Internet of Things and Blockchain Adoption in Food Supply Chain: A Survey
Abstract
1. Introduction
2. Methodology
- Publication period: Only articles published between January 2020 and July 2025 were considered.
- Language: Articles had to be written in English.
- Type of publication: Only peer-reviewed journal articles were included.
3. Background
3.1. The Internet of Things
3.2. Blockchain Technology
4. The Adoption of IoT in FSCM
5. The Integration of Blockchain with IoT in FSCM
5.1. Application Categories
5.1.1. Provenance and Traceability
5.1.2. Data Management
5.1.3. Efficiency Improvement
5.2. Blockchain Types
5.2.1. Permissionless Blockchain
5.2.2. Permissioned Blockchain
5.3. Blockchain Platforms
5.3.1. Ethereum
5.3.2. Hyperledger Fabric
5.3.3. Hyperledger Sawtooth
5.3.4. Hyperledger Besu
5.3.5. Algorand
5.3.6. EOSIO
5.4. Development Tools for IoT–Blockchain Integration
5.5. Consensus Algorithms
5.5.1. Proof of Work
5.5.2. Delegated Proof of Stake
5.5.3. Pure Proof of Stake
5.5.4. Proof of Elapsed Time
5.5.5. Proof of Authority
6. Challenges and Open Issues Related to the Adoption of IoT and Blockchain in FSCM
6.1. Regulatory and Governance Challenges
6.2. Knowledge and Awareness Challenges
6.3. Scalability and Integration Challenges
6.4. Data Privacy and Security Challenges
6.5. Financial and Resource Challenges
6.6. Stakeholders’ Awareness and Trust Challenges
7. Future Work
7.1. Interoperability and Standardization
7.2. Scalability and Performance in Real-World Conditions
7.3. Security and Privacy in Operational Environments
7.4. Economic Viability and Cost–Benefit Analysis
7.5. AI-Driven Solutions
7.6. Sustainability and Environmental Impact
7.7. Multi-Stakeholder Real-World Pilots
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ben-Daya, M.; Hassini, E.; Bahroun, Z.; Banimfreg, B.H. The role of internet of things in food supply chain quality management: A review. Qual. Manag. J. 2020, 28, 17–40. [Google Scholar] [CrossRef]
- Hassini, E.; Ben-Daya, M.; Bahroun, Z. Impact of Internet of Things on Food Supply Chains. In Smart and Sustainable Supply Chain and Logistics—Challenges, Methods and Best Practices: Volume 2; Springer: Berlin/Heidelberg, Germany, 2023; pp. 3–12. [Google Scholar]
- Dergan, T.; Ivanovska, A.; Kocjančič, T.; Iannetta, P.P.; Debeljak, M. ‘Multi-SWOT’ Multi-Stakeholder-Based Sustainability Assessment Methodology: Applied to Improve Slovenian Legume-Based Agri-Food Chains. Sustainability 2022, 14, 15374. [Google Scholar] [CrossRef]
- Vasquez Neyra, J.M.; Cequea, M.M.; Schmitt, V.G.H. Current practices and key challenges associated with the adoption of resilient, circular, and sustainable food supply chain for smallholder farmers to mitigate food loss. Front. Sustain. Food Syst. 2025, 9, 1484933. [Google Scholar] [CrossRef]
- Fiore, M.; Stašys, R.; Pellegrini, G. Agri-food supply chain optimization through the SWOT analysis. Vadyb. Moksl. Stud. Verslų Jų Infrastruktūros Plėtrai Moksl. Žurnalas 2018, 40, 28–36. [Google Scholar] [CrossRef]
- Madureira, T.; Nunes, F.; Mata, F.; Vaz-Velho, M. A SWOT analysis of organizations in the agri-food chain sector from the Northern region of Portugal using the PESTEL and MEETHS frameworks. Agriculture 2024, 14, 1554. [Google Scholar] [CrossRef]
- Agnusdei, L.; Krstić, M.; Miglietta, P.P. Is Digitalization Making Agroindustry More Circular? A SWOT-AHP Analysis. In Proceedings of the International Symposium on Industrial Engineering and Automation, South Tyrol, Italy, 22–23 June 2023; Springer: Cham, Switzerland, 2023; pp. 427–436. [Google Scholar]
- Wang, G.; Wang, Y.; Li, S.; Yi, Y.; Li, C.; Shin, C. Sustainability in Global Agri-Food Supply Chains: Insights from a Comprehensive Literature Review and the ABCDE Framework. Foods 2024, 13, 2914. [Google Scholar] [CrossRef]
- Kuizinaitė, J.; Morkūnas, M.; Volkov, A. Assessment of the most appropriate measures for mitigation of risks in the agri-food supply chain. Sustainability 2023, 15, 9378. [Google Scholar] [CrossRef]
- Haider, M.; Jha, A.K.; Raut, R.; Kumar, M.; Ghoshal, S. Redesigning short and perishable food supply chains getting insight from the causal analysis of challenges to sustainable development. Br. Food J. 2024, 127, 1620–1647. [Google Scholar] [CrossRef]
- Van Parys, E.; Tran, D.; Sampers, I.; Benezech, T.; Loveniers, P.J.; Devlieghere, F.; De Steur, H.; Gellynck, X.; Schouteten, J.J. Evaluating collaborative scenarios for short food supply chains: A case study on high-level processing technology. Int. J. Food Sci. Technol. 2023, 58, 5591–5601. [Google Scholar] [CrossRef]
- de Castro Moura Duarte, A.L.; Picanço Rodrigues, V.; Bonome Message Costa, L. The sustainability challenges of fresh food supply chains: An integrative framework. Environ. Dev. Sustain. 2024, 1–25. [Google Scholar] [CrossRef]
- Shakuri, M.; Barzinpour, F. A risk-averse sustainable perishable food supply chain considering production and delivery times with real-world application. PLoS ONE 2024, 19, e0308332. [Google Scholar] [CrossRef] [PubMed]
- Sackmann, D.; Mardenli, A. Challenges in Food Supply Chain Management: Findings from Literature Review and Expert Survey. In Proceedings of the International Conference on Dynamics in Logistics, Bremen, Germany, 14–16 February 2024; Springer: Cham, Switzerland, 2024; pp. 69–91. [Google Scholar]
- Moyo, E.H.; Carstens, S.; Walters, J. Simulation model for a sustainable food supply chain in a developing country: A case study of the banana supply chain in Malawi. Logistics 2024, 8, 85. [Google Scholar] [CrossRef]
- Kumar, A.; Agrawal, S. Challenges and opportunities for agri-fresh food supply chain management in India. Comput. Electron. Agric. 2023, 212, 108161. [Google Scholar] [CrossRef]
- Kaur, A.; Singh, G.; Kukreja, V.; Sharma, S.; Singh, S.; Yoon, B. Adaptation of IoT with blockchain in Food Supply Chain Management: An analysis-based review in development, benefits and potential applications. Sensors 2022, 22, 8174. [Google Scholar] [CrossRef]
- Singh, R.; Khan, S.; Dsilva, J.; Centobelli, P. Blockchain integrated IOT for Food Supply Chain: A grey based Delphi-DEMATEL approach. Appl. Sci. 2023, 13, 1079. [Google Scholar] [CrossRef]
- Yadav, V.S.; Singh, A.R.; Raut, R.D.; Mangla, S.K.; Luthra, S.; Kumar, A. Exploring the application of Industry 4.0 technologies in the agricultural food supply chain: A systematic literature review. Comput. Ind. Eng. 2022, 169, 108304. [Google Scholar] [CrossRef]
- Kumar, S.; Raut, R.D.; Agrawal, N.; Cheikhrouhou, N.; Sharma, M.; Daim, T. Integrated blockchain and internet of things in the food supply chain: Adoption barriers. Technovation 2022, 118, 102589. [Google Scholar] [CrossRef]
- Lin, W.; Huang, X.; Fang, H.; Wang, V.; Hua, Y.; Wang, J.; Yin, H.; Yi, D.; Yau, L. Blockchain technology in current agricultural systems: From techniques to applications. IEEE Access 2020, 8, 143920–143937. [Google Scholar] [CrossRef]
- Nukala, R.; Panduru, K.; Shields, A.; Riordan, D.; Doody, P.; Walsh, J. Internet of Things: A review from ‘Farm to Fork’. In Proceedings of the 2016 27th Irish Signals and Systems Conference (ISSC), Londonderry, UK, 21–22 June 2016; pp. 1–6. [Google Scholar]
- Greengard, S. The Internet of Things; MIT Press: Cambridge, MA, USA, 2021. [Google Scholar]
- Tran-Dang, H.; Krommenacker, N.; Charpentier, P.; Kim, D.S. The Internet of Things for logistics: Perspectives, application review, and challenges. IETE Tech. Rev. 2022, 39, 93–121. [Google Scholar] [CrossRef]
- Kumar, N.M.; Mallick, P.K. The Internet of Things: Insights into the building blocks, component interactions, and architecture layers. Procedia Comput. Sci. 2018, 132, 109–117. [Google Scholar] [CrossRef]
- Gupta, B.B.; Quamara, M. An overview of Internet of Things (IoT): Architectural aspects, challenges, and protocols. Concurr. Comput. Pract. Exp. 2020, 32, e4946. [Google Scholar] [CrossRef]
- Al-Qaseemi, S.A.; Almulhim, H.A.; Almulhim, M.F.; Chaudhry, S.R. IoT Architecture Challenges and Issues: Lack of Standardization. In Proceedings of the 2016 Future Technologies Conference (FTC), San Francisco, CA, USA, 6–7 December 2016; pp. 731–738. [Google Scholar]
- Yousef, Z.; Gharsellaoui, H.; Barhoumi, W. Four-layer Architecture for IoT Security in Fog Network. In Proceedings of the 2023 10th International Conference on Internet of Things: Systems, Management and Security (IOTSMS), San Antonio, TX, USA, 23–25 October 2023; pp. 59–65. [Google Scholar]
- Khanna, A.; Kaur, S. Internet of things (IoT), applications and challenges: A comprehensive review. Wirel. Pers. Commun. 2020, 114, 1687–1762. [Google Scholar] [CrossRef]
- Jabraeil Jamali, M.A.; Bahrami, B.; Heidari, A.; Allahverdizadeh, P.; Norouzi, F. The IoT Landscape. In Towards the Internet of Things: Architectures, Security, and Applications; Springer: Cham, Switzerland, 2020; pp. 1–8. [Google Scholar]
- Bashir, I. Mastering Blockchain: Inner Workings of Blockchain, from Cryptography and Decentralized Identities, to DeFi, NFTs and Web3; Packt Publishing Ltd.: Birmingham, UK, 2023. [Google Scholar]
- Chakraborty, R.; Ghosh, A.; Balas, V.; Elngar, A. Blockchain: Principles and Applications in IoT; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Dong, S.; Abbas, K.; Li, M.; Kamruzzaman, J. Blockchain technology and application: An overview. PeerJ 2023, 9, e1705. [Google Scholar] [CrossRef] [PubMed]
- Devisri, M.; Vetriselvan, V.; Baskar, M.; Mylapalli, M.; Jayabalan, K.; Mouli, S.K.M.K. Blockchain Innovations for Secure Online Transactions. In Strategies for E-Commerce Data Security: Cloud, Blockchain, AI, and Machine Learning; Advances in Web Technologies and Engineering Book Series; IGI Global Scientific Publishing: Hershey, PA, USA, 2024; pp. 523–545. [Google Scholar] [CrossRef]
- Barbashyn, A. Blockchain technologies in international relations: Functional features and capabilities. Philos. Political Sci. Context Mod. Cult. 2024, 16, 141–149. [Google Scholar] [CrossRef]
- Soundararajan, G.; Tyagi, A.K. Blockchain Technology; CRC Press: Boca Raton, FL, USA, 2024; pp. 3–36. [Google Scholar] [CrossRef]
- Mukherjee, P.; Pradhan, C. Blockchain 1.0 to Blockchain 4.0—The Evolutionary Transformation of Blockchain Technology. In Blockchain Technology: Applications and Challenges; Springer: Berlin/Heidelberg, Germany, 2021; pp. 29–49. [Google Scholar]
- Luntovskyy, A.; Guetter, D. Cryptographic technology blockchain and its applications. In Proceedings of the International Conference on Information and Telecommunication Technologies and Radio Electronics, Odessa, Ukraine, 10–14 September 2018; Springer: Cham, Switzerland, 2018; pp. 14–33. [Google Scholar]
- Xiao, Y.; Zhang, N.; Lou, W.; Hou, Y.T. A survey of distributed consensus protocols for blockchain networks. IEEE Commun. Surv. Tutor. 2020, 22, 1432–1465. [Google Scholar] [CrossRef]
- Duy, P.T.; Hien, D.T.T.; Hien, D.H.; Pham, V.H. A Survey on Opportunities and Challenges of Blockchain Technology Adoption for Revolutionary Innovation. In Proceedings of the 9th International Symposium on Information and Communication Technology, Danang, Vietnam, 6–7 December 2018; pp. 200–207. [Google Scholar]
- Buterin, V. A Next-Generation Smart Contract and Decentralized Application Platform. In Ethereum White Paper; 2014; Volume 3, 37, pp. 1–2. [Google Scholar]
- Jadhav, J.S.; Deshmukh, J. A review study of the blockchain-based healthcare supply chain. Soc. Sci. Humanit. Open 2022, 6, 100328. [Google Scholar] [CrossRef]
- Kasyapa, M.S.; Vanmathi, C. Blockchain integration in healthcare: A comprehensive investigation of use cases, performance issues, and mitigation strategies. Front. Digit. Health 2024, 6, 1359858. [Google Scholar] [CrossRef]
- Fiore, M.; Capodici, A.; Rucci, P.; Bianconi, A.; Longo, G.; Ricci, M.; Sanmarchi, F.; Golinelli, D. Blockchain for the healthcare supply chain: A systematic literature review. Appl. Sci. 2023, 13, 686. [Google Scholar] [CrossRef]
- Choi, T.M.; Siqin, T. Blockchain in logistics and production from Blockchain 1.0 to Blockchain 5.0: An intra-inter-organizational framework. Transp. Res. Part E Logist. Transp. Rev. 2022, 160, 102653. [Google Scholar] [CrossRef]
- Lim, M.K.; Li, Y.; Wang, C.; Tseng, M.L. A literature review of blockchain technology applications in supply chains: A comprehensive analysis of themes, methodologies and industries. Comput. Ind. Eng. 2021, 154, 107133. [Google Scholar] [CrossRef]
- Petersen, D. Automating governance: Blockchain delivered governance for business networks. Ind. Mark. Manag. 2022, 102, 177–189. [Google Scholar] [CrossRef]
- Balcerzak, A.P.; Nica, E.; Rogalska, E.; Poliak, M.; Klieštik, T.; Sabie, O.M. Blockchain technology and smart contracts in decentralized governance systems. Adm. Sci. 2022, 12, 96. [Google Scholar] [CrossRef]
- Tan, T.M.; Saraniemi, S. Trust in blockchain-enabled exchanges: Future directions in blockchain marketing. J. Acad. Mark. Sci. 2023, 51, 914–939. [Google Scholar] [CrossRef]
- Panisi, F. Blockchain and ’Smart Contracts’: FinTech Innovations to Reduce the Costs of Trust. 2017. [Google Scholar] [CrossRef]
- Jia, Y.; Xu, C.; Wu, Z.; Feng, Z.; Chen, Y.; Yang, S. Measuring Decentralization in Emerging Public Blockchains. In Proceedings of the 2022 International Wireless Communications and Mobile Computing (IWCMC), Dubrovnik, Croatia, 30 May–3 June 2022; pp. 137–141. [Google Scholar]
- Niss, H.; Owuya, S. Performance and Scalability of Emerging Blockchain Technologies. Available online: https://www.diva-portal.org/smash/record.jsf?pid=diva2:1703907 (accessed on 28 June 2025).
- Agbo, C.C.; Mahmoud, Q.H.; Eklund, J.M. Blockchain technology in healthcare: A systematic review. Healthcare. 2019, 7, 56. [Google Scholar] [CrossRef] [PubMed]
- Queiroz, M.M.; Telles, R.; Bonilla, S.H. Blockchain and supply chain management integration: A systematic review of the literature. Supply Chain Manag. Int. J. 2020, 25, 241–254. [Google Scholar] [CrossRef]
- Zyskind, G.; Nathan, O. Decentralizing Privacy: Using Blockchain to Protect Personal Data. In Proceedings of the 2015 IEEE Security and Privacy Workshops, San Jose, CA, USA, 21–22 May 2015; pp. 180–184. [Google Scholar]
- Leng, J.; Ye, S.; Zhou, M.; Zhao, J.L.; Liu, Q.; Guo, W.; Cao, W.; Fu, L. Blockchain-secured smart manufacturing in industry 4.0: A survey. IEEE Trans. Syst. Man Cybern. Syst. 2020, 51, 237–252. [Google Scholar] [CrossRef]
- Peng, S. Blockchain for Big Data: AI, IoT and Cloud Perspectives; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Salah, K.; Rehman, M.H.U.; Nizamuddin, N.; Al-Fuqaha, A. Blockchain for AI: Review and open research challenges. IEEE Access 2019, 7, 10127–10149. [Google Scholar] [CrossRef]
- Muheidat, F.; Patel, D.; Tammisetty, S.; Tawalbeh, L.A.; Tawalbeh, M. Emerging concepts using blockchain and big data. Procedia Comput. Sci. 2022, 198, 15–22. [Google Scholar] [CrossRef]
- Atlam, H.F.; Azad, M.A.; Alzahrani, A.G.; Wills, G. A Review of Blockchain in Internet of Things and AI. Big Data Cogn. Comput. 2020, 4, 28. [Google Scholar] [CrossRef]
- Suhail, S.; Hussain, R.; Jurdak, R.; Oracevic, A.; Salah, K.; Hong, C.S.; Matulevičius, R. Blockchain-based digital twins: Research trends, issues, and future challenges. ACM Comput. Surv. (CSUR) 2022, 54, 1–34. [Google Scholar] [CrossRef]
- Qingmiao, L.; Fukang, Z. A Blockchain-Based Predictive Maintenance Framework. In Proceedings of the 2025 5th International Conference on Artificial Intelligence and Industrial Technology Applications (AIITA), Xi’an, China, 28–30 March 2025; pp. 103–108. [Google Scholar]
- Karim, M.M.; Van, D.H.; Khan, S.; Qu, Q.; Kholodov, Y. Ai agents meet blockchain: A survey on secure and scalable collaboration for multi-agents. Future Internet 2025, 17, 57. [Google Scholar] [CrossRef]
- Tulkinbekov, K.; Kim, D.H. Doctrina: Blockchain 5.0 for Artificial Intelligence. Appl. Sci. 2025, 15, 5602. [Google Scholar] [CrossRef]
- Food Waste Index Report 2024. Think Eat Save: Tracking Progress to Halve Global Food Waste. Available online: https://wedocs.unep.org/20.500.11822/45230 (accessed on 4 December 2024).
- Chen, Y.; Lu, Y.; Bulysheva, L.; Kataev, M.Y. Applications of blockchain in industry 4.0: A review. Inf. Syst. Front. 2022, 26, 1715–1729. [Google Scholar] [CrossRef]
- Sathiya, V.; Nagalakshmi, K.; Raju, K.; Lavanya, R. Tracking perishable foods in the supply chain using chain of things technology. Sci. Rep. 2024, 14, 21621. [Google Scholar] [CrossRef]
- Yele, S.; Litoriya, R. Blockchain-based secure dining: Enhancing safety, transparency, and traceability in food consumption environment. Blockchain Res. Appl. 2024, 5, 100187. [Google Scholar] [CrossRef]
- Gondal, M.U.A.; Khan, M.A.; Haseeb, A.; Albarakati, H.M.; Shabaz, M. A secure food supply chain solution: Blockchain and IoT-enabled container to enhance the efficiency of shipment for strawberry supply chain. Front. Sustain. Food Syst. 2023, 7, 1294829. [Google Scholar] [CrossRef]
- Raza, Z.; Haq, I.U.; Muneeb, M. Agri-4-all: A framework for blockchain based agricultural food supply chains in the era of fourth industrial revolution. IEEE Access 2023, 11, 29851–29867. [Google Scholar] [CrossRef]
- Khanna, A.; Jain, S.; Burgio, A.; Bolshev, V.; Panchenko, V. Blockchain-enabled supply chain platform for Indian dairy industry: Safety and traceability. Foods 2022, 11, 2716. [Google Scholar] [CrossRef]
- Varavallo, G.; Caragnano, G.; Bertone, F.; Vernetti-Prot, L.; Terzo, O. Traceability platform based on green blockchain: An application case study in dairy supply chain. Sustainability 2022, 14, 3321. [Google Scholar] [CrossRef]
- Khan, P.W.; Byun, Y.C.; Park, N. IoT-blockchain enabled optimized provenance system for food industry 4.0 using advanced deep learning. Sensors 2020, 20, 2990. [Google Scholar] [CrossRef]
- Hong, Y. New model of food supply chain finance based on the internet of things and blockchain. Mob. Inf. Syst. 2021, 2021, 7589964. [Google Scholar] [CrossRef]
- Iftekhar, A.; Cui, X. Blockchain-based traceability system that ensures food safety measures to protect consumer safety and COVID-19 free supply chains. Foods 2021, 10, 1289. [Google Scholar] [CrossRef] [PubMed]
- Bumblauskas, D.; Mann, A.; Dugan, B.; Rittmer, J. A blockchain use case in food distribution: Do you know where your food has been? Int. J. Inf. Manag. 2020, 52, 102008. [Google Scholar] [CrossRef]
- Majdalawieh, M.; Nizamuddin, N.; Alaraj, M.; Khan, S.; Bani-Hani, A. Blockchain-based solution for secure and transparent food supply chain network. Peer-to-Peer Netw. Appl. 2021, 14, 3831–3850. [Google Scholar] [CrossRef]
- Farina, G.; Kocian, A.; Brunori, G.; Chessa, S.; Lai, M.B.; Nardi, D.; Schifanella, C.; Bonura, S.; Masi, N.; Comella, S.; et al. Interoperable Traceability in Agrifood Supply Chains: Enhancing Transport Systems Through IoT Sensor Data, Blockchain, and DataSpace. Sensors 2025, 25, 3419. [Google Scholar] [CrossRef]
- Adhiwibowo, W.; Widayat, W.; Syafei, W.A. Design of dual blockchain-based with point of authority for halal traceability system application on fresh meat-based supply chain. Results Eng. 2025, 26, 105133. [Google Scholar] [CrossRef]
- Guo, T.; Chen, Y.; Ren, Q.; Li, D.; Bo, W.; Wang, X. Blockchain-Based Trusted Traceability Scheme for Food Quality and Safety. J. Food Qual. 2025, 2025, 5914078. [Google Scholar] [CrossRef]
- Lukacs, M.; Toth, F.; Horvath, R.; Solymos, G.; Alpár, B.; Varga, P.; Kertesz, I.; Gillay, Z.; Baranyai, L.; Felfoldi, J.; et al. Advanced digital solutions for food traceability: Enhancing origin, quality, and safety through NIRS, RFID, Blockchain, and IoT. J. Sens. Actuator Netw. 2025, 14, 21. [Google Scholar] [CrossRef]
- Wang, X.; Wu, Q.; Zeng, H.; Yang, X.; Cui, H.; Yi, X.; Piran, M.J.; Luo, M.; Que, Y. Blockchain-Empowered H-CPS Architecture for Smart Agriculture. Adv. Sci. 2025, 12, 2503102. [Google Scholar] [CrossRef]
- Villegas-Ch, W.; Govea, J.; Moncayo-Moncayo, P.; Navarro, A.M.; Chavez-Pirca, C. Optimization of the Traceability of Perishable Products through Light Blockchain and IoT in the Food Industry. IEEE Access 2025, 13, 67599–67615. [Google Scholar] [CrossRef]
- Sheriff, I.M.M.; Aravindhar, D.J. Towards Quantum-Resilient Food Systems: Federated AI and Lightweight Lattice Hashing for Blockchain-Based Traceability. SN Comput. Sci. 2025, 6, 659. [Google Scholar] [CrossRef]
- Chatterjee, K.; Singh, A. A blockchain-enabled security framework for smart agriculture. Comput. Electr. Eng. 2023, 106, 108594. [Google Scholar] [CrossRef]
- Biradar, M.; Sidnal, N.; Rokade, R.; Shiragapur, B. Dairy product quality evaluation using optimization-based deep maxout network with blockchain-driven internet of things. Peer-to-Peer Netw. Appl. 2025, 18, 124. [Google Scholar] [CrossRef]
- Uyar, H.; Papanikolaou, A.; Kapassa, E.; Touloupos, M.; Rizou, S. Blockchain-Enabled Traceability and Certification for Frozen Food Supply Chains: A Conceptual Design. Smart Agric. Technol. 2025, 12, 101085. [Google Scholar] [CrossRef]
- Hameed, H.; Zafar, N.A.; Alkhammash, E.H.; Hadjouni, M. Blockchain-Based Formal Model for Food Supply Chain Management System Using VDM-SL. Sustainability 2022, 14, 14202. [Google Scholar] [CrossRef]
- Ramkumar, G.; Kasat, K.; PK, N.M.; Raghu, T.; Chhabra, S. Quality enhanced framework through integration of blockchain with supply chain management. Meas. Sens. 2022, 24, 100462. [Google Scholar] [CrossRef]
- Islam, S.; Manning, L.; Cullen, J.M. Systematic assessment of food traceability information loss: A case study of the Bangladesh export shrimp supply chain. Food Control 2022, 142, 109257. [Google Scholar] [CrossRef]
- Seira, A.; Allen, J.; Watsky, C.; Alley, R. Governance of Permissionless Blockchain Networks. In FEDS Notes; Board of Governors of the Federal Reserve System: Washington, DC, USA, 2024. [Google Scholar] [CrossRef]
- Gaur, N.; O’Dowd, A.; Novotny, P.; Desrosiers, L.; Ramakrishna, V.; Baset, S.A. Blockchain with Hyperledger Fabric: Build Decentralized Applications Using Hyperledger Fabric 2; Packt Publishing Ltd.: Birmingham, UK, 2020. [Google Scholar]
- Addou, K.; El Ghoumari, M.; Achkdir, S.; Azzouazi, M. A decentralized model to ensure traceability and sustainability of the food supply chain by combining blockchain, IoT, and machine learning. Math. Model. Comput 2023, 10, 498–510. [Google Scholar] [CrossRef]
- Vyas, N.; Beije, A.; Krishnamachari, B. Blockchain and the Supply Chain: Concepts, Strategies and Practical Applications; Kogan Page Publishers: London, UK, 2019. [Google Scholar]
- Guo, J.; Cengiz, K.; Tomar, R. An IOT and blockchain approach for food traceability system in agriculture. Scalable Comput. Pract. Exp. 2021, 22, 127–137. [Google Scholar] [CrossRef]
- Pesanhane, H.; Bezerra, W.R.; Koch, F.; Westphall, C. Distributed AgriFood supply chains. J. Netw. Syst. Manag. 2024, 32, 64. [Google Scholar] [CrossRef]
- Mangrulkar, R.; Chavan, P.V. Ethereum Blockchain. In Blockchain Essentials; Apress: Berkeley, CA, USA, 2024; pp. 123–166. [Google Scholar] [CrossRef]
- Zhang, W.; Anand, T. Ethereum Architecture and Overview. In Blockchain and Ethereum Smart Contract Solution Development; Apress eBooks: Berkeley, CA, USA, 2022; pp. 209–244. [Google Scholar] [CrossRef]
- Padmavathi, U.; Harshitha, R.; Jayashre; Gummaraju, N. Examining Architectural Aspects of Hyperledger Fabric: A Thorough Review. In Proceedings of the 2024 International Conference on Innovations and Challenges in Emerging Technologies (ICICET), Nagpur, India, 7–8 June 2024; 8 June 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Wickremasinghe, G.B.; Frost, S.; Rafferty, K.; Sharma, V. Demonstrating a Hyperledger Fabric-based Blockchain with Knowledge Graphs for a Supply Chain Ecosystem. In Proceedings of the 2024 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), Dublin, Ireland, 27–31 May 2024; pp. 15–16. [Google Scholar] [CrossRef]
- Hasnain, M.; Albogamy, F.R.; Alamri, S.S.; Ghani, I.; Mehboob, B. The Hyperledger fabric as a Blockchain framework preserves the security of electronic health records. Front. Public Health 2023, 11, 1272787. [Google Scholar] [CrossRef]
- Balamurugan, S.; Ayyasamy, A.; Joseph, K.S. IoT-Blockchain driven traceability techniques for improved safety measures in food supply chain. Int. J. Inf. Technol. 2022, 14, 1087–1098. [Google Scholar] [CrossRef]
- Nawaz, A.; Wang, L.; Irfan, M.; Westerlund, T. Hyperledger sawtooth based supplychain traceability system for counterfeit drugs. Comput. Ind. Eng. 2024, 190, 110021. [Google Scholar] [CrossRef]
- Piduguralla, M.; Chakraborty, S.; Anjana, P.S.; Peri, S. An Efficient Framework for Execution of Smart Contracts in Hyperledger Sawtooth. arXiv 2023, arXiv:2302.08452. [Google Scholar]
- Moriggl, P.; Asprion, P.M.; Schneider, B. Blockchain Technologies Towards Data Privacy—Hyperledger Sawtooth as Unit of Analysis; Springer: Cham, Switzerland, 2021; pp. 299–313. [Google Scholar] [CrossRef]
- Gilad, Y.; Hemo, R.; Micali, S.; Vlachos, G.; Zeldovich, N. Algorand: Scaling Byzantine Agreements for Cryptocurrencies. In Proceedings of the SOSP ’17: ACM SIGOPS 26th Symposium on Operating Systems Principles, Shanghai China, 28 October 2017. [Google Scholar]
- Chen, J.; Micali, S. ALGORAND. arXiv 2016, arXiv:1607.01341. [Google Scholar]
- Zhao, Y.; Liu, J.; Han, Q.; Zheng, W.; Wu, J. Exploring EOSIO via Graph Characterization; Springer: Singapore, 2020; pp. 475–488. [Google Scholar] [CrossRef]
- Matzliach, S.; Sinay, T.; Danilchenko, K.; Daltrophe, H. EOS Blockchain-Based Electronic Voting System. In Proceedings of the 2024 6th Conference on Blockchain Research & Applications for Innovative Networks and Services (BRAINS), Berlin, Germany, 9–11 October 2024; pp. 1–2. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, H.; Wu, L.; Tyson, G.; Luo, X.; Zhang, R.; Liu, X.; Huang, G.; Jiang, X. Characterizing EOSIO Blockchain. arXiv 2020, arXiv:2002.05369. Available online: https://arxiv.org/abs/2002.05369 (accessed on 28 June 2025).
- Bistarelli, S.; Mazzante, G.; Micheletti, M.; Mostarda, L.; Sestili, D.; Tiezzi, F. Ethereum smart contracts: Analysis and statistics of their source code and opcodes. Internet Things 2020, 11, 100198. [Google Scholar] [CrossRef]
- Lehnert, C.; Engel, G.; Greiner, T. Distributed Ledger and Smart Contract Based Approach for IoT Sensor Applications. In Proceedings of the 2020 International Conference on Omni-layer Intelligent Systems (COINS), Barcelona, Spain, 31 August–2 September 2020; pp. 1–6. [Google Scholar]
- Razzaq, A.; Altamimi, A.B.; Alreshidi, A.; Ghayyur, S.A.K.; Khan, W.; Alsaffar, M. IoT data sharing platform in web 3.0 using blockchain technology. Electronics 2023, 12, 1233. [Google Scholar] [CrossRef]
- Bawa, G.; Singh, H.; Rani, S.; Kataria, A.; Min, H. Smart traceable framework for transportation of transplantable organs using IPFS, iot, and smart contracts. Sci. Rep. 2025, 15, 23364. [Google Scholar] [CrossRef]
- Ibba, G.; Destefanis, G.; Neykova, R.; Ortu, M.; Aufiero, S.; Bartolucci, S. Dai: A Dependencies Analyzer and Installer for Solidity Smart Contracts. In Proceedings of the 2024 IEEE International Conference on Software Analysis, Evolution and Reengineering-Companion (SANER-C), Rovaniemi, Finland, 12 March 2024; pp. 72–75. [Google Scholar]
- Jain, S.M. Introduction to Remix IDE. In A Brief Introduction to Web3: Decentralized Web Fundamentals for App Development; Springer: Berlin/Heidelberg, Germany, 2022; pp. 89–126. [Google Scholar]
- Huang, K. Data Authenticity. In A Comprehensive Guide for Web3 Security: From Technology, Economic and Legal Aspects; Springer: Berlin/Heidelberg, Germany, 2023; pp. 177–200. [Google Scholar]
- Panda, S.K.; Satapathy, S.C. An Investigation Into Smart Contract Deployment on Ethereum Platform Using Web3. js and Solidity Using Blockchain. In Data Engineering and Intelligent Computing: Proceedings of ICICC 2020; Springer: Berlin/Heidelberg, Germany, 2021; pp. 549–561. [Google Scholar]
- Kaur, R.; Kalra, S.; Attri, V.K. An Approach for Secure Product Traceability in Food Supply Chain Based on Blockchain. Turk. J. Comput. Math. Educ. 2021, 12, 221–233. [Google Scholar]
- Foschini, L.; Gavagna, A.; Martuscelli, G.; Montanari, R. Hyperledger Fabric Blockchain: Chaincode Performance Analysis. In Proceedings of the ICC 2020—2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020; pp. 1–6. [Google Scholar]
- Kaushal, R.K.; Kumar, N. Exploring Hyperledger Caliper Benchmarking Tool to Measure the Performance of Blockchain Based Solutions. In Proceedings of the 2024 11th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), Noida, India, 14–15 March 2024; pp. 1–6. [Google Scholar]
- Connors, C.; Sarkar, D. Comparative study of blockchain development platforms: Features and applications. arXiv 2022, arXiv:2210.01913. [Google Scholar]
- Caro, M.P.; Ali, M.S.; Vecchio, M.; Giaffreda, R. Blockchain-Based Traceability in Agri-Food Supply Chain Management: A Practical Implementation. In Proceedings of the 2018 IoT Vertical and Topical Summit on Agriculture-Tuscany (IOT Tuscany), Tuscany, Italy, 8–9 May 2018; pp. 1–4. [Google Scholar]
- Olson, K.; Bowman, M.; Mitchell, J.; Amundson, S.; Middleton, D.; Montgomery, C. Sawtooth: An introduction; The Linux Foundation: San Francisco, CA, USA, 2018; p. 10. [Google Scholar]
- Nudin, S.; Labus, A.; Lukovac, P.; Suvajdžić, M. DApp for Food Traceability Based on PyTeal and Algorand. E-Bus. Technol. Conf. Proc. 2023, 3, 211–216. [Google Scholar]
- Deepa, T.; Saraswathi, N.; Hariprasad, S.; Praveen, K.; Elamurugan, P.; Dinesh, V. Design and implementation of blockchain based peer to peer energy trading platform. J. Phys. Conf. Ser. 2022, 2335, 012059. [Google Scholar] [CrossRef]
- Lopez, N.; Agbu, A.; Oloyede, A.; Essien, E.; Eze, A.; Mhambe, C. Software tool to store IoT device data onto a blockchain. Softw. Impacts 2023, 16, 100511. [Google Scholar] [CrossRef]
- Eberhardt, J.; Tai, S. Zokrates-Scalable Privacy-Preserving Off-Chain Computations. In Proceedings of the 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Halifax, NS, Canada, 30 July–3 August 2018; pp. 1084–1091. [Google Scholar]
- Kim, G.; Ham, Y.; Ryou, J. Privacy-preserving credential smart contracts using Zokrates. KSII Trans. Internet Inf. Syst. (TIIS) 2024, 18, 2417–2430. [Google Scholar]
- Bashir, I. Blockchain Consensus. In Blockchain Consensus: An Introduction to Classical, Blockchain, and Quantum Consensus Protocols; Apress: Berkeley, CA, USA, 2022; pp. 207–257. [Google Scholar] [CrossRef]
- Antonopoulos, A.M.; Harding, D.A. Mastering Bitcoin: Programming the Open Blockchain, 3rd ed.; O’Reilly Media: Sebastopol, CA, USA, 2023. [Google Scholar]
- Ivanova, E.A. A Comparative Survey of Consensus Algorithms Based on Proof of Work. In Emerging Technologies in Data Mining and Information Security; Springer: Singapore, 2022; pp. 261–268. [Google Scholar] [CrossRef]
- Hoffmann, F. Challenges of Proof-of-Useful-Work (PoUW). In Proceedings of the 2022 IEEE 1st Global Emerging Technology Blockchain Forum: Blockchain & Beyond (iGETblockchain), Irvine, CA, USA, 7–11 November 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Li, W.; Deng, X.Q.; Liu, J.; Yu, Z.; Lou, X. Delegated Proof of Stake Consensus Mechanism Based on Community Discovery and Credit Incentive. Entropy 2023, 25, 1320. [Google Scholar] [CrossRef]
- Kiayias, A.; Koutsoupias, E.; Marmolejo-Cossío, F.; Stouka, A.P. Balancing Participation and Decentralization in Proof-of-Stake Cryptocurrencies. In Proceedings of the International Symposium on Algorithmic Game Theory, Amsterdam, The Netherlands, 3–6 September 2024; Springer: Cham, Switzerland, 2024; pp. 333–350. [Google Scholar]
- Doolani, N. Proof-of-Stake for SpartanGold. Master’s Thesis, San Jose State University, San Jose, CA, USA, 2023. [Google Scholar] [CrossRef]
- Jayet, Q.; Hennebert, C.; Kieffer, Y.; Beroulle, V. Embedded Elapsed Time Techniques in Trusted Execution Environment for Lightweight Blockchain. In Proceedings of the 2024 IEEE International Conference on Blockchain (Blockchain), Copenhagen, Denmark, 19–22 August 2024; Volume 21260, pp. 81–88. [Google Scholar] [CrossRef]
- Jayet, Q.; Hennebert, C.; Kieffer, Y.; Beroulle, V. Securing Elapsed Time for Blockchain: Proof of Hardware Time and Some of its Physical Threats. In Proceedings of the 2024 27th Euromicro Conference on Digital System Design (DSD), Paris, France, 28–30 August 2024; pp. 137–144. [Google Scholar] [CrossRef]
- Connors, C.; Sarkar, D. Survey of Prominent Blockchain Development Platforms. J. Netw. Comput. Appl. 2023, 216, 103650. [Google Scholar] [CrossRef]
- Arafat, S.M. A Comprehensive Study of Blockchain Consensus Protocols. ResearchGate. 2024. Available online: https://www.researchgate.net/publication/382447691_A_Study_of_Blockchain_Consensus_Protocols (accessed on 13 August 2025).
- Eleyan, A.; Hammoudeh, M.; Alohaly, M. Performance and Scalability Analysis of Ethereum and Hyperledger Fabric. IEEE Access 2023, 11, 67156–67167. [Google Scholar] [CrossRef]
- Sharma, S.; Kushwaha, D.S. A Survey on Blockchain Architecture and Consensus Mechanism: Design Vulnerability and Security Analysis. Int. J. Cloud Comput. 2024, 13, 485–547. [Google Scholar] [CrossRef]
- Voloder, A. Comparison of Smart Contract Platforms for Decentralized Applications. TU Wien Repository. 2023. Available online: https://repositum.tuwien.at/bitstream/20.500.12708/188244/1/Voloder%20Ammar%20-%202023%20-%20Comparison%20of%20Smart%20Contract%20Platforms%20for%20Decentralized...pdf (accessed on 13 August 2025).
- Xie, J.; Tang, H.; Huang, T.; Yu, F.R.; Xie, R.; Liu, J.; Liu, Y. A survey of blockchain technology applied to smart cities: Research issues and challenges. IEEE Commun. Surv. Tutor. 2019, 21, 2794–2830. [Google Scholar] [CrossRef]
- Regulation (EC) No 178/2002 of the European Parliament and of the Council. Establishing the General Principles and Requirements of Food Law and the European Food Safety Authority. 2002. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32002R0178 (accessed on 13 August 2025).
- Food Safety Modernization Act (FSMA). Focuses on Preventive Controls and Supply Chain Safety. U.S. Food and Drug Administration. 2011. Available online: https://www.fda.gov/food/guidance-regulation-food-and-dietary-supplements/food-safety-modernization-act-fsma (accessed on 13 August 2025).
- Goo, J.J.; Heo, J.-Y. The Impact of the Regulatory Sandbox on the Fintech Industry, with a Discussion on the Relation between Regulatory Sandboxes and Open Innovation. J. Open Innov. Technol. Mark. Complex. 2022, 8, 43. [Google Scholar] [CrossRef]
- Hang, L.; Ullah, I.; Kim, D.H. Blockchain-Based Frameworks for Food Traceability: A Systematic Review. Foods 2023, 12, 3026. [Google Scholar] [CrossRef]
- Wang, F.Y.; Yuan, Y.; Wang, X.; Qin, R. Blockchain-Powered Parallel FinTech Regulatory Sandbox Based on the ACP Approach. IEEE Trans. Syst. Man Cybern. Syst. 2021, 52, 3547–3563. [Google Scholar] [CrossRef]
- Kamilaris, A.; Fonts, A.; Prenafeta-Boldù, F.X. Assessing blockchain and IoT technologies for agricultural food supply chains in Africa: A feasibility analysis. Heliyon 2024, 10, e34584. [Google Scholar] [CrossRef]
- Xu, L.; Wang, H.; Zhang, T. Blocket: A lightweight privacy-preserving framework for IoT data using Blockchain and off-chain storage. Future Gener. Comput. Syst. 2019, 96, 731–740. [Google Scholar]
- Zhang, Y.; Chen, L.; Liu, W. Layer-2 scaling solutions for Blockchain: A comprehensive survey. IEEE Access 2020, 8, 157899–157921. [Google Scholar]
- Wang, S.; Zhang, K.; Li, M. Scaling Blockchain for large-scale IoT applications: Current solutions and future directions. ACM Comput. Surv. 2021, 54, 1–35. [Google Scholar]
- Casino, F.; Dasaklis, T.K.; Patsakis, C. A systematic literature review of Blockchain-based applications: Current status, classification and open issues. Telecommun. Syst. 2019, 71, 227–261. [Google Scholar] [CrossRef]
- Kouhizadeh, M.; Saberi, S.; Sarkis, J. Blockchain technology and the sustainable supply chain: Theoretically exploring adoption barriers. Int. J. Prod. Econ. 2021, 231, 107831. [Google Scholar] [CrossRef]
- Chang, Y.; Iakovou, E.; Shi, W. Blockchain in global supply chains and cross border trade: A critical synthesis of the state-of-the-art, challenges and opportunities. Int. J. Prod. Res. 2020, 58, 2082–2099. [Google Scholar] [CrossRef]
- Wong You King, D.; Riza, M.A.; Kok Leong, L.; Mohamad, U.H.; Kadir, R.A.; Zulkifli, M.F.; Ahmad, M.N. Blockchain-Enhanced Traceability Framework for Smart Farming with Integrated Ontology-Based Data Standardization. Int. J. Adv. Sci. Eng. Inf. Technol. 2024, 14, 1464–1469. [Google Scholar] [CrossRef]
- Kanzouai, C.; Bouarourou, S.; Zannou, A.; Boulaalam, A.; Nfaoui, E.H. Enhancing IoT Scalability and Interoperability Through Ontology Alignment and FedProx. Future Internet 2025, 17, 140. [Google Scholar] [CrossRef]
- de Morais, A.M.; Lins, F.A.A.; Rosa, N.S. Survey on integration of consensus mechanisms in IoT-based blockchains. J. Univers. Comput. Sci. 2023, 29, 1139. [Google Scholar] [CrossRef]
- Upadhyay, V.; Vaish, A.; Kokila, J. The Need for Lightweight Consensus Algorithms in IoT Environment: A Review. In Proceedings of the 2024 Sixteenth International Conference on Contemporary Computing, Noida, India, 8–10 August 2024; pp. 366–376. [Google Scholar]
- Fotia, L.; Delicato, F.; Fortino, G. Trust in edge-based internet of things architectures: State of the art and research challenges. ACM Comput. Surv. 2023, 55, 1–34. [Google Scholar] [CrossRef]
- Mohamed, K.S. New Trends in Cryptography: Quantum, Blockchain, Lightweight, Chaotic, and Dna Cryptography. In New Frontiers in Cryptography: Quantum, Blockchain, Lightweight, Chaotic and DNA; Springer: Berlin/Heidelberg, Germany, 2020; pp. 65–87. [Google Scholar]
- Cocco, L.; Tonelli, R.; Marchesi, M. Blockchain and self sovereign identity to support quality in the food supply chain. Future Internet 2021, 13, 301. [Google Scholar] [CrossRef]
- Kaur, J.; Hazrati Fard, S.M.; Amiri-Zarandi, M.; Dara, R. Protecting farmers’ data privacy and confidentiality: Recommendations and considerations. Front. Sustain. Food Syst. 2022, 6, 903230. [Google Scholar] [CrossRef]
- Bhat, I.A.; Ansarullah, S.I.; Ahmad, F.; Amir, S.; Sidana, S.; Sinha, A.; Khalid, S.; Yazdani, G. Leveraging artificial intelligence in agribusiness: A structured review of strategic management practices and future prospects. Discov. Sustain. 2025, 6, 565. [Google Scholar] [CrossRef]
- Zaman, J.; Shoomal, A.; Jahanbakht, M.; Ozay, D. Driving Supply Chain Transformation with IoT and AI Integration: A Dual Approach Using Bibliometric Analysis and Topic Modeling. IoT. 2025, 6, 21. [Google Scholar] [CrossRef]
- Al Thani, M.; Hadid, M.; Padmanabhan, R.; Kerbache, L.; Elomri, A. Smart Food Supply Chain Management: A Bibliometric and Systematic Review. Food Humanit. 2025, 5, 100736. [Google Scholar] [CrossRef]
- Bada, A.O.; Damianou, A.; Angelopoulos, C.M.; Katos, V. Towards a Green Blockchain: A Review of Consensus Mechanisms and Their Energy Consumption. In Proceedings of the 2021 17th International Conference on Distributed Computing in Sensor Systems (DCOSS), Pafos, Cyprus, 14–16 July 2021; pp. 503–511. [Google Scholar]
Stage | Strengths | Weaknesses | Opportunities | Threats |
---|---|---|---|---|
Production |
|
|
|
|
Processing |
|
| ||
Distribution | ||||
Cross-Chain |
|
Reference | IoT | Blockchain | Time Horizon | Journal |
---|---|---|---|---|
[18] | X | X | Before 2022 | Applied Sciences (MDPI) |
[19] | X | X | 2010–2020 | Computers and Industrial Engineering (ELSEVIER) |
[20] | X | X | Before 2022 | Technovation (ELSEVIER) |
[21] | — | X | Before 2020 | IEEE Access |
Reference | Year | PT | DM | EI | Product |
---|---|---|---|---|---|
Farina et al. [78] | 2025 | X | X | X | — |
Adhiwibowo et al. [79] | 2025 | X | — | — | Beef |
Uyar et al. [87] | 2025 | — | — | X | Frozen food |
Guo et al. [80] | 2025 | X | — | X | — |
Lukacs et al. [81] | 2025 | X | X | X | Sweet Potato |
Wang et al. [82] | 2025 | X | — | — | — |
Biradar et al. [86] | 2025 | — | — | X | Dairy Products |
Villegas-Ch et al. [83] | 2025 | X | — | — | Mangoes |
Sheriff and Aravindhar [84] | 2025 | X | — | X | — |
Sathiya et al. [67] | 2024 | X | X | — | Seafood |
Yele and Litoriya [68] | 2024 | X | — | — | Restaurant Food |
Gondal et al. [69] | 2023 | X | — | X | Strawberry |
Raza et al. [70] | 2023 | X | — | X | Tomato |
Khanna et al. [71] | 2022 | X | — | X | Dairy Products |
Varavallo et al. [72] | 2022 | X | — | — | Cheese |
Islam et al. [90] | 2022 | X | — | — | Shrimp |
Majdalawieh et al. [77] | 2021 | X | — | X | Poultry |
Hong [74] | 2021 | X | — | — | Grains |
Iftekhar and Cui [75] | 2021 | X | — | X | Meat |
Khan et al. [73] | 2020 | X | X | X | Livestock |
Bumblauskas et al. [76] | 2020 | X | — | — | Eggs |
Reference | Year | Type | Platform | Consensus Alg |
---|---|---|---|---|
Adhiwibowo et al. [79] | 2025 | Private | / | Proof of Authority |
Uyar et al. [87] | 2025 | Private | Hyperledger Besu | / |
Guo et al. [80] | 2025 | Consortium | Hyperledger Fabric | PBFT |
Lukacs et al. [81] | 2025 | Consortium | Hyperledger Fabric | / |
Villegas-Ch et al. [83] | 2025 | Permissioned | / | Proof of Authority |
Sathiya et al. [67] | 2024 | Public | EOSIO | Delegated Proof of Stake |
Yele and Litoriya [68] | 2024 | Permissioned | Hyperledger Fabric | Crash Fault Tolerant |
Pesanhane et al. [96] | 2024 | Consortium | Hyperledger Fabric | / |
Gondal et al. [69] | 2023 | Public | Ethereum | / |
Addou et al. [93] | 2023 | Public | Ethereum | / |
Raza et al. [70] | 2023 | Consortium | Ethereum | / |
Varavallo et al. [72] | 2022 | Public | Algorand | Pure Proof of Stake |
Ramkumar et al. [89] | 2022 | Public | Ethereum | / |
Khanna et al. [71] | 2022 | Public | Ethereum | / |
Balamurugan et al. [102] | 2022 | Permissioned | Hyperledger Fabric | / |
Majdalawieh et al. [77] | 2021 | Public | Ethereum | Proof of Work |
Guo et al. [95] | 2021 | Consortium | Hyperledger Fabric | / |
Hong [74] | 2021 | Private | Hyperledger Fabric | / |
Iftekhar and Cui [75] | 2021 | Consortium | Hyperledger Fabric | / |
Khan et al. [73] | 2020 | Private | Hyperledger Fabric | / |
Bumblauskas et al. [76] | 2020 | Permissioned | Hyperledger Sawtooth | Proof of Elapsed Time |
Platform | Tool | Category | Purpose in FSCs |
---|---|---|---|
Ethereum | Solidity | Smart contract tools | Encode smart contracts for automating logistics, payments, and compliance rules |
Truffle | Development tools | Develop, test, and deploy smart contracts | |
Hardhat | |||
Remix IDE | |||
Chainlink | Data integration tools | Securely transmits off-chain IoT data (e.g., temperature, humidity) into smart contracts | |
Web3.js | Interface & integration tools | Connects frontend dashboards with Ethereum blockchain | |
Hyperledger Fabric | Chaincode | Smart contract tools | Encodes business logic for permissioned networks |
Fabric SDKs | Development tools | Facilitates integration with external applications and IoT systems | |
Hyperledger Caliper | Evaluates performance under realistic workloads | ||
Fabric CA | Security tools | Manages user roles, certificates, and access control | |
Hyperledger Sawtooth | Transaction Processors | Smart contract tools | Implements logic in custom or supported languages |
REST API | Interface & integration tools | Interfaces external systems and IoT gateways | |
Algorand | PyTeal | Smart contract tools | Python-based language for writing Algorand smart contracts |
Algorand Sandbox | Development tools | Simulate end-to-end workflows (e.g., farm-to-fork product tracking before deployment) | |
EOSIO | EOSIO CDT | Develop high-performance contracts for large-scale food distribution scenarios | |
Jungle Testnet | Evaluates performance and scalability under real-world scenarios | ||
EOSJS | Interface & integration tools | Enables integration with mobile and edge apps | |
Cross-Platform Tools | ZoKrates | Security tools | Implements zero-knowledge proofs for data privacy |
Node-RED | Data integration tools | Orchestrates sensor data without requiring deep coding | |
The Graph | Enables advanced querying and data retrieval from blockchain | ||
Additional Tools | IPFS | Stores off-chain data securely and efficiently | |
MQTT | Interface & integration tools | Facilitates lightweight communication for IoT devices | |
Grafana + Prometheus | Provides visualization, analytics, and monitoring of system metrics | ||
Docker | Development tools | Ensures reproducible development and deployment environments | |
Kubernetes | Manages and scales containerized blockchain–IoT systems |
Platform | Throughput (/sec) | Consensus Mechanism | Scalability | Energy Consumption | Security Level | Decentralization Level | Cost |
---|---|---|---|---|---|---|---|
Ethereum | 15–30 | PoS | Moderate | Moderate | High | Very High | High |
Fabric | ∼3000 | Pluggable (Raft, Kafka) | High | Very Low | High | Very Low | Low |
Sawtooth | ∼1000 | PoET | High | Very Low | Moderate-High | Low | Low |
EOSIO | 4000+ | DPoS | Very High | Low | Moderate-High | Moderate | Very Low |
Algorand | ∼6000 | PPoS | Very High | Extremely Low | Very High | High | Low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouchbout, Y.; Benrazek, A.-E.; Molnár, B.; Farou, B.; Bouafia, K.; Seridi, H. Internet of Things and Blockchain Adoption in Food Supply Chain: A Survey. IoT 2025, 6, 51. https://doi.org/10.3390/iot6030051
Bouchbout Y, Benrazek A-E, Molnár B, Farou B, Bouafia K, Seridi H. Internet of Things and Blockchain Adoption in Food Supply Chain: A Survey. IoT. 2025; 6(3):51. https://doi.org/10.3390/iot6030051
Chicago/Turabian StyleBouchbout, Yehya, Ala-Eddine Benrazek, Bálint Molnár, Brahim Farou, Khawla Bouafia, and Hamid Seridi. 2025. "Internet of Things and Blockchain Adoption in Food Supply Chain: A Survey" IoT 6, no. 3: 51. https://doi.org/10.3390/iot6030051
APA StyleBouchbout, Y., Benrazek, A.-E., Molnár, B., Farou, B., Bouafia, K., & Seridi, H. (2025). Internet of Things and Blockchain Adoption in Food Supply Chain: A Survey. IoT, 6(3), 51. https://doi.org/10.3390/iot6030051