Ethical Considerations for Artificial Intelligence Applications for HIV
Abstract
:1. Background
2. Ethical Considerations
2.1. Ethical Considerations Regarding Acceptability and Trust
2.2. Ethical Considerations Regarding Fairness
2.3. Ethical Considerations Regarding Transparency
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- HIV Diagnoses|HIV in the US|HIV Statistics Center|HIV|CDC. Available online: https://www.cdc.gov/hiv/statistics/overview/in-us/diagnoses.html (accessed on 11 April 2024).
- Roche, S.D.; Ekwunife, O.I.; Mendonca, R.; Kwach, B.; Omollo, V.; Zhang, S.; Ongwen, P.; Hattery, D.; Smedinghoff, S.; Morris, S.; et al. Measuring the performance of computer vision artificial intelligence to interpret images of HIV self-testing results. Front. Public Health 2024, 12, 1334881. [Google Scholar] [CrossRef] [PubMed]
- Young, S.D.; Yu, W.; Wang, W. Toward Automating HIV Identification: Machine Learning for Rapid Identification of HIV-related Social Media Data. J. Acquir. Immune. Defic. Syndr. 2017, 74 (Suppl. S2), S128–S131. [Google Scholar] [CrossRef] [PubMed]
- Balzer, L.B.; Havlir, D.V.; Kamya, M.R.; Chamie, G.; Charlebois, E.D.; Clark, T.D.; Koss, C.; Kwarisiima, D.; Ayieko, J.; Sang, N.; et al. Machine Learning to Identify Persons at High-Risk of Human Immunodeficiency Virus Acquisition in Rural Kenya and Uganda. Clin. Infect. Dis. 2019, 71, 2326–2333. [Google Scholar] [CrossRef] [PubMed]
- Peng, M.L.; Wickersham, J.; Altice, F.L.; Shrestha, R.; Azwa, I.; Zhou, X.; Ab Halim, M.A.; Ikhtiaruddin, W.M.; Tee, V.; Kamarulzaman, A.; et al. Formative Evaluation of the Acceptance of HIV Prevention Artificial Intelligence Chatbots By Men Who Have Sex with Men in Malaysia: Focus Group Study. JMIR Form. Res. 2022, 6, e42055. [Google Scholar] [CrossRef] [PubMed]
- Mello, M.M.; Wang, C.J. Ethics and governance for digital disease surveillance. Science 2020, 368, 951–954. [Google Scholar] [CrossRef] [PubMed]
- Gilkey, M.B.; Marcus, J.L.; Garrell, J.M.; Powell, V.E.; Maloney, K.M.; Krakower, D.S. Using HIV Risk Prediction Tools to Identify Candidates for Pre-Exposure Prophylaxis: Perspectives from Patients and Primary Care Providers. AIDS Patient Care STDs 2019, 33, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Palanica, A.; Flaschner, P.; Thommandram, A.; Li, M.; Fossat, Y. Physicians’ Perceptions of Chatbots in Health Care: Cross-Sectional Web-Based Survey. J. Med. Internet Res. 2019, 21, e12887. [Google Scholar] [CrossRef] [PubMed]
- Romm, T. Facebook Ads Push Misinformation about HIV Prevention Drugs, LGBT Activists Say, ‘Harming Public Health’. Washington Post. 9 December 2019. Available online: https://www.washingtonpost.com/technology/2019/12/09/facebook-ads-are-pushing-misinformation-about-hiv-prevention-drugs-lgbt-activists-say-harming-public-health/ (accessed on 11 April 2024).
- Nadarzynski, T.; Miles, O.; Cowie, A.; Ridge, D. Acceptability of artificial intelligence (AI)-led chatbot services in healthcare: A mixed-methods study. Digit. Health 2019, 5, 2055207619871808. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Liao, Q.V.; Zhou, M.; Grandison, T.; Li, Y. Powering an AI Chatbot with Expert Sourcing to Support Credible Health Information Access. In Proceedings of the 28th International Conference on Intelligent User Interfaces, Sydney, Australia, 27–31 March 2023; IUI ’23; Association for Computing Machinery: New York, NY, USA, 2023; pp. 2–18. [Google Scholar] [CrossRef]
- Deiana, G.; Dettori, M.; Arghittu, A.; Azara, A.; Gabutti, G.; Castiglia, P. Artificial Intelligence and Public Health: Evaluating ChatGPT Responses to Vaccination Myths and Misconceptions. Vaccines 2023, 11, 1217. [Google Scholar] [CrossRef] [PubMed]
- Molldrem, S.; Smith, A.K.J.; Subrahmanyam, V. Toward Consent in Molecular HIV Surveillance?: Perspectives of Critical Stakeholders. AJOB Empir. Bioeth. 2024, 15, 66–79. [Google Scholar] [CrossRef] [PubMed]
- Davis, S.L.M.; Pham, T.; Kpodo, I.; Imalingat, T.; Muthui, A.K.; Mjwana, N.; Sandset, T.; Ayeh, E.; Dong, D.D.; Large, K.; et al. Digital health and human rights of young adults in Ghana, Kenya and Vietnam: A qualitative participatory action research study. BMJ Glob. Health 2023, 8, e011254. [Google Scholar] [CrossRef]
- Raza, A. Secure and Privacy-Preserving Federated Learning with Explainable Artificial Intelligence for Smart Healthcare System. Phdthesis, Université de Lille; University of Kent (Canterbury, Royaume-Uni). 2023. Available online: https://theses.hal.science/tel-04398455 (accessed on 11 April 2024).
- Van Nguyen, T.P.; Yang, W.; Tang, Z.; Xia, X.; Mullens, A.B.; Dean, J.A.; Li, Y. Lightweight federated learning for STIs/HIV prediction. Sci. Rep. 2024, 14, 6560. [Google Scholar] [CrossRef] [PubMed]
- Shaban-Nejad, A.; Michalowski, M.; Brownstein, J.; Buckeridge, D. Guest Editorial Explainable AI: Towards Fairness, Accountability, Transparency and Trust in Healthcare. IEEE J. Biomed. Health Inform. 2021, 25, 2374–2375. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, T.; Yatskar, M.; Ordonez, V.; Chang, K.-W. Men Also Like Shopping: Reducing Gender Bias Amplification using Corpus-level Constraints. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, Copenhagen, Denmark, 7–11 September 2017; Palmer, M., Hwa, R., Riedel, S., Eds.; Association for Computational Linguistics: Copenhagen, Denmark, 2017; pp. 2979–2989. [Google Scholar] [CrossRef]
- Buolamwini, J.; Gebru, T. Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification. In Proceedings of the 1st Conference on Fairness, Accountability and Transparency, PMLR, New York, NY, USA, 23–24 February 2018; pp. 77–91. Available online: https://proceedings.mlr.press/v81/buolamwini18a.html (accessed on 11 April 2024).
- Use of Electronic Health Record Data and Machine Learning to Identify Candidates for HIV Pre-Exposure Prophylaxis: A Modelling Study—The Lancet HIV. Available online: https://www.thelancet.com/journals/lanhiv/article/PIIS2352-3018(19)30137-7/abstract (accessed on 11 April 2024).
- Lancki, N.; Almirol, E.; Alon, L.; McNulty, M.; Schneider, J. PrEP guidelines have low sensitivity for identifying seroconverters in a sample of Young Black men who have sex with men in Chicago. AIDS 2018, 32, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Assessing the Performance of 3 Human Immunodeficiency Virus…: Sexually Transmitted Diseases. Available online: https://journals.lww.com/stdjournal/fulltext/2017/05000/assessing_the_performance_of_3_human.8.aspx (accessed on 11 April 2024).
- Artificial Intelligence and Machine Learning for HIV Prevention: Emerging Approaches to Ending the Epidemic|Current HIV/AIDS Reports. Available online: https://link.springer.com/article/10.1007/s11904-020-00490-6 (accessed on 11 April 2024).
- Tomasev, N.; McKee, K.R.; Kay, J.; Mohamed, S. Fairness for Unobserved Characteristics: Insights from Technological Impacts on Queer Communities. In Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society, Santa Clara, CA, USA, 21–23 October 2024; AIES ’21. Association for Computing Machinery: New York, NY, USA, 2021; pp. 254–265. [Google Scholar] [CrossRef]
- Offering Women with PrEP with Education, Shared Decision-Making and Trauma-Informed Care: The OPENS Trial|Global Research Projects. Available online: https://globalprojects.ucsf.edu/project/offering-women-prep-education-shared-decision-making-and-trauma-informed-care-opens-trial (accessed on 11 April 2024).
- Wilandika, A.; Yusuf, A. The Driving Factors of Social Stigma Against People with HIV/AIDS: An Integrative Review. Malaysian J. Med. Health Sci. 2023, 19, 164–172. [Google Scholar]
- Jamrozik, E.; Munung, N.S.; Abeler-Dorner, L.; Parker, M. Public health use of HIV phylogenetic data in sub-Saharan Africa: Ethical issues. BMJ Glob. Health 2023, 8, e011884. [Google Scholar] [CrossRef] [PubMed]
- Molldrem, S.; Smith, A.K.J. Health policy counterpublics: Enacting collective resistances to US molecular HIV surveillance and cluster detection and response programs. Soc. Stud. Sci. 2023, 03063127231211933. [Google Scholar] [CrossRef] [PubMed]
- Watson, M. Perspectives on the Use of Molecular HIV Data for Public Health. Electronic Theses and Dissertations. 2023. Available online: https://digitalcommons.georgiasouthern.edu/etd/2688 (accessed on 11 April 2024).
- Dwork, C. Differential Privacy. In Automata, Languages and Programming; Bugliesi, M., Preneel, B., Sassone, V., Wegener, I., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1–12. [Google Scholar] [CrossRef]
- Zia, M.T.; Khan, M.A.; El-Sayed, H. Application of Differential Privacy Approach in Healthcare Data—A Case Study. In Proceedings of the 2020 14th International Conference on Innovations in Information Technology (IIT), Al Ain, United Arab Emirates, 17–18 November 2020; pp. 35–39. [Google Scholar] [CrossRef]
- Anjum, A.; Malik, S.U.R.; Choo, K.-K.R.; Khan, A.; Haroon, A.; Khan, S.; Khan, S.U.; Ahmad, N.; Raza, B. An efficient privacy mechanism for electronic health records. Comput. Secur. 2018, 72, 196–211. [Google Scholar] [CrossRef]
- Felzmann, H.; Fosch-Villaronga, E.; Lutz, C.; Tamò-Larrieux, A. Towards Transparency by Design for Artificial Intelligence. Sci. Eng. Ethics 2020, 26, 3333–3361. [Google Scholar] [CrossRef] [PubMed]
- Marent, B.; Henwood, F.; Darking, M. Participation through the lens of care: Situated accountabilities in the codesign of a digital health platform for HIV care. Soc. Sci. Med. 2023, 337, 116307. [Google Scholar] [CrossRef]
- Exploring Patient Perspectives on How They Can and Should Be Engaged in the Development of Artificial Intelligence (AI) Applications in Health Care|BMC Health Services Research|Full Text. Available online: https://bmchealthservres.biomedcentral.com/articles/10.1186/s12913-023-10098-2 (accessed on 11 April 2024).
- Winter, P.; Carusi, A. Professional expectations and patient expectations concerning the development of Artificial Intelligence (AI) for the early diagnosis of Pulmonary Hypertension (PH). J. Responsible Technol. 2022, 12, 100052. [Google Scholar] [CrossRef] [PubMed]
- Kling, S.; Singh, S.; Burgess, T.L.; Nair, G. The role of an ethics advisory committee in data science research in sub-Saharan Africa. S. Afr. J. Sci. 2023, 119, 1–3. [Google Scholar] [CrossRef]
- Chatbots RESET: A Framework for Governing Responsible Use of Conversational AI in Healthcare. World Economic Forum. Available online: https://www.weforum.org/publications/chatbots-reset-a-framework-for-governing-responsible-use-of-conversational-ai-in-healthcare/ (accessed on 11 April 2024).
- van Heerden, A.; Bosman, S.; Swendeman, D.; Comulada, W.S. Chatbots for HIV Prevention and Care: A Narrative Review. Curr. HIV/AIDS Rep. 2023, 20, 481–486. [Google Scholar] [CrossRef]
- Artificial Intelligence in Medicine—Is too Much Transparency a Good Thing?—Paul Nolan. 2023. Available online: https://journals.sagepub.com/doi/10.1177/00258172221141243?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed (accessed on 11 April 2024).
6Ws | Considerations |
---|---|
Who | Who are the stakeholders? |
How | How should informed consent be rolled out? What medium or method should be used to convey essential information that stakeholders need to be aware of? |
What | What information will be distributed to the stakeholders to consent? |
When | When will the stakeholders be prompted to consent? Upon initial diagnosis or other periods in the timeline? |
Where | Where is informed consent taking place? Should informed consent occur only under in-person settings or can be it more flexible? |
Why | Why do stakeholders deem informed consent to be important and valuable? Why do they consent in the first place? |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garett, R.; Kim, S.; Young, S.D. Ethical Considerations for Artificial Intelligence Applications for HIV. AI 2024, 5, 594-601. https://doi.org/10.3390/ai5020031
Garett R, Kim S, Young SD. Ethical Considerations for Artificial Intelligence Applications for HIV. AI. 2024; 5(2):594-601. https://doi.org/10.3390/ai5020031
Chicago/Turabian StyleGarett, Renee, Seungjun Kim, and Sean D. Young. 2024. "Ethical Considerations for Artificial Intelligence Applications for HIV" AI 5, no. 2: 594-601. https://doi.org/10.3390/ai5020031
APA StyleGarett, R., Kim, S., & Young, S. D. (2024). Ethical Considerations for Artificial Intelligence Applications for HIV. AI, 5(2), 594-601. https://doi.org/10.3390/ai5020031