Applications of Gaussian Boson Sampling to Solve Some Chemistry Problems
Abstract
1. Introduction
2. Fundamental Concept of Boson Sampling and Gaussian Boson Sampling
2.1. The Quantum Galton’s Board
2.2. The Conception of Boson Sampling and Its Mathematical Models
2.3. The Conception of Gaussian Boson Sampling and Its Mathematical Models
2.4. The Conception of Bipartite Gaussian Boson Sampling
3. The Relationship Between Gaussian Boson Sampling and Graph Theory
3.1. Boson Sampling, Gaussian Boson Sampling, and Perfect Matchings in Graph Theory
3.2. How to Encode Graphs into the GBS Device to Find a Dense Subgraph
- Determination of the unitary interferometer matrix U and the values via the computation of the Takagi–Autonne decomposition of B.
- Programming the linear interferometer consistent with the unitary U.
- Solving parameter c so that
- Programming the squeezing parameter rj of the squeezing gate S(rj) acting on the j-th mode so that
4. Graphs That Can Be Embedded in the X8 Photonic Chip
5. The Strawberry Fields Platform Applications
6. Practical Applications of Photonic Quantum Computers Based on GBS
6.1. Molecular Docking Problems Solved with GBS
6.2. Molecular Docking Problems Solved with QAOA
6.3. Molecular Vibronic Spectra and GBS
Theoretical Concepts of the Relationship Between Vibrational Spectra and GBS
- 1.
- The input chemical data , , , and d can be used to calculate the GBS parameters , , , and .
- 2.
- The GBS device has been used to make the Gaussian state , ( is an initial Gaussian state) with covariance matrix V and vector of means .
- 3.
- The simulation of the vibrational quantum dynamics in the localized modes can be performed by the implementation of the unitary transformation . ( is the Hamiltonian related to the harmonic normal modes, t is time. signifies an interferometer configured with a unitary matrix , in which transforms the molecular normal modes into a collection of spatially localized vibrational modes.
- 4.
- Generate samples by calculating the output state based on the photon number.
- 5.
- The above steps can be repeated appropriately several times to find the preferred statistics about the vibrational excitation distributions.
7. Perspectives
8. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hassija, V.; Chamola, V.; Goyal, A.; Kanhere, S.S.; Guizani, N. Forthcoming applications of quantum computing: Peeking into the future. IET Quantum Commun. 2020, 1, 35–41. [Google Scholar] [CrossRef]
- Vedral, V.; Plenio, M.B. Basics of quantum computation. Prog. Quantum Electron. 1998, 22, 1–39. [Google Scholar] [CrossRef]
- Kockum, A.F.; Soro, A.; García-Álvarez, L.; Vikstål, P.; Douce, T.; Johansson, G.; Ferrini, G. Lecture notes on quantum computing. arXiv 2023, arXiv:2311.08445. [Google Scholar]
- Manin, Y.I. Classical computing, quantum computing, and Shor’s factoring algorithm. Asterisque-Soc. Math. De Fr. 2000, 266, 375–404. [Google Scholar]
- Ladd, T.D.; Jelezko, F.; Laflamme, R.; Nakamura, Y.; Monroe, C.; O’Brien, J.L. Quantum computers. Nature 2010, 464, 45–53. [Google Scholar] [CrossRef]
- Bromley, T.R.; Arrazola, J.M.; Jahangiri, S.; Izaac, J.; Quesada, N.; Gran, A.D.; Schuld, M.; Swinarton, J.; Zabaneh, Z.; Killoran, N. Applications of near-term photonic quantum computers: Software and algorithms. arXiv 2019, arXiv:1912.07634. [Google Scholar] [CrossRef]
- Paudel, H.P.; Syamlal, M.; Crawford, S.E.; Lee, Y.-L.; Shugayev, R.A.; Lu, P.; Ohodnicki, P.R.; Mollot, D.; Duan, Y. Quantum computing and simulations for energy applications: Review and perspective. ACS Eng. Au 2022, 2, 151–196. [Google Scholar] [CrossRef]
- Feynman, R.P. Simulating physics with computers. Int. J. Theor. Phys. 1982, 21, 467–488. [Google Scholar] [CrossRef]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2001; Volume 2. [Google Scholar]
- Banchi, L.; Fingerhuth, M.; Babej, T.; Ing, C.; Arrazola, J.M. Molecular docking with Gaussian boson sampling. arXiv 2019, arXiv:1902.00462v1. [Google Scholar] [CrossRef]
- Aaronson, S. Quantum Computing Since Democritus; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Santagati, R.; Aspuru-Guzik, A.; Babbush, R.; Degroote, M.; González, L.; Kyoseva, E.; Moll, N.; Oppel, M.; Parrish, R.M.; Rubin, N.C.; et al. Drug design on quantum computers. Nat. Phys. 2024, 20, 549–557. [Google Scholar] [CrossRef]
- Romero, J.; Milburn, G. Photonic Quantum Computing. arXiv 2024, arXiv:2404.03367. [Google Scholar]
- Liu, H.; Low, G.H.; Steiger, D.S.; Häner, T.; Reiher, M.; Troyer, M. Prospects of quantum computing for molecular sciences. Mater. Theory 2022, 6, 11. [Google Scholar] [CrossRef]
- Shor, P.W. Algorithms for quantum computation: Discrete logarithms and factoring. In Proceedings of the 35th Annual Symposium on Foundations of Computer Science, Washington, DC, USA, 20–22 November 1994; pp. 124–134. [Google Scholar]
- Mulligan, V.K.; Melo, H.; Merritt, H.I.; Slocum, S.; Weitzner, B.D.; Watkins, A.M.; Renfrew, P.D.; Pelissier, C.; Arora, P.S.; Bonneau, R. Designing peptides on a quantum computer. BioRxiv 2019, 752485. [Google Scholar] [CrossRef]
- Robert, A.; Barkoutsos, P.K.; Woerner, S.; Tavernelli, I. Resource-efficient quantum algorithm for protein folding. Npj Quantum Inf. 2021, 7, 38. [Google Scholar] [CrossRef]
- Fox, D.M.; MacDermaid, C.M.; Schreij, A.M.; Zwierzyna, M.; Walker, R.C. RNA folding using quantum computers. PLoS Comput. Biol. 2022, 18, e1010032. [Google Scholar] [CrossRef] [PubMed]
- GAO-22-104422; Quantum Computing and Communications. Government Accountability Office: Washington, DC, USA, 2021.
- Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2018, 2, 79. [Google Scholar] [CrossRef]
- Katabarwa, A.; Gratsea, K.; Caesura, A.; Johnson, P.D. Early fault-tolerant quantum computing. PRX Quantum 2024, 5, 020101. [Google Scholar] [CrossRef]
- Gidney, C.; Ekerå, M. How to factor 2048 bit RSA integers in 8 h using 20 million noisy qubits. Quantum 2021, 5, 433. [Google Scholar] [CrossRef]
- Lloyd, S. Universal quantum simulators. Science 1996, 273, 1073–1078. [Google Scholar] [CrossRef]
- Berry, D.W.; Childs, A.M.; Kothari, R. Hamiltonian Simulation with Nearly Optimal Dependence on all Parameters. In Proceedings of the IEEE 56th Annual Symposium on Foundations of Computer Science (FOCS), Berkeley, CA, USA, 17–20 October 2015. [Google Scholar]
- Ding, Q.M.; Huang, Y.M.; Yuan, X. Molecular docking via quantum approximate optimization algorithm. Phys. Rev. Appl. 2024, 21, 034036. [Google Scholar] [CrossRef]
- Acín, A.; Bloch, I.; Buhrman, H.; Calarco, T.; Eichler, C.; Eisert, J.; Esteve, D.; Gisin, N.; Glaser, S.J.; Jelezko, F.; et al. The quantum technologies roadmap: A European community view. New J. Phys. 2018, 20, 080201. [Google Scholar] [CrossRef]
- Bharti, K.; Cervera-Lierta, A.; Kyaw, T.H.; Haug, T.; Alperin-Lea, S.; Anand, A.; Degroote, M.; Heimonen, H.; Kottmann, J.S.; Menke, T.; et al. Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys. 2022, 94, 015004. [Google Scholar] [CrossRef]
- Kadowaki, T.; Nishimori, H. Quantum annealing in the transverse Ising model. Phys. Rev. E 1998, 58, 5355–5363. [Google Scholar] [CrossRef]
- Aaronson, S.; Arkhipov, A. The computational complexity of linear optics. In Proceedings of the Forty-Third Annual ACM Symposium on Theory of Computing, San Jose, CA, USA, 6–8 June 2011; pp. 333–342. [Google Scholar]
- Georgescu, I.M.; Ashhab, S.; Nori, F. Quantum simulation. Rev. Mod. Phys. 2014, 86, 153–185. [Google Scholar] [CrossRef]
- O’brien, J.L.; Furusawa, A.; Vučković, J. Photonic quantum technologies. Nat. Photonics 2009, 3, 687–695. [Google Scholar] [CrossRef]
- Knill, E.; Laflamme, R.; Milburn, G.J. A scheme for efficient quantum computation with linear optics. Nature 2001, 409, 46–52. [Google Scholar] [CrossRef]
- Dellios, A.S.; Reid, M.D.; Drummond, P.D. Simulating Gaussian boson sampling quantum computers. AAPPS Bull. 2023, 33, 31. [Google Scholar] [CrossRef]
- McMahon, P.L.; Marandi, A.; Haribara, Y.; Hamerly, R.; Langrock, C.; Tamate, S.; Inagaki, T.; Takesue, H.; Utsunomiya, S.; Aihara, K.; et al. A fully programmable 100-spin coherent Ising machine with all-to-all connections. Science 2016, 354, 614–617. [Google Scholar] [CrossRef]
- Lloyd, S.; Braunstein, S.L. Quantum computation over continuous variables. Phys. Rev. Lett. 1999, 82, 1784. [Google Scholar] [CrossRef]
- Killoran, N.; Izaac, J.; Quesada, N.; Bergholm, V.; Amy, M.; Weedbrook, C. Strawberry fields: A software platform for photonic quantum computing. Quantum 2019, 3, 129. [Google Scholar] [CrossRef]
- Zhong, H.-S.; Wang, H.; Deng, Y.-H.; Chen, M.-C.; Peng, L.-C.; Luo, Y.-H.; Qin, J.; Wu, D.; Ding, X.; Hu, Y.; et al. Quantum computational advantage using photons. Science 2020, 370, 1460–1463. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.-S.; Deng, Y.-H.; Qin, J.; Wang, H.; Chen, M.-C.; Peng, L.-C.; Luo, Y.-H.; Wu, D.; Gong, S.-Q.; Su, H.; et al. Phase-programmable gaussian boson sampling using stimulated squeezed light. Phys. Rev. Lett. 2021, 127, 180502. [Google Scholar] [CrossRef] [PubMed]
- Madsen, L.S.; Laudenbach, F.; Askarani, M.F.; Rortais, F.; Vincent, T.; Bulmer, J.F.F.; Miatto, F.M.; Neuhaus, L.; Helt, L.G.; Collins, M.J.; et al. Quantum computational advantage with a programmable photonic processor. Nature 2022, 606, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.-K.; Cai, W.-Q.; Liu, W.-Y.; Zhang, L.; Li, Y.; Ren, J.-G.; Yin, J.; Shen, Q.; Cao, Y.; Li, Z.-P.; et al. Satellite-to-ground quantum key distribution. Nature 2017, 549, 43–47. [Google Scholar] [CrossRef]
- Ren, J.-G.; Xu, P.; Yong, H.-L.; Zhang, L.; Liao, S.-K.; Yin, J.; Liu, W.-Y.; Cai, W.-Q.; Yang, M.; Li, L.; et al. Ground-to-satellite quantum teleportation. Nature 2017, 549, 70–73. [Google Scholar] [CrossRef]
- Chen, Y.-A.; Zhang, Q.; Chen, T.-Y.; Cai, W.-Q.; Liao, S.-K.; Zhang, J.; Chen, K.; Yin, J.; Ren, J.-G.; Chen, Z.; et al. An integrated space-to-ground quantum communication network over 4600 kilometres. Nature 2021, 589, 214–219. [Google Scholar] [CrossRef]
- Steinbrecher, G.R.; Olson, J.P.; Englund, D.; Carolan, J. Quantum optical neural networks. Npj Quantum Inf. 2019, 5, 60. [Google Scholar] [CrossRef]
- Shen, Y.; Harris, N.C.; Skirlo, S.; Prabhu, M.; Baehr-Jones, T.; Hochberg, M.; Sun, X.; Zhao, S.; Larochelle, H.; Englund, D.; et al. Deep learning with coherent nanophotonic circuits. Nat. Photonics 2017, 11, 441–446. [Google Scholar] [CrossRef]
- Stipcevic, M. Quantum random number generators and their applications in cryptography. In Advanced Photon Counting Techniques VI; SPIE: Paris, France, 2012; Volume 8375, pp. 20–34. [Google Scholar]
- Paraiso, T.K.; Roger, T.; Marangon, D.G.; De Marco, I.; Sanzaro, M.; Woodward, R.I.; Dynes, J.F.; Yuan, Z.; Shields, A.J. A photonic integrated quantum secure communication system. Nat. Photonics 2021, 15, 850–856. [Google Scholar] [CrossRef]
- Sparrow, C.; Martín-López, E.; Maraviglia, N.; Neville, A.; Harrold, C.; Carolan, J.; Joglekar, Y.N.; Hashimoto, T.; Matsuda, N.; O’bRien, J.L.; et al. Simulating the vibrational quantum dynamics of molecules using photonics. Nature 2018, 557, 660–667. [Google Scholar] [CrossRef]
- Zini, M.S.; Delgado, A.; dos Reis, R.; Casares, P.A.M.; Mueller, J.E.; Voigt, A.C.; Arrazola, J.M. Quantum simulation of battery materials using ionic pseudopotentials. Quantum 2023, 7, 1049. [Google Scholar] [CrossRef]
- Ceroni, J.; Stetina, T.F.; Kieferova, M.; Marrero, C.O.; Arrazola, J.M.; Wiebe, N. Generating approximate ground states of molecules using quantum machine learning. arXiv 2022, arXiv:2210.05489. [Google Scholar]
- Castaldo, D.; Jahangiri, S.; Delgado, A.; Corni, S. Quantum simulation of molecules in solution. J. Chem. Theory Comput. 2022, 18, 7457–7469. [Google Scholar] [CrossRef] [PubMed]
- Delgado, A.; Arrazola, J.M.; Jahangiri, S.; Niu, Z.; Izaac, J.; Roberts, C.; Killoran, N. Variational quantum algorithm for molecular geometry optimization. Phys. Rev. A 2021, 104, 052402. [Google Scholar] [CrossRef]
- Pelucchi, E.; Fagas, G.; Aharonovich, I.; Englund, D.; Figueroa, E.; Gong, Q.; Hannes, H.; Liu, J.; Lu, C.-Y.; Matsuda, N.; et al. The potential and global outlook of integrated photonics for quantum technologies. Nat. Rev. Phys. 2022, 4, 194–208. [Google Scholar] [CrossRef]
- Deng, Y.-H.; Gu, Y.-C.; Liu, H.-L.; Gong, S.-Q.; Su, H.; Zhang, Z.-J.; Tang, H.-Y.; Jia, M.-H.; Xu, J.-M.; Chen, M.-C.; et al. Gaussian boson sampling with pseudo-photon-number-resolving detectors and quantum computational advantage. Phys. Rev. Lett. 2023, 131, 150601. [Google Scholar] [CrossRef]
- ORCA Computing. Available online: https://www.orcacomputing.com (accessed on 26 November 2025).
- Psiquantum. PsiQuantum Closes $450 Million Funding Round to Build the World’s First Commercially Viable Quantum Computer. Psiquantum, 22 07 2021. Available online: https://psiquantum.com/news/psiquantum-closes-450-million-funding-round-to-build-the-worlds-first-commercially-viable-quantum-computer (accessed on 26 November 2025).
- Quandela Announces a European Quantum Cloud Service. Available online: https://quantumcomputingreport.com/quandela-announces-a-european-quantum-cloud-service/ (accessed on 26 November 2025).
- Delivering Quantum Powerful and Deployable at Scale. Available online: https://www.quixquantum.com/ (accessed on 26 November 2025).
- On-Chip Error-Resistant Photonic Qubits. Available online: https://www.xanadu.ai (accessed on 26 November 2025).
- Bergholm, V.; Izaac, J.; Schuld, M.; Gogolin, C.; Ahmed, S.; Ajith, V.; Alam, M.S.; Alonso-Linaje, G.; AkashNarayanan, B.; Ali Asadi, A.; et al. Pennylane: Automatic differentiation of hybrid quantum-classical computations. arXiv 2018, arXiv:1811.04968. [Google Scholar]
- Arrazola, J.M.; Bergholm, V.; Brádler, K.; Bromley, T.R.; Collins, M.J.; Dhand, I.; Fumagalli, A.; Gerrits, T.; Goussev, A.; Helt, L.G.; et al. Quantum circuits with many photons on a programmable nanophotonic chip. arXiv 2021, arXiv:2103.02109. [Google Scholar] [CrossRef]
- Quantum Algorithms on the Xanadu Quantum Cloud. Available online: https://strawberryfields.ai/photonics/demos/tutorial_X8_demos.html (accessed on 26 November 2025).
- Larsen, M.V.; Bourassa, J.E.; Kocsis, S.; Tasker, J.F.; Chadwick, R.S.; González-Arciniegas, C.; Hastrup, J.; Lopetegui-González, C.E.; Miatto, F.M.; Motamedi, A. Integrated photonic source of Gottesman–Kitaev–Preskill qubits. Nature 2025, 642, 1–51. [Google Scholar] [CrossRef]
- Rad, H.A.; Ainsworth, T.; Alexander, R.N.; Altieri, B.; Askarani, M.F.; Baby, R.; Banchi, L.; Baragiola, B.Q.; Bourassa, J.E.; Chadwick, R.S.; et al. Scaling and networking a modular photonic quantum computer. Nature 2025, 638, 912–919. [Google Scholar] [CrossRef]
- Hamilton, C.S.; Kruse, R.; Sansoni, L.; Barkhofen, S.; Silberhorn, C.; Jex, I. Gaussian boson sampling. Phys. Rev. Lett. 2017, 119, 170501. [Google Scholar] [CrossRef]
- Kruse, R.; Hamilton, C.S.; Sansoni, L.; Barkhofen, S.; Silberhorn, C.; Jex, I. A detailed study of Gaussian boson sampling. Phys. Rev. A 2019, 100, 032326. [Google Scholar] [CrossRef]
- Quesada, N.; Arrazola, J.M. Exact simulation of Gaussian boson sampling in polynomial space and exponential time. Phys. Rev. Res. 2020, 2, 023005. [Google Scholar] [CrossRef]
- Arrazola, J.M.; Bromley, T.R.; Rebentrost, P. Quantum approximate optimization with Gaussian boson sampling. Phys. Rev. A 2018, 98, 012322. [Google Scholar] [CrossRef]
- Sempere-Llagostera, S.; Patel, R.B.; Walmsley, I.A.; Kolthammer, W.S. Experimentally finding dense subgraphs using a time-bin encoded Gaussian boson sampling device. Phys. Rev. X 2022, 12, 031045. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, J.; Yi, X. Quantum Boson-Sampling Machine. In Proceedings of the International Conference on Natural Computation (ICNC), Zhangjiajie, China, 15–17 August 2015. [Google Scholar]
- Brod, D.J.; Galvão, E.F.; Crespi, A.; Osellame, R.; Spagnolo, N.; Sciarrino, F. Photonic implementation of boson sampling: A review. Adv. Photonics 2019, 1, 034001. [Google Scholar]
- Li, Y.; Gan, L.; Chen, M.; Chen, Y.; Lu, H.; Lu, C.; Pan, J.; Fu, H.; Yang, G. Benchmarking 50-photon gaussian boson sampling on the sunway TaihuLight. IEEE Trans. Parallel Distrib. Syst. 2021, 33, 1357–1372. [Google Scholar] [CrossRef]
- Gard, B.T.; Motes, K.R.; Olson, J.P.; Rohde, P.P.; Dowling, J.P. An introduction to boson-sampling. In From Atomic to Mesoscale: The Role of Quantum Coherence in Systems of Various Complexities; World Scientific Publishing: Singapore, 2015; pp. 167–192. [Google Scholar]
- Ryser, H.J. Combinatorial Mathematics; American Mathematical Soc.: Providence, RI, USA, 1963. [Google Scholar]
- Grier, D.; Brod, D.J.; Arrazola, J.M.; de Andrade Alonso, M.B.; Quesada, N. The complexity of bipartite Gaussian boson sampling. arXiv 2021, arXiv:2110.06964. [Google Scholar] [CrossRef]
- Weedbrook, C.; Pirandola, S. Gaussian quantum information. Rev. Mod. Phys. 2012, 84, 621–669. [Google Scholar] [CrossRef]
- Serafini, A. Quantum Continuous Variables: A Primer of Theoretical Methods; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Picinbono, B. Second-order complex random vectors and normal distributions. IEEE Trans. Signal Process. 1996, 44, 2637–2640. [Google Scholar] [CrossRef]
- Ferraro, A.; Olivares, S.; Paris, M.G. Gaussian states in continuous variable quantum information. arXiv 2005, arXiv:quant-ph/0503237. [Google Scholar] [CrossRef]
- Simon, R.; Mukunda, N.; Dutta, B. Quantum-noise matrix for multimode systems: U (n) invariance, squeezing, and normal forms. Phys. Rev. A 1994, 49, 1567. [Google Scholar] [CrossRef] [PubMed]
- Stanev, D.; Giordani, T.; Spagnolo, N.; Sciarrino, F. Testing of on-cloud Gaussian Boson Sampler “Borealis” via graph theory. arXiv 2023, arXiv:2306.12120. [Google Scholar] [CrossRef]
- Giordani, T.; Mannucci, V.; Spagnolo, N.; Fumero, M.; Rampini, A.; Rodolà, E.; Sciarrino, F. Certification of Gaussian Boson Sampling via graph theory. arXiv 2022, arXiv:2202.07711. [Google Scholar] [CrossRef]
- Björklund, A.; Gupt, B.; Quesada, N. A faster hafnian formula for complex matrices and its benchmarking on a supercomputer. J. Exp. Algorithmics (JEA) 2019, 24, 1–17. [Google Scholar] [CrossRef]
- Schuld, M.; Brádler, K.; Israel, R.; Su, D.; Gupt, B. Measuring the similarity of graphs with a Gaussian boson sampler. Phys. Rev. A 2020, 101, 032314. [Google Scholar] [CrossRef]
- Quesada, N.; Arrazola, J.M.; Killoran, N. Gaussian boson sampling using threshold detectors. Phys. Rev. A 2018, 98, 062322. [Google Scholar] [CrossRef]
- Jahangiri, S.; Arrazola, J.M.; Quesada, N.; Killoran, N. Point processes with Gaussian boson sampling. Phys. Rev. E 2020, 101, 022134. [Google Scholar] [CrossRef]
- Rabani, Y. (Ed.) In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics, Kyoto, Japan, 17–19 January 2012.
- Deshpande, A.; Mehta, A.; Vincent, T.; Quesada, N.; Hinsche, M.; Ioannou, M.; Madsen, L.; Lavoie, J.; Qi, H.; Eisert, J.; et al. Quantum computational advantage via high-dimensional Gaussian boson sampling. Sci. Adv. 2022, 8, eabi7894. [Google Scholar] [CrossRef]
- Arrazola, J.M.; Bromley, T.R. Using Gaussian boson sampling to find dense subgraphs. Phys. Rev. Lett. 2018, 121, 030503. [Google Scholar] [CrossRef]
- Brádler, K.; Friedland, S.; Izaac, J.; Killoran, N.; Su, D. Graph isomorphism and Gaussian boson sampling. Spec. Matrices 2021, 9, 166–196. [Google Scholar] [CrossRef]
- Deng, Y.-H.; Gong, S.-Q.; Gu, Y.-C.; Zhang, Z.-J.; Liu, H.-L.; Su, H.; Tang, H.-Y.; Xu, J.-M.; Jia, M.-H.; Chen, M.-C.; et al. Solving graph problems using gaussian boson sampling. Phys. Rev. Lett. 2023, 130, 190601. [Google Scholar] [CrossRef]
- Zhu, H.; Chen, H.; Li, S.; Chen, T.; Li, Y.; Luo, X.; Gao, F.; Li, Q.; Zhou, L.; Karim, M.F.; et al. A dynamically programmable quantum photonic microprocessor for graph computation. Laser Photonics Rev. 2024, 18, 2300304. [Google Scholar] [CrossRef]
- Oh, C.; Fefferman, B.; Jiang, L.; Quesada, N. Quantum-inspired classical algorithm for graph problems by Gaussian boson sampling. arXiv 2023, arXiv:2302.00536. [Google Scholar] [CrossRef]
- Brádler, K.; Dallaire-Demers, P.L.; Rebentrost, P.; Su, D.; Weedbrook, C. Gaussian boson sampling for perfect matchings of arbitrary graphs. Phys. Rev. A 2018, 98, 032310. [Google Scholar] [CrossRef]
- Eppstein, D. The graphs of stably matchable pairs. In Graph—Theoretic Concepts in Computer Science, Proceedings of the 47th International Workshop, Warsaw, Poland, 6–8 May 2021; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Oh, C.; Lim, Y.; Fefferman, B.; Jiang, L. Classical simulation of boson sampling based on graph structure. Phys. Rev. Lett. 2022, 128, 190501. [Google Scholar] [CrossRef]
- Horn, R.A.; Johnson, C.R. Matrix Analysis; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Cariolaro, G.; Pierobon, G. Bloch-Messiah reduction of Gaussian unitaries by Takagi factorization. Phys. Rev. A 2016, 94, 062109. [Google Scholar] [CrossRef]
- Kumar, R.; Raghavan, P.; Rajagopalan, S.; Tomkins, A. Trawling the web for emerging cyber-communities. Comput. Netw. 1999, 31, 1481–1493. [Google Scholar] [CrossRef]
- Arora, S.; Barak, B.; Brunnermeier, M.; Ge, R. Computational complexity and information asymmetry in financial products. Commun. ACM 2011, 54, 101–107. [Google Scholar] [CrossRef]
- Angel, A.; Koudas, N.; Sarkas, N.; Srivastava, D. Dense subgraph maintenance under streaming edge weight updates for real-time story identification. arXiv 2012, arXiv:1203.0060. [Google Scholar] [CrossRef]
- Fratkin, E.; Naughton, B.T.; Brutlag, D.L.; Batzoglou, S. MotifCut: Regulatory motifs finding with maximum density subgraphs. Bioinformatics 2006, 22, e150–e157. [Google Scholar] [CrossRef]
- Balasundaram, B.; Butenko, S.; Hicks, I.V. Clique relaxations in social network analysis: The maximum k-plex problem. Oper. Res. 2011, 59, 133–142. [Google Scholar] [CrossRef]
- Gómez Ravetti, M.; Moscato, P. Identification of a 5-protein biomarker molecular signature for predicting Alzheimer’s disease. PLoS ONE 2008, 3, e3111. [Google Scholar] [CrossRef] [PubMed]
- Dorndorf, U.; Jaehn, F.; Pesch, E. Modelling robust flight-gate scheduling as a clique partitioning problem. Transp. Sci. 2008, 42, 292–301. [Google Scholar] [CrossRef]
- Jain, K.; Padhye, J.; Padmanabhan, V.N.; Qiu, L. Impact of interference on multi-hop wireless network performance. In Proceedings of the 9th Annual International Conference on Mobile Computing and Networking, San Diego, CA, USA, 14–19 September 2003. [Google Scholar]
- Boginski, V.; Butenko, S.; Pardalos, P.M. Mining market data: A network approach. Comput. Oper. Res. 2006, 33, 3171–3184. [Google Scholar] [CrossRef]
- Yu, S.; Zhong, Z.-P.; Fang, Y.; Patel, R.B.; Li, Q.-P.; Liu, W.; Li, Z.; Xu, L.; Sagona-Stophel, S.; Mer, E.; et al. A universal programmable gaussian boson sampler for drug discovery. arXiv 2022, arXiv:2210.14877. [Google Scholar] [CrossRef]
- Pierre, E.; Nowak, M. Towards graph classification with Gaussian Boson Sampling by embedding graphs on the X8 photonic chip. arXiv 2021, arXiv:2109.12863. [Google Scholar] [CrossRef]
- Executing Programs on X8 Devices. Available online: https://strawberryfields.ai/photonics/demos/tutorial_X8.html (accessed on 26 November 2025).
- Applications. Available online: https://strawberryfields.ai/photonics/applications.html (accessed on 26 November 2025).
- Hoch, F.; Caruccio, E.; Rodari, G.; Francalanci, T.; Suprano, A.; Giordani, T.; Carvacho, G.; Spagnolo, N.; Koudia, S.; Proietti, M.; et al. Quantum machine learning with Adaptive Boson Sampling via post-selection. Nat. Commun. 2025, 16, 902. [Google Scholar] [CrossRef]
- Jahangiri, S.; Arrazola, J.M.; Quesada, N.; Delgado, A. Quantum algorithm for simulating molecular vibrational excitations. arXiv 2020, arXiv:2006.13339. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, H.; Luo, W.; Cai, H.; Karim, M.F.; Luo, X.; Gao, F.; Wu, X.; Zhou, X.; Song, Q.; et al. Realizing ultrahigh capacity quantum superdense coding on quantum photonic chip. Npj Quantum Inf. 2025, 11, 49. [Google Scholar] [CrossRef]
- Sawaya, N.P.; Huh, J. Quantum algorithm for calculating molecular vibronic spectra. J. Phys. Chem. Lett. 2019, 10, 3586–3591. [Google Scholar] [CrossRef]
- Huh, J.; Guerreschi, G.G.; Peropadre, B.; McClean, J.R.; Aspuru-Guzik, A. Boson sampling for molecular vibronic spectra. Nat. Photonics 2015, 9, 615–620. [Google Scholar] [CrossRef]
- Lyu, N.; Bergold, P.; Soley, M.B.; Wang, C.; Batista, V.S. Holographic Gaussian Boson Sampling with Matrix Product States on 3D cQED Processors. J. Chem. Theory Comput. 2024, 20, 6402–6413. [Google Scholar] [CrossRef] [PubMed]
- Chandarana, P.; Hegade, N.N.; Montalban, I.; Solano, E.; Chen, X. Digitized counterdiabatic quantum algorithm for protein folding. Phys. Rev. Appl. 2023, 20, 014024. [Google Scholar] [CrossRef]
- Perdomo, A.; Truncik, C.; Tubert-Brohman, I.; Rose, G.; Aspuru-Guzik, A. Construction of model Hamiltonians for adiabatic quantum computation and its application to finding low-energy conformations of lattice protein models. Phys. Rev. A—At. Mol. Opt. Phys. 2008, 78, 012320. [Google Scholar] [CrossRef]
- Perdomo-Ortiz, A.; Dickson, N.; Drew-Brook, M.; Rose, G.; Aspuru-Guzik, A. Finding low-energy conformations of lattice protein models by quantum annealing. Sci. Rep. 2012, 2, 1–7. [Google Scholar] [CrossRef]
- Irbäck, A.; Knuthson, L.; Mohanty, S.; Peterson, C. Folding lattice proteins with quantum annealing. Phys. Rev. Res. 2022, 4, 043013. [Google Scholar] [CrossRef]
- Fingerhuth, M.; Babej, T. A quantum alternating operator ansatz with hard and soft constraints for lattice protein folding. arXiv 2018, arXiv:1810.13411. [Google Scholar] [CrossRef]
- Babej, T.; Fingerhuth, M. Coarse-grained lattice protein folding on a quantum annealer. arXiv 2018, arXiv:1811.00713. [Google Scholar] [CrossRef]
- Rozman, K.; Ghysels, A.; Zavalnij, B.; Kunej, T.; Bren, U.; Janežič, D.; Konc, J. Enhanced molecular docking: Novel algorithm for identifying highest weight k-cliques in weighted general and protein-ligand graphs. J. Mol. Struct. 2024, 1304, 137639. [Google Scholar] [CrossRef]
- Shentu, Z.; Al Hasan, M.; Bystroff, C.; Zaki, M.J. Context shapes: Efficient complementary shape matching for protein–protein docking. Proteins: Struct. Funct. Bioinform. 2008, 70, 1056–1073. [Google Scholar] [CrossRef]
- Dias, R.; de Azevedo, J.; Walter, F. Molecular docking algorithms. Curr. Drug Targets 2008, 9, 1040–1047. [Google Scholar] [CrossRef]
- Alonso, H.; Bliznyuk, A.A.; Gready, J.E. Combining docking and molecular dynamic simulations in drug design. Med. Res. Rev. 2006, 26, 531–568. [Google Scholar] [CrossRef]
- Wu, G.; Robertson, D.H.; Brooks, C.L., III; Vieth, M. Detailed analysis of grid—Based molecular docking: A case study of CDOCKER—A CHARMm—Based MD docking algorithm. J. Comput. Chem. 2003, 24, 1549–1562. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.Y. Pharmacophore modeling and applications in drug discovery: Challenges and recent advances. Drug Discov. Today 2010, 15, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Liu, Y.; Pang, Y.; Pacak, K.; Yang, C. Double-barreled gun: Combination of PARP inhibitor with conventional chemotherapy. Pharmacol. Ther. 2018, 188, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Tangutoori, S.; Baldwin, P.; Sridhar, S. PARP inhibitors: A new era of targeted therapy. Maturitas 2015, 81, 5–9. [Google Scholar] [CrossRef]
- Olsen, A.L.; Feany, M.B. PARP inhibitors and Parkinson’s disease. N. Engl. J. Med. 2019, 380, 492–494. [Google Scholar] [CrossRef]
- Martire, S.; Mosca, L.; d’Erme, M. PARP-1 involvement in neurodegeneration: A focus on Alzheimer’s and Parkinson’s diseases. Mech. Ageing Dev. 2015, 146, 53–64. [Google Scholar] [CrossRef]
- Levin, J.I.; Chen, J.M.; Laakso, L.M.; Du, M.; Schmid, J.; Xu, W.; Cummons, T.; Xu, J.; Jin, G.; Barone, D.; et al. Acetylenic TACE inhibitors. Part 3: Thiomorpholine sulfonamide hydroxamates. Bioorg. Med. Chem. Lett. 2006, 16, 1605–1609. [Google Scholar] [CrossRef]
- Chemaly, M.; McGilligan, V.; Gibson, M.; Clauss, M.; Watterson, S.; Alexander, H.D.; Bjourson, A.J.; Peace, A. Role of tumour necrosis factor alpha converting enzyme (TACE/ADAM17) and associated proteins in coronary artery disease and cardiac events. Arch. Cardiovasc. Dis. 2017, 110, 700–711. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; Hwang, K.; Kang, S.H. StemP: A fast and deterministic stem-graph approach for RNA secondary structure prediction. IEEE/ACM Trans. Comput. Biol. Bioinform. 2023, 20, 3278–3291. [Google Scholar] [CrossRef] [PubMed]
- Mathews, D.H.; Disney, M.D.; Childs, J.L.; Schroeder, S.J.; Zuker, M.; Turner, D.H. Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc. Natl. Acad. Sci. USA 2004, 101, 7287–7292. [Google Scholar] [CrossRef]
- Wirecki, T.K.; Merdas, K.; Bernat, A.; Boniecki, M.J.; Bujnicki, J.M.; Stefaniak, F. RNAProbe: A web server for normalization and analysis of RNA structure probing data. Nucleic Acids Res. 2020, 48, W292–W299. [Google Scholar] [CrossRef]
- Farhi, E.; Goldstone, J.; Gutmann, S. A quantum approximate optimization algorithm. arXiv 2014, arXiv:1411.4028. [Google Scholar] [CrossRef]
- Cerezo, M.; Arrasmith, A.; Babbush, R.; Benjamin, S.C.; Endo, S.; Fujii, K.; McClean, J.R.; Mitarai, K.; Yuan, X.; Cincio, L.; et al. Variational quantum algorithms. Nat. Rev. Phys. 2021, 3, 625–644. [Google Scholar] [CrossRef]
- Huang, H.L.; Xu, X.Y.; Guo, C.; Tian, G.; Wei, S.J.; Sun, X.; Bao, W.S.; Long, G.L. Near-term quantum computing techniques: Variational quantum algorithms, error mitigation, circuit compilation, benchmarking and classical simulation. Sci. China Phys. Mech. Astron. 2023, 66, 250302. [Google Scholar] [CrossRef]
- Vaida, V.; Donaldson, D.J. Red-light initiated atmospheric reactions of vibrationally excited molecules. Phys. Chem. Chem. Phys. 2014, 16, 827–836. [Google Scholar] [CrossRef]
- Crim, F.F. Bond-selected chemistry: Vibrational state control of photodissociation and bimolecular reaction. J. Phys. Chem. 1996, 100, 12725–12734. [Google Scholar] [CrossRef]
- Jacob, K.V.; Kaur, E.; Roga, W.; Takeoka, M. Franck-Condon factors via compressive sensing. Phys. Rev. A 2020, 102, 032403. [Google Scholar] [CrossRef]
- Sharp, T.E.; Rosenstock, H.M. Franck—Condon factors for polyatomic molecules. J. Chem. Phys. 1964, 41, 3453–3463. [Google Scholar] [CrossRef]
- Zhu, H.H.; Chen, H.S.; Chen, T.; Li, Y.; Luo, S.B.; Karim, M.F.; Luo, X.S.; Gao, F.; Li, Q.; Cai, H.; et al. Large-scale photonic network with squeezed vacuum states for molecular vibronic spectroscopy. Nat. Commun. 2024, 15, 6057. [Google Scholar] [CrossRef]
- Quesada, N. Franck-Condon factors by counting perfect matchings of graphs with loops. J. Chem. Phys. 2019, 150, 164113. [Google Scholar] [CrossRef] [PubMed]
- Paesani, S.; Ding, Y.; Santagati, R.; Chakhmakhchyan, L.; Vigliar, C.; Rottwitt, K.; Oxenløwe, L.K.; Wang, J.; Thompson, M.G.; Laing, A. Generation and sampling of quantum states of light in a silicon chip. Nat. Phys. 2019, 15, 925–929. [Google Scholar] [CrossRef]
- Barone, V.; Bloino, J.; Biczysko, M.; Santoro, F. Fully integrated approach to compute vibrationally resolved optical spectra: From small molecules to macrosystems. J. Chem. Theory Comput. 2009, 5, 540–554. [Google Scholar] [CrossRef] [PubMed]
- Duschinsky, F. The importance of the electron spectrum in multi atomic molecules Concerning the Franck-Condon principle. Acta Physicochim. URSS 1937, 7, 551–566. [Google Scholar]
- Doktorov, E.V.; Malkin, I.A.; Man’Ko, V.I. Dynamical symmetry of vibronic transitions in polyatomic molecules and the Franck-Condon principle. J. Mol. Spectrosc. 1977, 64, 302–326. [Google Scholar] [CrossRef]
















| Graph | Contains | Number of Graphs | The Matrix Associated with the Graph |
|---|---|---|---|
| 1K2, m = m0 | a K2 subgraph and 6 free vertices![]() | 4 | ![]() ![]() ![]() ![]() |
| 2K2, m = 2m0 | 2 K2 subgraphs and 4 free vertices![]() | 12 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
| 1C4, m = m0 | a C4 subgraph and 4 free vertices | 6 | ![]() ![]() ![]() ![]() ![]() ![]() |
| 2P3, m = 2m0 | 2 P3 subgraphs and 2 free vertices![]() | 12 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
| 3K2, m = 3m0 | 3 K2 subgraphs and 2 free vertices![]() | 16 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
| 1K33, m = m0 | a K3,3 subgraph and 2 free vertices | 4 | ![]() ![]() ![]() ![]() |
| 2S3, m = 2m0 | 2 S3 subgraphs and no free vertex![]() | 4 | ![]() ![]() ![]() ![]() |
| 4K2, m = 4m0 | 4 K2 subgraphs and no free vertex![]() | 10 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
| 2C4, m = 2m0 | 2 C4 subgraphs and no free vertex![]() | 6 | ![]() ![]() ![]() ![]() ![]() ![]() |
| 1K44, m = m0 | a K4,4 graph | 1 | ![]() |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bagheri Novir, S. Applications of Gaussian Boson Sampling to Solve Some Chemistry Problems. Quantum Rep. 2025, 7, 56. https://doi.org/10.3390/quantum7040056
Bagheri Novir S. Applications of Gaussian Boson Sampling to Solve Some Chemistry Problems. Quantum Reports. 2025; 7(4):56. https://doi.org/10.3390/quantum7040056
Chicago/Turabian StyleBagheri Novir, Samaneh. 2025. "Applications of Gaussian Boson Sampling to Solve Some Chemistry Problems" Quantum Reports 7, no. 4: 56. https://doi.org/10.3390/quantum7040056
APA StyleBagheri Novir, S. (2025). Applications of Gaussian Boson Sampling to Solve Some Chemistry Problems. Quantum Reports, 7(4), 56. https://doi.org/10.3390/quantum7040056



















































































