Abstract
Due to the scarcity of in situ observations, the current description of the circulation around Cuba is far from complete. For example, the structure and variability of the flow through the Windward Passage, which hosts a significant fraction of the transport from the Atlantic to the Caribbean Sea, are still unclear. In this study, we use a recent, high-resolution Copernicus product based on satellite altimeter observations to obtain new insights into the large-scale geostrophic circulation around the eastern and southern coasts of Cuba. Among other results, we uncover a robust seasonal variability of the circulation around the Windward Passage, related to the presence of a cyclone to the south of the passage. Through most of the year the cyclone, with a companion anticyclone to the west, hinders the Atlantic inflow, but in autumn a strong stream crosses the western side of the passage and deeply penetrates the northern Caribbean Sea. The last part of the work deals with the time variability of the sea level in the Caribbean. We find that an apparent change in trend advocated in the recent literature has been reabsorbed in the last decade, yielding a local average sea level trend over the last thirty years in line with that for the global ocean.