfors, O.; Tufvesson, F. Scaling Up MIMO: Opportunities and Challenges with Very Large Arrays. IEEE Signal Process. Mag. 2013, 30, 40–60. [Google Scholar] [CrossRef]
- Gkonis, P.K.; Trakadas, P.T.; Kaklamani, D.I. A comprehensive study on simulation techniques for 5g networks: State of the art results, analysis, and future challenges. Electronics 2020, 9, 468. [Google Scholar] [CrossRef]
- Huh, H.; Caire, G.; Papadopoulos, H.C.; Ramprashad, S.A. Achieving “Massive MIMO” Spectral Efficiency with a Not-so-Large Number of Antennas. IEEE Trans. Wirel. Commun. 2012, 11, 3226–3239. [Google Scholar] [CrossRef]
- Jose, J.; Ashikhmin, A.; Marzetta, T.L.; Vishwanath, S. Pilot Contamination and Precoding in Multi-Cell TDD Systems. IEEE Trans. Wirel. Commun. 2011, 10, 2640–2651. [Google Scholar] [CrossRef]
- Ngo, H.Q.; Larsson, E.G.; Marzetta, T.L. Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Trans. Commun. 2013, 61, 1436–1449. [Google Scholar]
- Hoydis, J.; Ten Brink, S.; Debbah, M. Massive MIMO in the UL/DL of Cellular Networks: How Many Antennas Do We Need? IEEE J. Sel. Areas Commun. 2013, 31, 160–171. [Google Scholar] [CrossRef]
- Omer, D.; Hussein, M.; Mina, L. Ergodic Capacity for Evaluation of Mobile System Performance. J. Eng. 2020, 26, 135–148. [Google Scholar] [CrossRef]
- Ericsson. Ericsson Mobility Report: On the Pulse of the Network Society. Technical Report. Ericsson. 2016. Available online: https://www.ericsson.com/assets/local/mobility-report/documents/2016/ericsson-mobility-report-november-2016.pdf (accessed on 25 October 2023).
- Kaltenberger, F.; Jiang, H.; Guillaud, M.; Knopp, R. Relative channel reciprocity calibration in MIMO/TDD systems. In Proceedings of the Future Network & Mobile Summit, Florence, Italy, 16–18 June 2010; pp. 1–10. [Google Scholar]
- Björnson, E.; Hoydis, J.; Kountouris, M.; Debbah, M. Hardware impairments in large-scale MISO systems: Energy efficiency, estimation, and capacity limits. In Proceedings of the 18th International Conference on Digital Signal Processing (DSP), Santorini, Greece, 1–3 July 2013; pp. 1–6. [Google Scholar]
- Mi, D.; Dianati, M.; Zhang, L.; Muhaidat, S.; Tafazolli, R. Massive MIMO performance with imperfect channel reciprocity and channel estimation error. IEEE Trans. Commun. 2017, 65, 3734–3749. [Google Scholar] [CrossRef]
- Vieira, J.; Rusek, F.; Edfors, O.; Malkowsky, S.; Liu, L.; Tufvesson, F. Reciprocity calibration for massive MIMO: Proposal, modeling, and validation. IEEE Trans. Wirel. Commun. 2017, 16, 3042–3056. [Google Scholar] [CrossRef]
- Alsabah, M.; Naser, M.A.; Mahmmod, B.M.; Noordin, N.K.; Abdulhussain, S.H. Sum rate maximization versus MSE minimization in FDD massive MIMO systems with short coherence time. IEEE Access 2021, 9, 108793–108808. [Google Scholar] [CrossRef]
- Alsabah, M.; Vehkapera, M.; O’Farrell, T. Non-Iterative Downlink Training Sequence Design Based on Sum Rate Maximization in FDD Massive MIMO Systems. IEEE Access 2020, 8, 108731–108747. [Google Scholar] [CrossRef]
- Kotecha, J.H.; Sayeed, A.M. Transmit signal design for optimal estimation of correlated MIMO channels. IEEE Trans. Signal Process. 2004, 52, 546–557. [Google Scholar] [CrossRef]
- Björnson, E.; Ottersten, B. A Framework for Training-Based Estimation in Arbitrarily Correlated Rician MIMO Channels with Rician Disturbance. IEEE Trans. Signal Process. 2010, 58, 1807–1820. [Google Scholar] [CrossRef]
- Noh, S.; Zoltowski, M.D.; Sung, Y.; Love, D.J. Pilot Beam Pattern Design for Channel Estimation in Massive MIMO Systems. IEEE J. Sel. Top. Signal Process. 2014, 8, 787–801. [Google Scholar] [CrossRef]
- Choi, J.; Love, D.J.; Bidigare, P. Downlink Training Techniques for FDD Massive MIMO Systems: Open-Loop and Closed-Loop Training With Memory. IEEE J. Sel. Top. Signal Process. 2014, 8, 802–814. [Google Scholar] [CrossRef]
- So, J.; Kim, D.; Lee, Y.; Sung, Y. Pilot Signal Design for Massive MIMO Systems: A Received Signal-To-Noise-Ratio-Based Approach. IEEE Signal Process. Lett. 2015, 22, 549–553. [Google Scholar] [CrossRef]
- Naser, M.A.; Alsabah, M.; Mahmmod, B.M.; Noordin, N.K.; Abdulhussain, S.H.; Baker, T. Downlink training design for FDD massive MIMO systems in the presence of colored noise. Electronics 2020, 9, 2155. [Google Scholar] [CrossRef]
- Naser, M.A.; Alsabah, M.Q.; Taher, M.A. A partial CSI estimation approach for downlink FDD massive-MIMO system with different base transceiver station topologies. Wirel. Pers. Commun. 2021, 119, 3609–3630. [Google Scholar] [CrossRef]
- Naser, M.A.; Abdul-Hadi, A.M.; Alsabah, M.; Mahmmod, B.M.; Majeed, A.; Abdulhussain, S.H. Downlink Training Sequence Design Based on Waterfilling Solution for Low-Latency FDD Massive MIMO Communications Systems. Electronics 2023, 12, 2494. [Google Scholar] [CrossRef]
- Alsabah, M.; Naser, M.A.; Mahmmod, B.M.; Abdulhussain, S.H. A Computationally Efficient Gradient Algorithm for Downlink Training Sequence Optimization in FDD Massive MIMO Systems. Network 2022, 2, 329–349. [Google Scholar] [CrossRef]
- Gao, Z.; Dai, L.; Dai, W.; Shim, B.; Wang, Z. Structured Compressive Sensing-Based Spatio-Temporal Joint Channel Estimation for FDD Massive MIMO. IEEE Trans. Commun. 2016, 64, 601–617. [Google Scholar] [CrossRef]
- Han, Y.; Lee, J.; Love, D.J. Compressed Sensing-Aided Downlink Channel Training for FDD Massive MIMO Systems. IEEE Trans. Commun. 2017, 65, 2852–2862. [Google Scholar] [CrossRef]
- Nouri, N.; Azizipour, M.J.; Mohamed-Pour, K. A Compressed CSI Estimation Approach for FDD Massive MIMO Systems. In Proceedings of the 2020 28th Iranian Conference on Electrical Engineering (ICEE), Tabriz, Iran, 4–6 August 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–6. [Google Scholar]
- Shi, Y.; Jiang, Z.; Liu, Y.; Wang, Y.; Xu, S. A Compressive Sensing Based Channel Prediction Scheme with Uneven Pilot Design in Mobile Massive MIMO Systems. In Proceedings of the 2021 13th International Conference on Wireless Communications and Signal Processing (WCSP), Changsha, China, 20–22 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–6. [Google Scholar]
- Han, T.; Zhao, D. On the Performance of FDD Cell-Free Massive MIMO with Compressed Sensing Channel Estimation. In Proceedings of the 2021 IEEE 21st International Conference on Communication Technology (ICCT), Tianjin, China, 13–16 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 238–242. [Google Scholar]
- Mei, Y.; Gao, Z. CS-Based CSIT Estimation for Downlink Pilot Decontamination in Multi-Cell FDD Massive MIMO. In Proceedings of the 2021 IEEE/CIC International Conference on Communications in China (ICCC), Xiamen, China, 28–30 July 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–5. [Google Scholar]
- Adhikary, A.; Nam, J.; Ahn, J.Y.; Caire, G. Joint Spatial Division and Multiplexing: The Large-Scale Array Regime. IEEE Trans. Inf. Theory 2013, 59, 6441–6463. [Google Scholar] [CrossRef]
- Nam, J.; Caire, G.; Ha, J. On the role of transmit correlation diversity in multiuser MIMO systems. IEEE Trans. Inf. Theory 2017, 63, 336–354. [Google Scholar] [CrossRef]
- Wu, X.; Yang, X.; Ma, S.; Zhou, B.; Yang, G. Hybrid Channel Estimation for UPA-Assisted Millimeter-Wave Massive MIMO IoT Systems. IEEE Internet Things J. 2021, 9, 2829–2842. [Google Scholar] [CrossRef]
- Mirzaei, J.; ShahbazPanahi, S.; Sohrabi, F.; Adve, R. Hybrid Analog and Digital Beamforming Design for Channel Estimation in Correlated Massive MIMO Systems. IEEE Trans. Signal Process. 2021, 69, 5784–5800. [Google Scholar] [CrossRef]
- Pang, J.; Li, J.; Zhao, L.; Lu, Z. Optimal Training Sequences for MIMO Channel Estimation with Spatial Correlation. In Proceedings of the IEEE Vehicular Technology Conference, Baltimore, MD, USA, 30 September–3 October 2007; pp. 651–655. [Google Scholar]
- Liu, Y.; Wong, T.F.; Hager, W.W. Training Signal Design for Estimation of Correlated MIMO Channels With Colored Interference. IEEE Trans. Signal Process. 2007, 55, 1486–1497. [Google Scholar] [CrossRef]
- Bjornson, E.; Ottersten, B. Training-based Bayesian MIMO channel and channel norm estimation. In Proceedings of the 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, Taipei, Taiwan, 19–24 April 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 2701–2704. [Google Scholar]
- Shariati, N.; Wang, J.; Bengtsson, M. Robust training sequence design for correlated MIMO channel estimation. IEEE Trans. Signal Process. 2013, 62, 107–120. [Google Scholar] [CrossRef]
- Shariati, N.; Björnson, E.; Bengtsson, M.; Debbah, M. Low-complexity polynomial channel estimation in large-scale MIMO with arbitrary statistics. IEEE J. Sel. Top. Signal Process. 2014, 8, 815–830. [Google Scholar] [CrossRef]
- Biguesh, M.; Gazor, S.; Shariat, M.H. Optimal training sequence for MIMO wireless systems in colored environments. IEEE Trans. Signal Process. 2009, 57, 3144–3153. [Google Scholar] [CrossRef]
- Salman, M.I.; Abdulhasan, M.Q.; Ng, C.K.; Noordin, N.K.; Sali, A.; Mohd Ali, B. Radio resource management for green 3gpp long term evolution cellular networks: Review and trade-offs. IETE Tech. Rev. 2013, 30, 257–269. [Google Scholar] [CrossRef]
- Abdul-Hadi, A.M.; Naser, M.A.; Alsabah, M.; Abdulhussain, S.H.; Mahmmod, B.M. Performance evaluation of frequency division duplex (FDD) massive multiple input multiple output (MIMO) under different correlation models. PeerJ Comput. Sci. 2022, 8, e1017. [Google Scholar] [CrossRef]
- Stein, S. Fading channel issues in system engineering. IEEE J. Sel. Areas Commun. 1987, 5, 68–89. [Google Scholar] [CrossRef]
- Gao, X.; Edfors, O.; Rusek, F.; Tufvesson, F. Massive MIMO Performance Evaluation Based on Measured Propagation Data. IEEE Trans. Wirel. Commun. 2015, 14, 3899–3911. [Google Scholar] [CrossRef]
- Naser, M.A.; Salman, M.I.; Alsabah, M. The role of correlation in the performance of massive MIMO systems. Appl. Syst. Innov. 2021, 4, 54. [Google Scholar] [CrossRef]
- Liang, Y.C.; Chin, F.P.S. Downlink channel covariance matrix (DCCM) estimation and its applications in wireless DS-CDMA systems. IEEE J. Sel. Areas Commun. 2001, 19, 222–232. [Google Scholar] [CrossRef]
- Hochwald, B.M.; Maretta, T. Adapting a downlink array from uplink measurements. IEEE Trans. Signal Process. 2001, 49, 642–653. [Google Scholar] [CrossRef]
- Fang, J.; Li, X.; Li, H.; Gao, F. Low-Rank Covariance-Assisted Downlink Training and Channel Estimation for FDD Massive MIMO Systems. IEEE Trans. Wirel. Commun. 2017, 16, 1935–1947. [Google Scholar] [CrossRef]
- Upadhya, K.; Vorobyov, S.A. Covariance matrix estimation for massive MIMO. IEEE Signal Process. Lett. 2018, 25, 546–550. [Google Scholar] [CrossRef]
- Jordan, M.; Dimofte, A.; Gong, X.; Ascheid, G. Conversion from uplink to downlink spatio-temporal correlation with cubic splines. In Proceedings of the VTC Spring 2009-IEEE 69th Vehicular Technology Conference, Barcelona, Spain, 26–29 April 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 1–5. [Google Scholar]
- Decurninge, A.; Guillaud, M.; Slock, D.T. Channel covariance estimation in massive MIMO frequency division duplex systems. In Proceedings of the 2015 IEEE Globecom Workshops (GC Wkshps), San Diego, CA, USA, 6–10 December 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–6. [Google Scholar]
- Ledoit, O.; Wolf, M. A well-conditioned estimator for large-dimensional covariance matrices. J. Multivar. Anal. 2004, 88, 365–411. [Google Scholar] [CrossRef]
- Björnson, E.; Sanguinetti, L.; Debbah, M. Massive MIMO with imperfect channel covariance information. In Proceedings of the 2016 50th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 6–9 November 2016; pp. 974–978. [Google Scholar]
- Liu, Y.; Li, G.Y.; Han, W. Quantization and feedback of spatial covariance matrix for massive MIMO systems with cascaded precoding. IEEE Trans. Commun. 2017, 65, 1623–1634. [Google Scholar] [CrossRef]
- Ghosh, S.; Rao, B.D.; Zeidler, J.R. Techniques for MIMO channel covariance matrix quantization. IEEE Trans. Signal Process. 2012, 60, 3340–3345. [Google Scholar] [CrossRef]
- Xie, H.; Gao, F.; Jin, S.; Fang, J.; Liang, Y.C. Channel estimation for TDD/FDD massive MIMO systems with channel covariance computing. IEEE Trans. Wirel. Commun. 2018, 17, 4206–4218. [Google Scholar] [CrossRef]
- Bazzi, S.; Xu, W. FDD Multiuser Massive MIMO Systems with Adaptive Channel Covariance Feedback. In Proceedings of the 2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Istanbul, Turkey, 8–11 September 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar]
- Björnson, E.; Hoydis, J.; Sanguinetti, L. Massive MIMO Networks: Spectral, Energy, and Hardware Efficiency; Now Publishers, Inc.: Delft, The Netherlands, 2017; Volume 11, pp. 154–655. [Google Scholar]
- Kay, S. Fundamentals of Statistical Signal Processing: Estimation Theory; Prentice-Hall: Hoboken, NJ, USA, 1993. [Google Scholar]
- Sanguinetti, L.; Zappone, A.; Debbah, M. Deep learning power allocation in massive MIMO. In Proceedings of the 2018 52nd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 28–31 October 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1257–1261. [Google Scholar]
- Zhang, Q.; Jin, S.; McKay, M.; Morales-Jimenez, D.; Zhu, H. Power allocation schemes for multicell massive MIMO systems. IEEE Trans. Wirel. Commun. 2015, 14, 5941–5955. [Google Scholar] [CrossRef]
- Van Chien, T.; Björnson, E.; Larsson, E.G. Joint power allocation and user association optimization for massive MIMO systems. IEEE Trans. Wirel. Commun. 2016, 15, 6384–6399. [Google Scholar] [CrossRef]
- Ho, C.D.; Ngo, H.Q.; Matthaiou, M.; Nguyen, L.D. Power allocation for multi-way massive MIMO relaying. IEEE Trans. Commun. 2018, 66, 4457–4472. [Google Scholar] [CrossRef]
- Ren, H.; Pan, C.; Deng, Y.; Elkashlan, M.; Nallanathan, A. Joint pilot and payload power allocation for massive-MIMO-enabled URLLC IIoT networks. IEEE J. Sel. Areas Commun. 2020, 38, 816–830. [Google Scholar] [CrossRef]
- Van Chien, T.; Björnson, E.; Larsson, E.G. Joint power allocation and load balancing optimization for energy-efficient cell-free massive MIMO networks. IEEE Trans. Wirel. Commun. 2020, 19, 6798–6812. [Google Scholar] [CrossRef]
- Bobrov, E.; Chinyaev, B.; Kuznetsov, V.; Minenkov, D.; Yudakov, D. Power allocation algorithms for massive MIMO systems with multi-antenna users. Wirel. Netw. 2023, 29, 3747–3768. [Google Scholar] [CrossRef]
- Giannopoulos, A.; Spantideas, S.; Capsalis, N.; Gkonis, P.; Karkazis, P.; Sarakis, L.; Trakadas, P.; Capsalis, C. WIP: Demand-driven power allocation in wireless networks with deep Q-learning. In Proceedings of the 2021 IEEE 22nd International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), Pisa, Italy, 7–11 June 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 248–251. [Google Scholar]
- Jo, S.; Jong, C.; Pak, C.; Ri, H. Multi-agent deep reinforcement learning-based energy efficient power allocation in downlink MIMO-NOMA systems. IET Commun. 2021, 15, 1642–1654. [Google Scholar] [CrossRef]
- Zhao, Y.; Niemegeers, I.G.; De Groot, S.M.H. Dynamic power allocation for cell-free massive MIMO: Deep reinforcement learning methods. IEEE Access 2021, 9, 102953–102965. [Google Scholar] [CrossRef]
- Chen, S.; Liang, Y.C.; Sun, S.; Kang, S.; Cheng, W.; Peng, M. Vision, requirements, and technology trend of 6G: How to tackle the challenges of system coverage, capacity, user data-rate and movement speed. IEEE Wirel. Commun. 2020, 27, 218–228. [Google Scholar] [CrossRef]
- Wagner, S.; Couillet, R.; Debbah, M.; Slock, D.T. Large System Analysis of Linear Precoding in Correlated MISO Broadcast Channels under Limited Feedback. IEEE Trans. Inf. Theory 2012, 58, 4509–4537. [Google Scholar] [CrossRef]
- Couillet, R.; Debbah, M. Random Matrix Methods for Wireless Communications; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Ngo, H.Q. Analysis of the pilot contamination effect in very large multicell multiuser MIMO systems for physical channel models. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, 22–27 May 2011; pp. 3464–3467. [Google Scholar]
- Payami, S.; Tufvesson, F. Channel measurements and analysis for very large array systems at 2.6 GHz. In Proceedings of the European Conference on Antennas and Propagation (EUCAP), Prague, Czech Republic, 26–30 March 2012; pp. 433–437. [Google Scholar]
- Ngo, H.Q.; Larsson, E.G.; Marzetta, T.L. The multicell multiuser MIMO uplink with very large antenna arrays and a finite-dimensional channel. IEEE Trans. Commun. 2013, 61, 2350–2361. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naser, M.A.; Salman, M.I.; Alsabah, M. Maximizing the Downlink Data Rates in Massive Multiple Input Multiple Output with Frequency Division Duplex Transmission Mode Using Power Allocation Optimization Method with Limited Coherence Time. Telecom 2024, 5, 198-215. https://doi.org/10.3390/telecom5010010
Naser MA, Salman MI, Alsabah M. Maximizing the Downlink Data Rates in Massive Multiple Input Multiple Output with Frequency Division Duplex Transmission Mode Using Power Allocation Optimization Method with Limited Coherence Time. Telecom. 2024; 5(1):198-215. https://doi.org/10.3390/telecom5010010
Chicago/Turabian StyleNaser, Marwah Abdulrazzaq, Munstafa Ismael Salman, and Muntadher Alsabah. 2024. "Maximizing the Downlink Data Rates in Massive Multiple Input Multiple Output with Frequency Division Duplex Transmission Mode Using Power Allocation Optimization Method with Limited Coherence Time" Telecom 5, no. 1: 198-215. https://doi.org/10.3390/telecom5010010
APA StyleNaser, M. A., Salman, M. I., & Alsabah, M. (2024). Maximizing the Downlink Data Rates in Massive Multiple Input Multiple Output with Frequency Division Duplex Transmission Mode Using Power Allocation Optimization Method with Limited Coherence Time. Telecom, 5(1), 198-215. https://doi.org/10.3390/telecom5010010