An Extension of Input Setup Assistance Service Using Generative AI to Unlearned Sensors for the SEMAR IoT Application Server Platform
Abstract
1. Introduction
2. Related Works
2.1. PDF File Extraction Methods
2.2. Sensor PDF File Extraction Methods
2.3. Information Embeddings for Generative AI
3. Concept and Software in the Proposal
3.1. Chunking Method for PDF Extraction
3.2. Embedding Information for Generative AI
3.2.1. Storing Embeddings in Vector Database
3.2.2. Retrieving Embeddings for RAG
3.3. RAG Evaluation with RAGAS Framework
- (1)
- Faithfulness (F): This shows how accurate the response is compared to the retrieved context. It ranges from 0 to 1, with a higher score meaning better accuracy and consistency. A response is called faithful when all of its claims are supported by the retrieved context. It will find all claims in the response, check if each is supported by the context, and then compute faithfulness like this:
- (2)
- Answer relevancy (AR) judges how well the answer aligns with the user query. This is done by generating several auxiliary questions from the answer using LLM prompting, embedding both the original query and the generated questions, and then computing their similarity. The AR score is obtained as
- (3)
- Context precision (CP) measures how many chunks in the retrieved context are actually relevant, following a ranking-based evaluation similar to the commonly used Pass@k metric in code generation [47]. In retrieval, follows the same principle by assessing how much of the top-ranked context is truly relevant rather than relying only on token-level matches. It calculates the precision at each rank k, then averages across ranks using
- (4)
- Context recall (CR) measures how complete the retrieval is. This will break the reference answer into claims and check how many of those are found in the retrieved context:
4. Review of SEMAR IoT Platform and Setup Service Assistant
4.1. SEMAR IoT Platform
4.2. Sensor Input Setup Assistant Service in SEMAR
5. Implementation of Proposed Extension
5.1. Extension Overview
5.2. PDF Extraction Function
5.3. General Chat and Guidance Function
5.4. Generative AI Model
5.5. User Interface (UI)
6. Evaluation
6.1. Unlearned Sensor Data
6.1.1. Smart Light Sensor—OULTX125R
Listing 1. OULTX125R response sample. |
6.1.2. Smart Environmental Sensor—OUTTX110
Listing 2. OUTTX110 response sample. |
6.1.3. Smart PID Control—OUPWM48
Listing 3. OUPWM48 Sample topic and results. |
6.2. Evaluation for PDF Extraction Result
6.2.1. Evaluation Method
6.2.2. Evaluation Results—OULTX125
6.2.3. Evaluation Results—OUTTX110
6.2.4. Evaluation Results—OUPWM48
6.3. Evaluation for the General Chat Function
6.3.1. Evaluation Methods
6.3.2. Evaluation Results
6.4. Evaluation of Guidance Function
6.4.1. Evaluation Method
6.4.2. Smart Light System Project with OULTX125R
6.4.3. Smart Room Temperature Project System with OUTTX110
6.4.4. Smart Heater System Project with OUPWM48
6.5. Evaluation Through Course Assignment
6.5.1. Experiment Composition
6.5.2. System Usability Questionnaire in Post-Test
6.5.3. Local Language Translation
6.5.4. Pre-Test Result
6.5.5. Main Test Result
6.5.6. Post-Test Result
6.6. Discussion
6.6.1. Generative AI Model for Datasheet Extraction
6.6.2. Efficient RAG for Unlearned Sensor
6.6.3. Security Considerations and Data Poisoning Risks
6.6.4. Fairness and Accessibility
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Generative AI | EL—Electrical Results |
---|---|
ChatGPT4o | - Power Supply: - Operating Voltage: 3.3V DC or 5V DC. - Power Consumption: <500 mW. - Interface Options: - GPIO13: For integration with microcontrollers (e.g., Raspberry Pi, Arduino). - UART Serial Interface: USB Type-C connection for debugging and monitoring at 115,200 baud rate. |
Claude 3.5 Haiku | - Power Supply: 3.3 V or 5 V DC - Power Consumption: <500 mW - Interfaces: - GPIO Digital Output - UART Serial (115,200 baud) |
Gemini 2.0 Flash | - Power Supply: - Operating Voltage: 3.3V DC or 5V DC - Power Consumption: <500 mW - Alternative Power Method: 5V DC via VIN pin (500 mA minimum) - Interface: - External Controller Integration: GPIO13 digital output (e.g., Raspberry Pi, Arduino) - Debugging and Monitoring: UART Serial (115,200 baud) |
Llama 3.370b | - Power Supply: - Operating Voltage: 3.3 V DC or 5 V DC - Power Consumption: Less than 500 mW - Interface Options: - External Controller Integration: Seamless integration via GPIO13 digital output - Debugging and Monitoring: UART Serial interface (baud rate: 115,200) |
Mistral Small 3.1 24b | - Power Supply: - Operating Voltage: 3.3 V DC or 5 V DC - Primary Power Method: 5 V DC via USB Type-C port, minimum current of 500 mA. - Interface: - Integration with microcontrollers via GPIO13 digital output. - UART Serial interface accessible over USB Type-C, baud rate 115,200. |
Generative AI | PF—Sensor Performance Specification |
---|---|
ChatGPT4o | Performance: Comfort Index: Formula: 100 - (|temp - 22| * 2 + |humidity - 50| * 1.5 + |pressure - 1013| * 0.05) |
Claude 3.5 Haiku | No Comfort Index Formula |
Gemini 2.0 Flash | No Comfort Index Formula |
Llama 3.370b | Comfor Index Formula provided |
Mistral Small 3.1 24b | Non Existing Performance Section |
References
- Kumar, S.; Tiwari, P.; Zymbler, M. Internet of Things is a revolutionary approach for future technology enhancement: A review. J. Big Data 2019, 6, 111. [Google Scholar] [CrossRef]
- Desnanjaya, I.G.M.N.; Nugraha, I.M.A. Real-time monitoring system for blood pressure monitoring based on internet of things. Indones. J. Electr. Eng. Comput. Sci. 2024, 35, 62–69. [Google Scholar] [CrossRef]
- Ray, P.P. Internet of Things (IoT), Applications and Challenges: A Comprehensive Review. Wirel. Pers. Commun. 2020, 114, 1687–1721. [Google Scholar] [CrossRef]
- Panduman, Y.Y.F.; Funabiki, N.; Puspitaningayu, P.; Kuribayashi, M.; Sukaridhoto, S.; Kao, W.C. Design and Implementation of SEMAR IoT Server Platform with Applications. Sensors 2022, 22, 6436. [Google Scholar] [CrossRef]
- Kotama, I.N.D.; Funabiki, N.; Panduman, Y.Y.F.; Brata, K.C.; Pradhana, A.A.S.; Noprianto.; Desnanjaya, I.G.M.N. Implementation of Sensor Input Setup Assistance Service Using Generative AI for SEMAR IoT Application Server Platform. Information 2025, 16, 108. [Google Scholar] [CrossRef]
- Lee, S.K.; Kim, J.H.; Kwon, Y.B. Unsupervised Extraction of Body-Text from Clinical PDF Documents. Stud. Health Technol. Informatics 2024, 310, 382–389. [Google Scholar] [CrossRef]
- Gérardin, C.; Wajsbürt, P.; Dura, B.; Calliger, A.; Moucher, A.; Tannier, X.; Bey, R. Detecting automatically the layout of clinical documents to enhance the performances of downstream natural language processing. arXiv 2023, arXiv:2305.13817. [Google Scholar] [CrossRef]
- Meuschke, N.; Jagdale, A.; Spinde, T.; Mitrović, J.; Gipp, B. A Benchmark of PDF Information Extraction Tools Using a Multi-task and Multi-domain Evaluation Framework for Academic Documents. In International Conference on Information; Springer Nature: Cham, Switzerland, 2023; Volume 13972, pp. 421–433. [Google Scholar] [CrossRef]
- Hansen, M.; Pomp, A.; Erki, K.; Meisen, T. Data-Driven Recognition and Extraction of PDF Document Elements. Technologies 2019, 7, 65. [Google Scholar] [CrossRef]
- Callaway, E. Has your paper been used to train an AI model? Almost certainly. Nature 2024, 620, 707–708. [Google Scholar] [CrossRef]
- Huang, Y.; Huang, J.X. Exploring ChatGPT for next-generation information retrieval: Opportunities and challenges. Web Intell. 2024, 22, 31–44. [Google Scholar] [CrossRef]
- Min, L.; Fan, Z.; Dou, F.; Sun, J.; Luo, C.; Lv, Q. Adaption BERT for Medical Information Processing with ChatGPT and Contrastive Learning. Electronics 2024, 13, 2431. [Google Scholar] [CrossRef]
- OpenAI. Introducing 4o Image Generation. 2025. Available online: https://openai.com/index/gpt-4o-and-more-tools-to-chatgpt-free/ (accessed on 15 June 2025).
- Anthropic. 3.5 Models and Computer Use. 2024. Available online: https://www.anthropic.com/news/3-5-models-and-computer-use (accessed on 15 June 2025).
- Google DeepMind. Introducing Gemini 2.0: Our New AI Model for the Agentic Era. 2024. Available online: https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/ (accessed on 15 June 2025).
- Meta Llama. Llama-3.3-70B-Instruct. 2024. Available online: https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct (accessed on 15 June 2025).
- Zhu, M.; Cole, J.M. PDFDataExtractor: A Tool for Reading Scientific Text and Interpreting Metadata from the Typeset Literature in the Portable Document Format. J. Chem. Inf. Model. 2022, 62, 1633–1643. [Google Scholar] [CrossRef]
- Shen, Z.; Lo, K.; Wang, L.L.; Kuehl, B.; Weld, D.S.; Downey, D. VILA: Improving Structured Content Extraction from Scientific PDFs Using Visual Layout Groups. Trans. Assoc. Comput. Linguist. 2022, 10, 376–392. [Google Scholar] [CrossRef]
- Martsinkevich, V.; Berezhkov, A.; Tereshchenko, V.; Gorlushkina, N.; Tretjakova, V. Algorithms for extracting lines, paragraphs with their properties in PDF documents. E3S Web Conf. 2023, 389, 08024. [Google Scholar] [CrossRef]
- Soliman, A. An unsupervised linguistic-based model for automatic glossary term extraction from a single PDF textbook. Educ. Inf. Technol. 2023, 28, 16089–16125. [Google Scholar] [CrossRef]
- Paudel, P.; Khadka, S.; Ranju, G.C.; Shah, R. Optimizing Nepali PDF Extraction: A Comparative Study of Parser and OCR Technologies. arXiv 2024, arXiv:2407.04577. [Google Scholar] [CrossRef]
- Hsiao, L.; Wu, S.; Chiang, N.; Ré, C.; Levis, P. Automating the Generation of Hardware Component Knowledge Bases. In Proceedings of the 20th ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded Systems, New York, NY, USA, 23 June 2019; pp. 163–176. [Google Scholar] [CrossRef]
- Hauser, N.; Pennekamp, J. Automatically Extracting Hardware Descriptions from PDF Technical Documentation. J. Syst. Res. 2023, 3. [Google Scholar] [CrossRef]
- Opasjumruskit, K.; Schindler, S.; Peters, D. Automatic Data Sheet Information Extraction for Supporting Model-based Systems Engineering. In Proceedings of the Cooperative Design, Visualization, and Engineering: 18th International Conference, Bangkok, Thailand, 24–27 October 2021; Volume 28, pp. 97–102. [Google Scholar]
- Tian, F.; Sui, Q.; Cobaleda, D.B.; Martinez, W. Automated Extraction of Data From MOSFET Datasheets for Power Converter Design Automation. IEEE J. Emerg. Sel. Top. Power Electron. 2024, 12, 5648–5660. [Google Scholar] [CrossRef]
- Bjöörn, A. Employing a Transformer Language Model for Information Retrieval and Document Classification Using OpenAl’s generative pre-trained transformer, GPT-2. Master’s Thesis, KTH Royal Institute of Technology, School of Electrical Engineering and Computer Science, Stockholm, Sweden, 2020. [Google Scholar]
- Zin, M.M.; Nguyen, H.T.; Satoh, K.; Sugawara, S.; Nishino, F. Information Extraction from Lengthy Legal Contracts: Leveraging Query-Based Summarization and GPT-3.5. Leg. Knowl. Inf. Syst. 2023, 379, 177–186. [Google Scholar] [CrossRef]
- Thapa, M.; Kapoor, P.; Kaushal, S.; Sharma, I. A Review of Contextualized Word Embeddings and Pre-Trained Language Models, with a Focus on GPT and BERT. In Proceedings of the 1st International Conference on Cognitive & Cloud Computing (IC3Com 2024), SCITEPRESS, Chi Minh City, Vietnam, 26–28 November 2025; pp. 205–214. [Google Scholar] [CrossRef]
- Wu, L.I.; Su, Y.; Li, G. Zero-Shot Construction of Chinese Medical Knowledge Graph with GPT-3.5-turbo and GPT-4. ACM Trans. Manag. Inf. Syst. 2025, 16, 1–17. [Google Scholar] [CrossRef]
- Chen, L.; Lin, P.H.; Vanderbruggen, T.; Liao, C.; Emani, M.; de Supinski, B. LM4HPC: Towards Effective Language Model Application in High-Performance Computing. In OpenMP: Advanced Task-Based, Device and Compiler Programming; Springer Nature: Cham, Switzerland, 2023; pp. 18–33. [Google Scholar] [CrossRef]
- Jeong, C. Generative AI service implementation using LLM application architecture: Based on RAG model and LangChain framework. J. Intell. Inf. Syst. 2023, 29, 129–164. [Google Scholar] [CrossRef]
- Pokhrel, S.; Ganesan, S.; Akther, T.; Karunarathne, L. Building Customized Chatbots for Document Summarization and Question Answering using Large Language Models using a Framework with OpenAI, Lang chain, and Streamlit. J. Inf. Technol. Digit. World 2024, 6, 70–86. [Google Scholar] [CrossRef]
- Liu, P.; Xiong, Y. Enhanced Chunk Screening in LangChain Framework by Supervised Learning Augmentation Based on Deep Learning. In Proceedings of the 4th International Conference on Artificial Intelligence and Computer Engineering, ACM, ICAICE 2023, Dalian, China, 17–19 November 2023; pp. 696–702. [Google Scholar] [CrossRef]
- Prem Jacob, T.; Bizotto, B.L.S.; Sathiyanarayanan, M. Constructing the ChatGPT for PDF Files with Langchain—AI. In Proceedings of the 2024 International Conference on Inventive Computation Technologies (ICICT), Kathmandu, Nepal, 24–26 April 2024; pp. 835–839. [Google Scholar] [CrossRef]
- Bhatia, S. Next-Generation Healthcare Information Systems: Integrating Chain-of-Thought Reasoning and Adaptive Retrieval in Large-Scale Document Analysis. SSRN Electron. J. 2025. [Google Scholar] [CrossRef]
- gkamradt. ChunkViz: Visualize Different Text Splitting Methods. GitHub Repository. 2025. Available online: https://github.com/gkamradt/ChunkViz (accessed on 27 June 2025).
- Yepes, A.J.; You, Y.; Milczek, J.; Laverde, S.; Li, R. Financial Report Chunking for Effective Retrieval Augmented Generation. arXiv 2024, arXiv:2402.05131. [Google Scholar] [CrossRef]
- LangChain. RecursiveCharacterTextSplitter. 2024. Available online: https://api.python.langchain.com/en/latest/character/langchain_text_splitters.character.RecursiveCharacterTextSplitter.html (accessed on 24 June 2025).
- Chroma Research. Evaluating Chunking. 2025. Available online: https://research.trychroma.com/evaluating-chunking (accessed on 17 June 2025).
- Vizniuk, A.; Diachenko, G.; Laktionov, I.; Siwocha, A.; Xiao, M.; Smoląg, J. A comprehensive survey of retrieval-augmented large language models for decision making in agriculture: Unsolved problems and research opportunities. J. Artif. Intell. Soft Comput. Res. 2024, 15, 115–146. [Google Scholar] [CrossRef]
- Ning, L.; Liu, L.; Wu, J.; Wu, N.; Berlowitz, D.; Prakash, S.; Green, B.; O’Banion, S.; Xie, J. User-LLM: Efficient LLM Contextualization with User Embeddings. In Proceedings of the Companion Proceedings of the ACM on Web Conference 2025, New York, NY, USA, 28 April–2 May 2025; pp. 1219–1223. [Google Scholar]
- Han, Y.; Liu, C.; Wang, P. A Comprehensive Survey on Vector Database: Storage and Retrieval Technique, Challenge. arXiv 2023, arXiv:2310.11703. [Google Scholar] [CrossRef]
- Mavroudis, V. LangChain v0.3. Preprints 2024. [Google Scholar] [CrossRef]
- Qdrant. Local Quickstart—Qdrant —Qdrant.tech. 2025. Available online: https://qdrant.tech/documentation/quickstart/ (accessed on 27 June 2025).
- Sidorov, G.; Gelbukh, A.; Gómez-Adorno, H.; Pinto, D. Soft similarity and soft cosine measure: Similarity of features in vector space model. Comput. Sist. 2014, 18, 491–504. [Google Scholar] [CrossRef]
- Es, S.; James, J.; Espinosa-Anke, L.; Schockaert, S. RAGAS: Automated Evaluation of Retrieval Augmented Generation. arXiv 2023, arXiv:2309.15217. [Google Scholar] [CrossRef]
- Chen, M.; Tworek, J.; Jun, H.; Yuan, Q.; de Oliveira Pinto, H.P.; Kaplan, J.; Edwards, H.; Burda, Y.; Joseph, N.; Brockman, G.; et al. Evaluating Large Language Models Trained on Code. arXiv 2021, arXiv:2107.03374. [Google Scholar] [CrossRef]
- Fajrianti, E.; Panduman, Y.; Funabiki, N.; Haz, A.; Brata, K.; Sukaridhoto, S. A user location reset method through object recognition in indoor navigation system using Unity and a smartphone (INSUS). Network 2024, 4, 295–312. [Google Scholar] [CrossRef]
- Puspitaningayu, P.; Funabiki, N.; Huo, Y.; Hamazaki, K.; Kuribayashi, M.; Kao, W.C. A Fingerprint-Based Indoor Localization System Using IEEE 802.15.4 for Staying Room Detection. Int. J. Mob. Comput. Multimed. Commun. 2022, 13, 1–21. [Google Scholar] [CrossRef]
- Brata, K.C.; Funabiki, N.; Riyantoko, P.A.; Panduman, Y.Y.F.; Mentari, M. Performance Investigations of VSLAM and Google Street View Integration in Outdoor Location-Based Augmented Reality under Various Lighting Conditions. Electronics 2024, 13, 2930. [Google Scholar] [CrossRef]
- Fan, W.; Ding, Y.; Ning, L.; Wang, S.; Li, H.; Yin, D.; Chua, T.S.; Li, Q. A Survey on RAG Meeting LLMs: Towards Retrieval-Augmented Large Language Models. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, ACM, Barcelona, Spain, 25–29 August 2024; pp. 6491–6501. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, Y.; Shi, L.; Wang, Z.J.; Chen, X.; Zhao, Y.; Ren, F. MDEval: Evaluating and enhancing markdown awareness in large language models. In Proceedings of the ACM on Web Conference 2025, New York, NY, USA, 28 April–2 May 2025; pp. 2981–2991. [Google Scholar]
- dkotama. Unlearned-Sensor-Setup-Assistant-Repository. 2025. Available online: https://github.com/dkotama/unlearned-sensor-setup-assistant-repository (accessed on 15 June 2025).
- Meng, R.; Liu, Y.; Joty, S.R.; Xiong, C.; Zhou, Y.; Yavuz, S. SFR-Embedding-Mistral: Enhance Text Retrieval with Transfer Learning. Salesforce AI Res. Blog 2024, 3, 6. [Google Scholar]
- Muennighoff, N.; Tazi, N.; Magne, L.; Reimers, N. MTEB: Massive Text Embedding Benchmark. In Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics, Dubrovnik, Croatia, 2–6 May 2023; pp. 2014–2037. [Google Scholar] [CrossRef]
- Lewis, J.R.; Utesch, B.S.; Maher, D.E. UMUX-LITE: When there’s no time for the SUS. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Paris, France, 27 September–2 May 2013; pp. 2099–2102. [Google Scholar]
- Batubulan, K.S.; Funabiki, N.; Brata, K.C.; Kotama, I.N.D.; Kyaw, H.H.S.; Hidayati, S.C. A Map Information Collection Tool for a Pedestrian Navigation System Using Smartphone. Information 2025, 16, 588. [Google Scholar] [CrossRef]
- Jiang, Y.; Shen, J.; Liu, Z.; Tan, C.W.; Lam, K.Y. Toward Efficient and Certified Recovery From Poisoning Attacks in Federated Learning. Trans. Info. For. Sec. 2025, 20, 2632–2647. [Google Scholar] [CrossRef]
Category | Subcategories |
---|---|
Performance | Speed, accuracy, precision, response time. |
Electrical | Power supply, control voltage, output type, interface. |
Mechanical | Dimensions, weight, mounting options, materials. |
Environmental | Operating temperature, storage temperature, environmental ratings, vibration resistance. |
Raw Text | Generated Markdown | Chunking Result |
---|---|---|
OULTX125R Datasheet Connection Point Function Description 3V3 Power Supply: Provides 3.3V to sensor modules and LEDs, regulated from 5V USB input. | ##General Description: OULTX125R sensor module overview. ##Electrical: - Power Supply: 3V3, provides 3.3V to sensor modules and LEDs, regulated from 5V USB input. | ##General Description: OULTX125R sensor module overview. \n ##Electrical:—Power Supply: 3V3, provides 3.3V to sensor modules and LEDs, regulated from 5V USB input. \n |
Sample Input | Function | RAG top_k Result (k=3) |
---|---|---|
What is the voltage for sensor OULTX125R? | General Chat | 1. Electrical: Voltage = 3.3V (Score: 0.85). General Description: OULTX125R is a light sensor (Score: 0.45) 3. Manufacturer: Okayama University Inc. (Score: 0.32) |
I can’t connect the GPIO3 for the OULTX125R output. | Guidance | 1. Electrical: Output type = I2C, connect to GPIO3 via I2C pins (Score: 0.90) 2. Mechanical: Pinout diagram for I2C (Score: 0.65) 3. Guidance: Step-by-step I2C setup for Raspberry Pi (Score: 0.55) |
Model Name | Knowledge Date | Context Length |
---|---|---|
Anthropic—Claude 3.5 Haiku | Up to October 2024 | 200 K tokens |
Google—Gemini 2.0 Flash | Up to December 2024 | 1 M tokens |
Meta—LLaMA 3.3 70B | Up to December 2023 | 128 K tokens |
Mistral Small 3.1 24B | Up to November 2024 | 128 K tokens |
OpenAI—GPT-4o | Up to October 2023 | 128 K tokens |
Sensor Name | Sensor Type | PDF Layout | Connectivity |
---|---|---|---|
OULTX125R | Ambient and Directional Light | Single-column | Serial Cable |
OUTTX110 | Smart Environmental | Two-column | HTTP via WiFi |
OUPWM48 | PID Water Heater | Multi-column | MQTT |
Scoring | Description |
---|---|
Good | The information was extracted correctly, matching the expected markdown format and correct sensor values. |
Mid | The information extracted, but incomplete, with minor errors or formatting issues. |
Poor | The information not provided incorrect details. |
Generative AI Model | PF | EL | MC | EV | Overall |
---|---|---|---|---|---|
Anthropic Claude 3.5 | Good | Good | Good | Good | Good |
Google Gemini 2.0 | Good | Good | Good | Good | Good |
Meta LLaMA 3.3 | Good | Good | Good | Good | Good |
Mistral Small 3.1 | Good | Good | Good | Good | Good |
ChatGPT-4o | Good | Good | Good | Good | Good |
Generative AI Model | PF | EL | MC | EV | Overall |
---|---|---|---|---|---|
Anthropic Claude 3.5 | Poor | Poor | Poor | Poor | Poor |
Google Gemini 2.0 | Poor | Good | Good | Mid | Mid |
Meta LLaMA 3.3 | Good | Good | Good | Mid | Good |
Mistral Small 3.1 | Poor | Poor | Good | Poor | Mid |
ChatGPT-4o | Mid | Good | Good | Mid | Good |
Generative AI Model | PF | EL | MC | EV | Overall |
---|---|---|---|---|---|
Anthropic Claude 3.5 | Mid | Mid | Mid | Mid | Mid |
Google Gemini 2.0 | Mid | Mid | Mid | Mid | Mid |
Meta LLaMA 3.3 | Poor | Poor | Mid | Poor | Poor |
Mistral Small 3.1 | Mid | Mid | Mid | Mid | Mid |
ChatGPT-4o | Mid | Good | Mid | Mid | Mid |
Item | Content |
---|---|
User Input | What is the primary function of the OU-PWM48 Smart PID Control Sensor? |
System Response | The OU-PWM48 is an advanced, compact device designed for precise monitoring and PID control of water heater systems. It acts as a standalone controller, calculating control actions and outputting PWM signals to the heating element. |
Reference | Standalone PID controller for water heater systems with PWM output. |
Retrieved Contexts | (1) The OU-PWM48 Smart Sensor is an advanced, compact device designed for precise monitoring and Proportional-Integral-Derivative (PID) control of water heater systems. (2) It now acts as a standalone PID controller, calculating the necessary control action internally and delivering a real-time Pulse Width Modulation (PWM) output directly to the water heater’s heating element. |
Model | F | AR | CP | CR | Overall |
---|---|---|---|---|---|
Claude 3.5 Haiku | 0.684 | 0.956 | 0.400 | 0.956 | 0.749 |
Gemini 2.0 Flash | 0.760 | 0.931 | 0.350 | 0.956 | 0.749 |
Llama 3.3 70B Instruct | 0.725 | 0.939 | 0.361 | 0.967 | 0.748 |
Mistral Small 24B | 0.592 | 0.984 | 0.367 | 0.950 | 0.723 |
GPT-4o | 0.638 | 0.970 | 0.339 | 0.956 | 0.726 |
Model | F | AR | CP | CR | Overall |
---|---|---|---|---|---|
Claude 3.5 Haiku | 0.541 | 0.976 | 0.667 | 0.789 | 0.743 |
Gemini 2.0 Flash | 0.674 | 0.909 | 0.667 | 0.789 | 0.760 |
Llama 3.3 70B Instruct | 0.491 | 0.979 | 0.700 | 0.767 | 0.734 |
Mistral Small 24B | 0.447 | 0.978 | 0.667 | 0.789 | 0.720 |
GPT-4o | 0.509 | 0.985 | 0.667 | 0.722 | 0.721 |
Model | F | AR | CP | CR | Overall |
---|---|---|---|---|---|
Claude 3.5 Haiku | 0.640 | 0.699 | 0.556 | 0.600 | 0.623 |
Gemini 2.0 Flash | 0.714 | 0.688 | 0.622 | 0.600 | 0.656 |
Llama 3.3 70B Instruct | 0.407 | 0.987 | 0.533 | 0.533 | 0.615 |
Mistral Small 24B | 0.393 | 0.917 | 0.533 | 0.567 | 0.602 |
GPT-4o | 0.416 | 0.978 | 0.533 | 0.567 | 0.623 |
Generative AI Model | RG(%) | GP(%) |
---|---|---|
Anthropic—Claude 3.5 Haiku | 88 | 83 |
Google—Gemini 2.0 Flash | 90 | 87 |
Meta—LLaMA 3.3 70B | 83 | 86 |
Mistral Small 3.1 24B | 87 | 80 |
OpenAI—GPT-4o | 95 | 90 |
Generative AI Model | RG(%) | GP(%) |
---|---|---|
Anthropic—Claude 3.5 Haiku | 90 | 85 |
Google—Gemini 2.0 Flash | 90 | 86 |
Meta—LLaMA 3.3 70B | 80 | 87 |
Mistral Small 3.1 24B | 80 | 86 |
OpenAI—GPT-4o | 92 | 90 |
Generative AI Model | RG(%) | GP(%) |
---|---|---|
Anthropic—Claude 3.5 Haiku | 70 | 85 |
Google—Gemini 2.0 Flash | 80 | 86 |
Meta—LLaMA 3.3 70B | 70 | 87 |
Mistral Small 3.1 24B | 80 | 86 |
OpenAI—GPT-4o | 91 | 89 |
Question: What is the primary function of the OULTX125R sensor in IoT applications? |
---|
A. Measure temperature and humidity |
B. Measure ambient and directional light levels |
C. Calculate electrical energy consumption |
D. Measure vibration and noise |
Dimension | Question |
---|---|
Ease of Use | This system is easy to use. |
Usefulness | The functions of this system meet my needs. |
Learning Curve | I quickly learned how to use this system. |
Efficiency | This system allows me to complete tasks efficiently. |
Error Handling | If errors occur, this system makes it easy to fix them. |
IoT Knowledge Level | Frequency (n) | Percentage (%) |
---|---|---|
Heard of it but do not understand | 31 | 64.6 |
Somewhat familiar | 13 | 27.1 |
Very familiar/experienced | 2 | 4.2 |
Never heard of it | 2 | 4.2 |
Metric | Manual (Pre) | Assisted (Post) | Difference |
---|---|---|---|
Mean | 85.42 | 90.42 | +5.00 |
Standard Deviation | 26.33 | 13.68 | 25.6 |
Minimum | 0 | 60 | −40 |
Maximum | 100 | 100 | +100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotama, I.N.D.; Funabiki, N.; Panduman, Y.Y.F.; Brata, K.C.; Pradhana, A.A.S.; Noprianto. An Extension of Input Setup Assistance Service Using Generative AI to Unlearned Sensors for the SEMAR IoT Application Server Platform. IoT 2025, 6, 52. https://doi.org/10.3390/iot6030052
Kotama IND, Funabiki N, Panduman YYF, Brata KC, Pradhana AAS, Noprianto. An Extension of Input Setup Assistance Service Using Generative AI to Unlearned Sensors for the SEMAR IoT Application Server Platform. IoT. 2025; 6(3):52. https://doi.org/10.3390/iot6030052
Chicago/Turabian StyleKotama, I Nyoman Darma, Nobuo Funabiki, Yohanes Yohanie Fridelin Panduman, Komang Candra Brata, Anak Agung Surya Pradhana, and Noprianto. 2025. "An Extension of Input Setup Assistance Service Using Generative AI to Unlearned Sensors for the SEMAR IoT Application Server Platform" IoT 6, no. 3: 52. https://doi.org/10.3390/iot6030052
APA StyleKotama, I. N. D., Funabiki, N., Panduman, Y. Y. F., Brata, K. C., Pradhana, A. A. S., & Noprianto. (2025). An Extension of Input Setup Assistance Service Using Generative AI to Unlearned Sensors for the SEMAR IoT Application Server Platform. IoT, 6(3), 52. https://doi.org/10.3390/iot6030052