Abstract
The environmental pollution caused by emerging organic contaminants—such as ibuprofen—is becoming increasingly a cause for alarm. New treatments for their removal are currently being developed, but the nature and toxicity of the transformation products (TPs) formed during the processes cannot be readily assessed experimentally. Atomistic simulations are thus of high interest in predicting the chemical structure of these TPs. In this paper, we demonstrate that the transformation of a contaminant molecule under irradiation can be studied using the threshold algorithm combined with the density functional-based tight-binding (DFTB) method. The fragmentation pathways of an ibuprofen molecule under irradiation are studied as a function of the energy added to the system. Specifically, the chemical structures of ibuprofen’s TPs, the paths between them, their stabilities, probabilities of occurrence, and the related mass spectra were obtained as a function of the amount of energy absorbed. We also simulated the evolution of the ibuprofen molecule as a function of the number of pulses, i.e., for a sequence of energy depositions. A dominant fragmentation scheme is identified, where first the OH group is released, followed by the loss of the CO group. The photon energy and the number of pulses are found to be key parameters for the selection of this degradation route among all identified fragmentation pathways.