Functionalised Terpyridines and Their Metal Complexes—Solid-State Interactions †
Abstract
:1. Introduction
2. Experimental Section
2.1. General
2.2. Synthesis
2.2.1. Vanadium(V) Complex of 4′-(Biphenyl)-2,2′:6′,2″-terpyridine, Bptpy
2.2.2. Complexes of 4′-Terphenyl-2,2′:6′,2″-terpyridine, Tptpy (and Mixed Complexes with 2,2′:6′,2″-Terpyridine)
2.2.3. Zinc(II) Complex of 2-(4-(2-Phenylethynyl)-6-(pyridin-2-yl)yyridin-2-yl)pyridine, Patpy
2.2.4. Complexes of 4′-(4″′-(Ethynylphenyl)phenylethynyl)-2,2′:6′,2″-terpyridine, Papatpy
2.2.5. Iron(II) Complex of 4′-(Pentafluorophenylethynyl)-2,2′:6′,2″-terpyridine, pfpatpy
2.2.6. Complexes of 4′-(4′-Pyridin-4-yl-biphenyl-4-yl)-2,2′:6′,2″-terpyridine, pybptpy
2.2.7. Complexes of 4′-(4-Bromobiphenyl-4-yl)-2,2′:6′,2″-terpyridine, Brbptpy
2.2.8. Complexes of 4-((Ethoxycarbonyl)biphenyl-4-yl)-2,2′:6′,2″-terpyridine, Ebptpy
2.2.9. Zinc(II) Complex of 4-((Ethoxycarbonyl)terphenyl-4-yl)-2,2′:6′,2″-terpyridine, etptpy
2.2.10. Complexes of 4′-(Benzyloxy)-2,2′:6′,2″-terpyridine, bzOtpy
2.2.11. 4′-(3,4,5-Trimethoxy-phenyl)-2,2′:6′,2″-terpyridine, tmptpy, and its Zn(II) Complex
2.2.12. Complexes of 2-(4-(2-(3,4,5-Trimethoxyphenyl)ethynyl)-6-(pyridin-2-yl)pyridin-2-yl)pyridine, tmpatpy
3. Crystallography
4. Results and Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hofmeier, H.; Schubert, U.S. Recent developments in the supramolecular chemistry of terpyridine–metal complexes. Chem. Soc. Rev. 2004, 33, 373–399. [Google Scholar] [CrossRef] [PubMed]
- Schubert, U.S.; Hofmeier, H.; Newkome, G.R. Modern Terpyridine Chemistry; Wiley-VCH: Weinheim, Germany, 2006. [Google Scholar]
- Constable, E.C. 2,2′:6′,2″-Terpyridines: From chemical obscurity to common supramolecular motifs. Chem. Soc. Rev. 2007, 36, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Constable, E.C.; Housecroft, C.E. ‘Simple’ Oligopyridine Complexes – Sources of Unexpected Structural Diversity. Aust. J. Chem. 2020, 73, 390–398. [Google Scholar] [CrossRef]
- Wild, A.; Winter, A.; Schlütter, F.; Schubert, U.S. Advances in the field of π-conjugated 2,2′:6′,2″-terpyridines. Chem. Soc. Rev. 2011, 40, 1459–1511. [Google Scholar] [CrossRef]
- Winter, A.; Newkome, G.R.; Schubert, U.S. Catalytic Applications of Terpyridines and their Transition Metal Complexes. ChemCatChem 2011, 3, 1384–1406. [Google Scholar] [CrossRef]
- Hancock, R.D. The pyridyl group in ligand design for selective metal ion complexation and sensing. Chem. Soc. Rev. 2013, 42, 1500–1524. [Google Scholar] [CrossRef]
- Mutai, T.; Satou, H.; Araki, K. Reproducible on–off switching of solid-state luminescence by controlling molecular packing through heat-mode interconversion. Nat. Mater. 2005, 4, 685–687. [Google Scholar] [CrossRef]
- Scudder, M.L.; Goodwin, H.A.; Dance, I.G. Crystal supramolecular motifs: Two-dimensional grids of terpy embraces in [ML2]z complexes (L = terpy or aromatic N3-tridentate ligand). New J. Chem. 1999, 23, 695–705. [Google Scholar] [CrossRef]
- McMurtrie, J.; Dance, I. Engineering grids of metal complexes: Development of the 2D M(terpy)2 embrace motif in crystals. CrystEngComm 2005, 7, 216–219. [Google Scholar] [CrossRef]
- Dance, I.G.; Scudder, M.L. Molecules embracing in crystals. CrystEngComm 2009, 11, 2233–2247. [Google Scholar] [CrossRef]
- Figgis, B.N.; Kucharski, E.S. Crystal structure of Bis(2,2′:6′,2″-terpyridyl)cobalt(II) iodide dihydrate at 295 K and at 120 K. Aust. J. Chem. 1983, 36, 1527–1535. [Google Scholar] [CrossRef]
- McMurtrie, J.; Dance, I. Alternative metal grid structures formed by [M(terpy)2]2+ and [M(terpyOH)2]2+ complexes with small and large tetrahedral dianions, and by [Ru(terpy)2]0. CrystEngComm 2010, 12, 2700–2710. [Google Scholar] [CrossRef]
- Kubota, E.; Lee, Y.H.; Fuyuhiro, A.; Kawata, S.; Harrowfield, J.M.; Kim, Y.; Hayami, S. Synthesis, structure, and luminescence properties of arylpyridine-substituted terpyridine Zn(II) and Cd(II) complexes. Polyhedron 2013, 52, 435–441. [Google Scholar] [CrossRef]
- Janiak, C. A critical account on π–π stacking in metal complexes with aromatic nitrogen-containing ligands. J. Chem. Soc. Dalton Trans. 2000, 3885–3896. [Google Scholar] [CrossRef]
- Jennings, W.B.; Farrell, B.M.; Malone, J.F. Attractive Intramolecular Edge-to-Face Aromatic Interactions in Flexible Organic Molecules. Acc. Chem. Res. 2001, 34, 885–894. [Google Scholar] [CrossRef] [PubMed]
- Waters, M.L. Aromatic interactions in model systems. Curr. Opin. Chem. Biol. 2002, 6, 736–741. [Google Scholar] [CrossRef]
- Grimme, S. Do special noncovalent π-π stacking interactions really exist? Angew. Chem. Int. Ed. 2008, 47, 3430–3434. [Google Scholar] [CrossRef]
- Ehrlich, S.; Moellmann, J.; Grimme, S. Dispersion-Corrected Density Functional Theory for Aromatic Interactions in Complex Systems. Acc. Chem. Res. 2013, 46, 916–926. [Google Scholar] [CrossRef] [PubMed]
- Bloom, J.W.G.; Wheeler, S.E. Taking the Aromaticity out of Aromatic Interactions. Angew. Chem. Int. Ed. 2011, 50, 7847–7849. [Google Scholar] [CrossRef]
- Martinez, C.R.; Iverson, B.L. Rethinking the term “pi-stacking”. Chem. Sci. 2012, 3, 2191–2201. [Google Scholar] [CrossRef] [Green Version]
- Waters, M.L. Aromatic Interactions. Acc. Chem. Res. 2013, 46, 873. [Google Scholar] [CrossRef]
- Gavezzotti, A. The “Sceptical Chymist”: Intermolecular Doubts and Paradoxes. CrystEngComm 2013, 15, 4027–4035. [Google Scholar] [CrossRef] [Green Version]
- Malenov, D.P.; Zaric, S.D. Stacking Interactions between Indenyl Ligands of Transition Metal Complexes: Crystallographic and Density Functional Study. Cryst. Growth Des. 2020, 20, 4491–4502. [Google Scholar] [CrossRef]
- Gavezzotti, A. Calculation of Intermolecular Interaction Energies by Direct Numerical Integration over Electron Densities. I. Electrostatic and Polarization Energies in Molecular Crystals. J. Phys. Chem. B 2002, 106, 4145–4154. [Google Scholar] [CrossRef]
- Dunitz, J.D.; Gavezzotti, A. Molecular Recognition in Organic Crystals: Directed Intermolecular Bonds or Nonlocalized Bonding? Angew. Chem. Int. Ed. 2005, 44, 1766–1787. [Google Scholar] [CrossRef] [PubMed]
- Dunitz, J.D.; Gavezzotti, A. Supramolecular Synthons: Validation and Ranking of Intermolecular Interaction Energies. Cryst. Growth Des. 2012, 12, 5873–5877. [Google Scholar] [CrossRef]
- Henry, M. Nonempirical Quantification of Molecular Interactions in Supramolecular Assemblies. ChemPhysChem 2002, 3, 561–569. [Google Scholar] [CrossRef]
- Spackman, M.A.; Jayatilaka, D. Hirshfeld Surface Analysis. CrystEngComm 2009, 11, 19–32. [Google Scholar] [CrossRef]
- Wolff, S.K.; Grimwood, D.J.; McKinnon, J.J.; Turner, M.J.; Jayatilaka, D.; Spackman, M.A. (Eds.) CrystalExplorer 3.1; University of Western Australia: Perth, Australia, 2012. [Google Scholar]
- Spackman, M.A. Molecules in Crystals. Phys. Scr. 2013, 87, 048103. [Google Scholar] [CrossRef]
- McKenzie, C.F.; Spackman, P.R.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer model energies and energy frameworks: Extension to metal coordination compounds, organic salts, solvates and open-shell systems. IUCrJ 2017, 4, 575–587. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.H.; Kim, J.Y.; Kim, Y.; Hayami, S.; Shin, J.W.; Harrowfield, J.M.; Stefankiewicz, A.R. Lattice Interactions of Terpyridines and Their Derivatives – Free Terpyridines and Their Protonated Forms. CrystEngComm 2016, 18, 8059–8071. [Google Scholar] [CrossRef]
- Lee, Y.H.; Kubota, E.; Fuyuhiro, A.; Kawata, S.; Harrowfield, J.M.; Kim, Y.; Hayami, S. Synthesis, structure and luminescence properties of Cu(II), Zn(II) and Cd(II) complexes with 4′-terphenylterpyridine. Dalton Trans. 2012, 41, 10825–10831. [Google Scholar] [CrossRef]
- Lee, Y.H.; Fuyuhiro, A.; Harrowfield, J.M.; Kim, Y.; Sobolev, A.N.; Hayami, S. Quaterphenylterpyridine: Synthesis, structure and metal-ion-enhanced charge transfer. Eur. J. Inorg. Chem. 2013, 5862–5870. [Google Scholar] [CrossRef]
- Lee, Y.H.; Harrowfield, J.M.; Shin, J.W.; Won, M.S.; Rukmini, E.; Hayami, S.; Min, K.S.; Kim, Y. Supramolecular interactions of terpyridine-derived cores of metallomesogen precursors. Int. J. Mol. Sci. 2013, 14, 20729–20743. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.H.; Won, M.S.; Harrowfield, J.M.; Kawata, S.; Hayami, S.; Kim, Y. Spin crossover in Co(II) metallorods – replacing aliphatic tails by aromatic. Dalton Trans. 2013, 42, 11507–11521. [Google Scholar] [CrossRef]
- Janiak, C. Engineering coordination polymers towards applications. Dalton Trans. 2003, 2781–2804. [Google Scholar] [CrossRef]
- Wu, M.; Mao, J.; Guo, J.; Ji, S. The Use of a Bifunctional Copper Catalyst in the Cross-Coupling Reactions of Aryl and Heteroaryl Halides with Terminal Alkynes. Eur. J. Org. Chem. 2008, 4050–4054. [Google Scholar] [CrossRef]
- Constable, E.C.; Ward, M.D. Synthesis and co-ordination behaviour of 6′,6″-bis(2-pyridyl)-2,2′:4,4″:2″,2″′-quaterpyridine; ‘back-to-back’ 2,2′:6′,2″-terpyridine. J. Chem. Soc. Dalton Trans. 1990, 1405–1409. [Google Scholar] [CrossRef]
- Potts, K.T.; Konwar, D. Synthesis of 4′-vinyl-2,2′:6′,2″-terpyridine. J. Org. Chem. 1991, 56, 4815–4816. [Google Scholar] [CrossRef]
- Grosshenny, V.; Romero, F.; Ziessel, R. Construction of Preorganized Polytopic Ligands via Palladium-Promoted Cross-Coupling Reactions. J. Org. Chem. 1997, 62, 1491–1500. [Google Scholar] [CrossRef]
- Alcock, N.W.; Barker, P.R.; Haider, J.M.; Hannon, M.J.; Painting, C.L.; Pikramenou, Z.; Plummer, E.A.; Rissanen, K.; Saarenketo, P. Red and blue luminescent metallo-supramolecular coordination polymers assembled through π–π interactions. J. Chem. Soc. Dalton Trans. 2000, 1447–1461. [Google Scholar] [CrossRef]
- Collin, J.-P.; Guillerez, S.; Sauvage, J.-P.; Barigelletti, F.; De Cola, L.; Flamigni, L.; Balzani, V. Photoinduced processes in dyads and triads containing a ruthenium(II)-bis(terpyridine) photosensitizer covalently linked to electron donor and acceptor groups. Inorg. Chem. 1991, 30, 4230–4238. [Google Scholar] [CrossRef]
- Tu, S.; Jia, R.; Jiang, B.; Zhang, J.; Zhang, Y.; Yao, C.; Ji, S. Kröhnke reaction in aqueous media: One-pot clean synthesis of 4′-aryl-2,2′:6′,2″-terpyridines. Tetrahedron 2007, 63, 381–388. [Google Scholar] [CrossRef]
- Benniston, A.C.; Chapman, G.; Harriman, A.; Mehrabi, M.; Sams, C.A. Electron Delocalization in a Ruthenium(II) Bis(2,2′:6′,2′ ′-terpyridyl) Complex. Inorg. Chem. 2004, 43, 4227–4233. [Google Scholar] [CrossRef] [PubMed]
- Muro, M.L.; Castellano, F.N. Room temperature photoluminescence from [Pt(4′-CCR-tpy)Cl]+ complexes. Dalton Trans. 2007, 4659–4665. [Google Scholar] [CrossRef]
- Du, P.; Schneider, J.; Brennessel, W.W.; Eisenberg, R. Synthesis and Structural Characterization of a New Vapochromic Pt(II) Complex Based on the 1-Terpyridyl-2,3,4,5,6-pentaphenylbenzene (TPPPB) Ligand. Inorg. Chem. 2008, 47, 69–77. [Google Scholar] [CrossRef]
- Popović, Z.; Busby, M.; Huber, S.; Calzaferri, G.; De Cola, L. Assembling Micro Crystals through Cooperative Coordinative Interactions. Angew. Chem. Int. Ed. 2007, 46, 8898–8902. [Google Scholar] [CrossRef]
- Constable, E.C.; Cargill-Thompson, A.M.W.; Tocher, D.A.; Daniels, M.A.M. Synthesis, characterisation and spectroscopic properties of ruthenium(II)-2,2′:6′,2″terpyridine cordination triads. X-Ray structures of 4′-(N,N-dimethylamino)-2,2′:6′,2″-terpyridine and bis(4′-(N,N-dimethylamino)-2,2′:6′,2″-terpyridine)ruthenium(II) hexafluorophosphate acetonitrile solvate. New J. Chem. 1992, 16, 855–867. [Google Scholar]
- Arvai, A.J.; Nielsen, C. ADSC Quantum-210 ADX Program; Area Detector System Corporation: Poway, CA, USA, 1983. [Google Scholar]
- Otwinowski, Z.; Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 1997, 276, 307–326. [Google Scholar] [PubMed]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Cryst. 2015, C71, 3–8. [Google Scholar]
- Spek, A.L. PLATON SQUEEZE: A tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Cryst. 2015, C71, 9–18. [Google Scholar]
- CrystalMaker 8.7; CrystalMaker Software Ltd.: Woodstock, UK, 2014.
- Florio, P.; Coghlan, C.J.; Lin, C.-P.; Saito, K.; Campi, E.M.; Jackson, W.R.; Hearn, M.T.W. Isolation and Structure of a Hydrogen-bonded 2,2′:6′,2″-Terpyridin-4′-one Acetic Acid Adduct. Aust. J. Chem. 2014, 67, 651–656. [Google Scholar] [CrossRef]
- Murguly, E.; Norsten, T.B.; Branda, N. Tautomerism of 4-hydroxyterpyridine in the solid, solution and gas phases: An X-ray, FT-IR and NMR study. J. Chem. Soc. Perkin Trans. II 1999, 2789–2794. [Google Scholar] [CrossRef]
- Fallahpour, R.-A.; Constable, E.C. Novel synthesis of substituted 4′-hydroxy-2,2′:6′,2″-terpyridines. J. Chem. Soc. Perkin Trans. I 1997, 2263–2264. [Google Scholar] [CrossRef]
- Liu, Y.; Hong, X.; Lu, W.-G.; Lai, S. A vanadium(V) terpyridine complex: Synthesis, characterization, cytotoxicity in vitro and induction of apoptosis in cancer cells. Transition Met. Chem. 2017, 42, 459–467. [Google Scholar]
- Thangavelu, S.G.; Andrews, M.B.; Pope, S.J.A.; Cahill, C.L. Synthesis, Structures, and Luminescent Properties of Uranyl Terpyridine Aromatic Carboxylate Coordination Polymers. Inorg. Chem. 2013, 52, 2060–2069. [Google Scholar] [CrossRef] [PubMed]
- Carter, K.P.; Kalaj, M.; Cahill, C.L. Probing the Influence of N-Donor Capping Ligands on Supramolecular Assembly in Molecular Uranyl Materials. Eur. J. Inorg. Chem. 2016, 126–137. [Google Scholar] [CrossRef]
- Lyczko, K.; Steczek, L. Crystal structure of a hydroxo-bridged dimeric uranyl complex with a 2,2′:6′,2″-terpyridine ligand. J. Struct. Chem. 2017, 58, 102–106. [Google Scholar] [CrossRef]
- Gomez, G.E.; Ridenour, J.A.; Byrne, N.M.; Shevchenko, A.P.; Cahill, C.L. Novel Heterometallic Uranyl-Transition Metal Materials: Structure, Topology, and Solid State Photoluminescence Properties. Inorg. Chem. 2019, 58, 7243–7254. [Google Scholar] [CrossRef] [PubMed]
- Junk, P.C.; Kepert, C.J.; Semenova, L.I.; Skelton, B.W.; White, A.H. The Structural Systematics of Protonation of Some Important Nitrogen-base Ligands. I. Some Univalent Anion Salts of Doubly Protonated 2, 2′:6′, 2″-Terpyridyl. Zeit. Anorg. Allg. Chem. 2006, 632, 1293–1302. [Google Scholar] [CrossRef]
- Maslen, E.N.; Raston, C.L.; White, A.H. Crystal structure of bis(2,2′:6′,2″-terpyridyl)cobalt(II) bromide trihydrate. J. Chem. Soc. Dalton Trans. 1974, 1803–1807. [Google Scholar] [CrossRef]
- Nielsen, P.; Toftlund, H.; Bond, A.D.; Boas, J.F.; Pillbrow, J.R.; Hansen, G.R.; Noble, C.; Riley, M.J.; Neville, S.M.; Moubaraki, B.; et al. Systematic study of spin crossover and structure in [Co(terpyRX)2](Y)2 systems (terypyRX = 4′-alkoxy-2,2′:6′,2″-terpyridine, X = 4, 8,12, Y = BF4−, CIO4−, PF6−, BPh4−). Inorg. Chem. 2009, 48, 7033–7047. [Google Scholar] [CrossRef]
- Figgis, B.N.; Kucharski, E.S.; White, A.H. Crystal structure of Bis(2,2′:6′,2″-terpyridyl)cobalt(III) chloride. Aust. J. Chem. 1983, 36, 1563–1571. [Google Scholar] [CrossRef]
- Paul, J.; Spey, S.; Adams, H.; Thomas, J.A. Synthesis and structure of rhodium complexes containing extended terpyridyl ligands. Inorg. Chim. Acta 2004, 357, 2827–2832. [Google Scholar] [CrossRef]
- Wickramasinghe, W.A.; Bird, P.H.; Serpone, N. Interligand pockets in polypyridyl complexes. Crystal and molecular structure of the bis(terpyridyl)chromium(III) cation. Inorg. Chem. 1982, 21, 2694–2698. [Google Scholar] [CrossRef]
- Sugihara, H.; Hiratani, K. 1,10-phenanthroline derivatives as ionophores for alkali metal ions. Coord. Chem. Rev. 1996, 148, 285–299. [Google Scholar] [CrossRef]
- Granifo, J.; Garland, M.T.; Baggio, R. Hydrogen bonding and π-stacking interactions in the zipper-like supramolecular structure of the monomeric cadmium(II) complex [Cd(pyterpy)(H2O)(NO3)2] (pyterpy = 4′-(4-pyridyl)-2,2′:6′,2″-terpyridine). Inorg. Chem. Commun. 2004, 7, 77–81. [Google Scholar] [CrossRef]
- Beves, J.E.; Bray, D.J.; Clegg, J.K.; Constable, E.C.; Housecroft, C.E.; Jolliffe, K.A.; Kepert, C.J.; Lindoy, L.F.; Neuburger, M.; Price, D.J.; et al. Expanding the 4,4′-bipyridine ligand: Structural variation in {M(pytpy)2}2+ complexes (pytpy = 4′-(4-pyridyl)-2,2′:6′,2″-terpyridine, M = Fe, Ni, Ru) and assembly of the hydrogen-bonded, one-dimensional polymer {[Ru(pytpy)(Hpytpy)]}n3n+. Inorg. Chim. Acta 2008, 361, 2582–2590. [Google Scholar] [CrossRef]
- Metrangolo, P.; Resnati, G. Halogen Bonding: A Paradigm in Supramolecular Chemistry. Chem. Eur. J. 2001, 7, 2511–2519. [Google Scholar] [CrossRef]
- Constable, E.C.; Harris, K.; Housecroft, C.E.; Neuburger, M.; Zampese, J.A. Turning {M(tpy)2}n+ embraces and CH⋯π interactions on and off in homoleptic cobalt(II) and cobalt(III) bis(2,2′:6′,2″-terpyridine) complexes. CrystEngComm 2010, 12, 2949–2961. [Google Scholar] [CrossRef]
- Li, W.; Lu, Z.G. Diacetato{4′-[4-(benzyloxy)phenyl]-2,2′:6′,2″-terpyridine}zinc(II). Acta Cryst. 2009, E65, m1672. [Google Scholar] [CrossRef] [Green Version]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Cryst. 2016, B72, 171–179. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.H.; Kim, J.Y.; Kusumoto, S.; Ohmagari, H.; Hasegawa, M.; Thuéry, P.; Harrowfield, J.; Hayami, S.; Kim, Y. Functionalised Terpyridines and Their Metal Complexes—Solid-State Interactions. Chemistry 2021, 3, 199-227. https://doi.org/10.3390/chemistry3010016
Lee YH, Kim JY, Kusumoto S, Ohmagari H, Hasegawa M, Thuéry P, Harrowfield J, Hayami S, Kim Y. Functionalised Terpyridines and Their Metal Complexes—Solid-State Interactions. Chemistry. 2021; 3(1):199-227. https://doi.org/10.3390/chemistry3010016
Chicago/Turabian StyleLee, Young Hoon, Jee Young Kim, Sotaro Kusumoto, Hitomi Ohmagari, Miki Hasegawa, Pierre Thuéry, Jack Harrowfield, Shinya Hayami, and Yang Kim. 2021. "Functionalised Terpyridines and Their Metal Complexes—Solid-State Interactions" Chemistry 3, no. 1: 199-227. https://doi.org/10.3390/chemistry3010016