Comparison of Decidual Vasculopathy in Central and Peripheral Regions of Placenta with Implication of Lateral Growth and Spiral Artery Remodeling
Abstract
:1. Introduction
2. Material and Methods
3. Result
4. Discussion
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Benirschke, K.; Burton, G.J.; Baergen, R.N. Pathology of the Human Placenta, 6th ed.; Springer: New York, NY, USA, 2012. [Google Scholar]
- Hutcheon, J.A.; McNamara, H.; Platt, R.W.; Benjamin, A.; Kramer, M.S. Placental weight for gestational age and adverse perinatal outcomes. Obstet. Gynecol. 2012, 119, 1251–1258. [Google Scholar] [CrossRef] [PubMed]
- Salafia, C.M.; Charles, A.K.; Maas, E.M. Placenta and fetal growth restriction. Clin. Obstet. Gynecol. 2006, 49, 236–256. [Google Scholar] [CrossRef] [PubMed]
- Salafia, C.M.; Maas, E.; Thorp, J.M.; Eucker, B.; Pezzullo, J.C.; Savitz, D.A. Measures of placental growth in relation to birth weight and gestational age. Am. J. Epidemiol. 2005, 162, 991–998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salafia, C.M.; Pezzullo, J.C.; Charles, A.K.; Ernst, L.M.; Maas, E.M.; Gross, B.; Pijnenborg, R. Morphometry of the basal plate superficial uteroplacental vasculature in normal midtrimester and at term. Pediatr. Dev. Pathol. 2005, 8, 639–646. [Google Scholar] [CrossRef]
- Bonds, D.R.; Gabbe, S.G.; Kumar, S.; Taylor, T. Fetal weight/placental weight ratio and perinatal outcome. Am. J. Obstet. Gynecol. 1984, 149, 195–200. [Google Scholar] [CrossRef]
- Bonds, D.R.; Mwape, B.; Kumar, S.; Gabbe, S.G. Human fetal weight and placental weight growth curves. A mathematical analysis from a population at sea level. Biol. Neonate 1984, 45, 261–274. [Google Scholar] [CrossRef]
- Raff, M.C.; Durand, B.; Gao, F.B. Cell number control and timing in animal development: The oligodendrocyte cell lineage. Int. J. Dev. Biol. 1998, 42, 263–267. [Google Scholar]
- Conlon, I.J.; Dunn, G.A.; Mudge, A.W.; Raff, M.C. Extracellular control of cell size. Nat. Cell Biol. 2001, 3, 918–921. [Google Scholar] [CrossRef]
- Raff, M.C. Size control: The regulation of cell numbers in animal development. Cell 1996, 86, 173–175. [Google Scholar] [CrossRef] [Green Version]
- Craven, C.M.; Zhao, L.; Ward, K. Lateral placental growth occurs by trophoblast cell invasion of decidual veins. Placenta 2000, 21, 160–169. [Google Scholar] [CrossRef]
- Pijnenborg, R.; Dixon, G.; Robertson, W.B.; Brosens, I. Trophoblastic invasion of human decidua from 8 to 18 weeks of pregnancy. Placenta 1980, 1, 3–19. [Google Scholar] [CrossRef]
- Pijnenborg, R.; Vercruysse, L.; Hanssens, M. The uterine spiral arteries in human pregnancy: Facts and controversies. Placenta 2006, 27, 939–958. [Google Scholar] [CrossRef] [PubMed]
- Cartwright, J.E.; Fraser, R.; Leslie, K.; Wallace, A.E.; James, J.L. Remodelling at the maternal-fetal interface: Relevance to human pregnancy disorders. Reproduction 2010, 140, 803–813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robertson, W.B.; Khong, T.Y.; Brosens, I.; De Wolf, F.; Sheppard, B.L.; Bonnar, J. The placental bed biopsy: Review from three European centers. Am. J. Obstet. Gynecol. 1986, 155, 401–412. [Google Scholar] [CrossRef]
- Khong, T.Y.; Chambers, H.M. Alternative method of sampling placentas for the assessment of uteroplacental vasculature. J. Clin. Pathol. 1992, 45, 925–927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khong, T.Y.; Mooney, E.E.; Ariel, I.; Balmus, N.C.; Boyd, T.K.; Brundler, M.A.; Derricott, H.; Evans, M.J.; Faye-Petersen, O.M.; Gillan, J.E.; et al. Sampling and Definitions of Placental Lesions: Amsterdam Placental Workshop Group Consensus Statement. Arch. Pathol. Lab. Med. 2016, 140, 698–713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, P. Phenotypic Switch of Endovascular Trophoblasts in Decidual Vasculopathy with Implication for Preeclampsia and Other Pregnancy Complications. Fetal. Pediatr. Pathol. 2020, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Hertig, A. Vascular pathology in the hypertensive albuminuric toxemias of pregnancy. Clinics 1945, 4, 602–614. [Google Scholar]
- Zhang, P. Expression of Wilm’s Tumor Gene in Endometrium with Potential Link to Gestational Vascular Transformation. Reprod. Med. 2020, 1, 17–31. [Google Scholar] [CrossRef]
- Hastie, N.D. Wilms’ tumour 1 (WT1) in development, homeostasis and disease. Development 2017, 144, 2862–2872. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P. Decidual Vasculopathy in Preeclampsia and Spiral Artery Remodeling Revisited: Shallow Invasion versus Failure of Involution. AJP Rep. 2018, 8, e241–e246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, P. Decidual vasculopathy and spiral artery remodeling revisited II: Relations to trophoblastic dependent and independent vascular transformation. J. Matern. Fetal Neonatal Med. 2020, 1–7. [Google Scholar] [CrossRef]
- Martínez-Estrada, O.M.; Lettice, L.A.; Essafi, A.; Guadix, J.A.; Slight, J.; Velecela, V.; Hall, E.; Reichmann, J.; Devenney, P.S.; Hohenstein, P.; et al. Wt1 is required for cardiovascular progenitor cell formation through transcriptional control of Snail and E-cadherin. Nat. Genet. 2010, 42, 89–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chau, Y.Y.; Hastie, N. Wt1, the mesothelium and the origins and heterogeneity of visceral fat progenitors. Adipocyte 2015, 4, 217–221. [Google Scholar] [CrossRef] [Green Version]
- Small, T.W.; Penalva, L.O.; Pickering, J.G. Vascular biology and the sex of flies: Regulation of vascular smooth muscle cell proliferation by wilms’ tumor 1-associating protein. Trends Cardiovasc. Med. 2007, 17, 230–234. [Google Scholar] [CrossRef] [PubMed]
- Small, T.W.; Bolender, Z.; Bueno, C.; O’Neil, C.; Nong, Z.; Rushlow, W.; Rajakumar, N.; Kandel, C.; Strong, J.; Madrenas, J.; et al. Wilms’ tumor 1-associating protein regulates the proliferation of vascular smooth muscle cells. Circ. Res. 2006, 99, 1338–1346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brosens, I.; Puttemans, P.; Benagiano, G. Placental bed research: I. The placental bed: From spiral arteries remodeling to the great obstetrical syndromes. Am. J. Obstet. Gynecol. 2019, 221, 437–456. [Google Scholar] [CrossRef]
Groups | Classic Type (n = 87) | Mixed Type (n = 18) | p-Value |
---|---|---|---|
Delivery | 0.492 | ||
−C-section | 33 (37.9%) | 9 (50.0%) | |
−Vaginal | 54 (62.1%) | 9 (50.0%) | |
PIH | 0.002 | ||
0 | 80 (92.0%) | 11 (61.1%) | |
1 | 7 (8.0%) | 7 (38.9%) | |
Weight | 456.8 ± 122.0 | 345.3 ± 106.6 | 0.000 |
Gestational age (W) | 40.0 [38.5; 40.0] | 39.0 [36.0; 40.0] | 0.025 |
Infarcts | 0.585 | ||
0 | 75 (86.2%) | 14 (77.8%) | |
1 | 12 (13.8%) | 4 (22.2%) | |
Chorioamnionitis | 0.381 | ||
0 | 31 (35.6%) | 9 (50.0%) | |
1 | 56 (64.4%) | 9 (50.0%) | |
Meconium | 0.584 | ||
0 | 49 (56.3%) | 12 (66.7%) | |
1 | 38 (43.7%) | 6 (33.3%) | |
Thrombosis | 1.000 | ||
0 | 65 (74.7%) | 13 (72.2%) | |
1 | 22 (25.3%) | 5 (27.8%) | |
GDM2 | 0.603 | ||
0 | 79 (90.8%) | 15 (83.3%) | |
1 | 8 (9.2%) | 3 (16.7%) | |
Category 2 tracing | 0.037 | ||
0 | 65 (74.7%) | 18 (100.0%) | |
1 | 22 (25.3%) | 0 (0.0%) | |
Villitis | 0.371 | ||
0 | 72 (82.8%) | 17 (94.4%) | |
1 | 15 (17.2%) | 1 (5.6%) | |
Abruption | 0.126 | ||
0 | 86 (98.9%) | 16 (88.9%) | |
1 | 1 (1.1%) | 2 (11.1%) | |
IUGR | 0.038 | ||
0 | 83 (95.4%) | 14 (77.8%) | |
1 | 4 (4.6%) | 4 (22.2%) | |
Cord issues | 0.755 | ||
0 | 82 (94.3%) | 16 (88.9%) | |
1 | 5 (5.7%) | 2 (11.1%) | |
Others | 1.000 | ||
0 | 80 (92.0%) | 16 (88.9%) | |
1 | 7 (8.0%) | 2 (11.1%) | |
Cord coiling | 3.0 [1.0; 4.0] | 3.5 [2.0; 5.0] | 0.225 |
Oligohydramnios | 1.000 | ||
0 | 85 (97.7%) | 17 (94.4%) | |
1 | 2 (2.3%) | 1 (5.6%) | |
Central | 0.930 | ||
0 | 28 (32.2%) | 5 (27.8%) | |
1 | 59 (67.8%) | 13 (72.2%) | |
Peripheral | 1.000 | ||
0 | 14 (16.1%) | 3 (16.7%) | |
1 | 73 (83.9%) | 15 (83.3%) | |
Both C + P (DV) | 0.64 | ||
0 | 42 (48.3%) | 7 (38.9%) | |
1 | 45 (51.7%) | 11 (61.1%) | |
Recovery (Central) | 0.695 | ||
0 | 46 (52.9%) | 8 (44.4%) | |
1 | 41 (47.1%) | 10 (55.6%) | |
Recovery (Peripheral) | 1.000 | ||
0 | 68 (78.2%) | 14 (77.8%) | |
1 | 19 (21.8%) | 4 (22.2%) | |
Both (C + P) PRR | 1.000 | ||
0 | 76 (87.4%) | 16 (88.9%) | |
1 | 11 (12.6%) | 2 (11.1%) | |
Both (C + P) ARR | 0.982 | ||
0 | 50 (57.5%) | 11 (61.1%) | |
1 | 37 (42.5% | 7 (38.9%) |
Decidual Vasculopathy | Central | Peripheral | Both (P) | Recovery (C) | Recovery (P) | Both (R) | p-Value |
---|---|---|---|---|---|---|---|
Total | 72 | 88 | 56 | 51 | 23 | 13 | <0.0001 |
Classic | 59 | 73 | 45 | 41 | 19 | 11 | <0.0001 |
Mixed | 13 | 15 | 11 | 10 | 4 | 2 | =0.118 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, P. Comparison of Decidual Vasculopathy in Central and Peripheral Regions of Placenta with Implication of Lateral Growth and Spiral Artery Remodeling. Reprod. Med. 2020, 1, 158-168. https://doi.org/10.3390/reprodmed1030012
Zhang P. Comparison of Decidual Vasculopathy in Central and Peripheral Regions of Placenta with Implication of Lateral Growth and Spiral Artery Remodeling. Reproductive Medicine. 2020; 1(3):158-168. https://doi.org/10.3390/reprodmed1030012
Chicago/Turabian StyleZhang, Peilin. 2020. "Comparison of Decidual Vasculopathy in Central and Peripheral Regions of Placenta with Implication of Lateral Growth and Spiral Artery Remodeling" Reproductive Medicine 1, no. 3: 158-168. https://doi.org/10.3390/reprodmed1030012