Ion Beam Analysis and 14C Accelerator Mass Spectroscopy to Identify Ancient and Recent Art Forgeries §
Abstract
:1. Introduction
2. Materials and Methods
2.1. Counterfeit Coin Characterization by Ion Beam Analysis
2.2. Painting Forgery Dating by 14C AMS
3. Results
3.1. Counterfeit Coins
3.2. Art Forgery Dating
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ragai, J. The scientific detection of forgery in paintings. Proc. Am. Philos. Soc. 2013, 157, 164–175. Available online: https://www.jstor.org/stable/24640239 (accessed on 24 February 2022).
- Chaplin, T.D.; Clark, R.J.H. Identification by Raman microscopy of anachronistic pigments on a purported Chagall nude: Conservation consequences. Appl. Phys. A 2016, 122, 144. [Google Scholar] [CrossRef] [Green Version]
- Galli, A.; Bonizzoni, L. True versus forged in the cultural heritage materials: The role of PXRF analysis. X-Ray Spectrom. 2014, 43, 22–28. [Google Scholar] [CrossRef]
- Polak, A.; Kelman, T.; Murray, P.; Marshall, S.; Stothard, D.J.M.; Eastaugh, N.; Eastaugh, F. Hyperspectral imaging combined with data classification techniques as an aid for artwork authentication. J. Cult. Herit. 2017, 26, 1–11. [Google Scholar] [CrossRef]
- Rogge, C.E.; Dijkema, D.; Rush, K. A discriminating yellow: The detection of an anachronistic organic pigment in two backdated metaphysical paintings by Giorgio de Chirico. Studi Online 2020, 13, 59–68. Available online: https://www.archivioartemetafisica.org/studi-online-anno-vii-n-13-1-gennaio-30-giugno-2020/ (accessed on 24 February 2022).
- Biron, I.; Pierrat-Bonnefois, G. La tête égyptienne en verre bleu du musée du Louvre. L’actualité Chim. 2007, 312–313, 47–52. Available online: https://new.societechimiquedefrance.fr/numero/n312-313-octobre-novembre-2007/ (accessed on 24 February 2022).
- Calligaro, T.; Coquinot, Y.; Reiche, I.; Castaing, J.; Salomon, J.; Ferrand, G.; Le Fur, Y. Dating study of two rock crystal carvings by surface microtopography and by ion beam analyses of hydrogen. Appl. Phys. A 2009, 94, 871–878. [Google Scholar] [CrossRef]
- Fedi, M.; Carraresi, L.; Grassi, N.; Migliori, A.; Taccetti, F.; Terrasi, F.; Mandò, P. The Artemidorus papyrus: Solving an ancient puzzle with radiocarbon and ion beam analysis measurements. Radiocarbon 2010, 52, 356–363. [Google Scholar] [CrossRef] [Green Version]
- Caforio, L.; Fedi, M.E.; Mandò, P.A.; Minarelli, F.; Peccenini, E.; Pellicori, V.; Petrucci, F.C.; Schwartzbaum, P.; Taccetti, F. Discovering forgeries of modern art by the 14C Bomb Peak. Eur. Phys. J. Plus 2014, 129, 1–6. [Google Scholar] [CrossRef]
- Hendriks, L.; Hajdas, I.; Ferreira, E.S.B.; Scherrer, N.C.; Zumbühl, S.; Smith, G.D.; Welte, C.; Wacker, L.; Synal, H.-A.; Günther, D. Uncovering modern paint forgeries by radiocarbon dating. Proc. Natl. Acad. Sci. USA 2019, 116, 13210–13214. [Google Scholar] [CrossRef] [Green Version]
- Reiche, I.; Beck, L.; Caffy, I. New results with regard to the Flora bust controversy: Radiocarbon dating suggests nineteenth century origin. Sci. Rep. 2021, 11, 8249. [Google Scholar] [CrossRef]
- Beck, L.; Caffy, I.; Mussard, S.; Delqué-Količ, E.; Moreau, C.; Sieudat, M.; Dumoulin, J.-P.; Perron, M.; Thellier, B.; Hain, S.; et al. Detecting recent forgeries of Impressionist and Pointillist paintings with high-precision radiocarbon dating. Forensic Sci. Int. 2022, 333, 111214. [Google Scholar] [CrossRef]
- Jeynes, C.; Palitsin, V.; Kokkoris, M.; Hamilton, A.; Grime, G. On the accuracy of Total-IBA. Nucl. Instrum. Meth. B 2020, 465, 85–100. [Google Scholar] [CrossRef]
- Hajdas, I.; Ascough, P.; Garnett, M.H.; Fallon, S.J.; Pearson, C.L.; Quarta, G.; Spalding, K.L.; Yamaguchi, H.; Yoneda, M. Radiocarbon dating. Nat. Rev. Meth. Primers 2021, 1, 62. [Google Scholar] [CrossRef]
- Beck, L.; Alloin, E.; Klein, U.; Borel, T.; Berthier, C.; Michelin, A. Le trésor de Preuschdorf (Bas-Rhin) XVIIè siècle. Premiers résultats d’une étude pluridisciplinaire. Rev. Numismat. 2010, 166, 199–218. [Google Scholar] [CrossRef]
- Beck, L.; Alloin, E.; Michelin, A.; Téreygeol, F.; Berthier, C.; Robcis, D.; Borel, T.; Klein, U. Counterfeit coinage of the Holy Roman Empire in the 16th century: Silvering process and archaeometallurgical replications. In Der Anschnitt. Beiheft 26: Archaeometallurgy in Europe III; Hauptmann, A., Modarressi-Tehrani, D., Eds.; Deutschen Bergbau-Museum Bochum: Bochum; Germany, 2015; pp. 97–106. Available online: https://www.academia.edu/14279648 (accessed on 24 February 2022).
- Beck, L. Recent trends in IBA for cultural heritage studies. Nucl. Instrum. Meth. B 2014, 332, 439–444. [Google Scholar] [CrossRef]
- Beck, L.; Alloin, E.; Vigneron, A.; Caffy, I.; Klein, U. Ion beam analysis and AMS dating of the silver coin hoard of Preuschdorf (Alsace; France). Nucl. Instrum. Meth. B 2017, 406, 93–98. [Google Scholar] [CrossRef]
- Calligaro, T.; Pacheco, C. Un accélérateur de particules fait parler les œuvres d’art et les objets archéologiques. Reflets Phys. 2019, 63, 14–20. [Google Scholar] [CrossRef]
- Beck, L.; Pichon, L.; Moignard, B.; Guillou, T.; Walter, P. IBA techniques: Examples of useful combinations for the characterization of cultural heritage materials. Nucl. Instr. Meth. B 2011, 269, 2999–3005. [Google Scholar] [CrossRef]
- Campbell, J.L.; Boyd, N.I.; Grassi, N.; Bonnick, P.; Maxwell, J.A. The Guelph PIXE software package IV. Nucl. Instrum. Meth. B 2010, 268, 3356–3363. [Google Scholar] [CrossRef]
- Mayer, M. Improved physics in SIMNRA 7. Nucl. Instr. Meth. B 2014, 332, 176–180. [Google Scholar] [CrossRef]
- Dumoulin, J.-P.; Comby-Zerbino, C.; Delqué-Količ, E.; Moreau, C.; Caffy, I.; Hain, S.; Perron, M.; Thellier, B.; Setti, V.; Berthier, B.; et al. Status report on sample preparation protocols developed at the LMC14 laboratory, Saclay, France: From sample collection to 14C AMS measurement. Radiocarbon 2017, 59, 713–726. [Google Scholar] [CrossRef]
- Moreau, C.; Messager, C.; Berthier, B.; Hain, S.; Thellier, B.; Dumoulin, J.-P.; Caffy, I.; Sieudat, M.; Delqué-Količ, E.; Mussard, S.; et al. ARTEMIS, the 14C AMS facility of the LMC14 National Laboratory: A status report on quality control and microsample procedures. Radiocarbon 2020, 62, 1755–1770. [Google Scholar] [CrossRef]
- Bronk Ramsey, C.; Lee, S. Recent and Planned Developments of the Program OxCal. Radiocarbon 2013, 55, 720–730. [Google Scholar] [CrossRef]
- Reimer, P.J.; Austin, W.E.N.; Bard, E.; Bayliss, A.; Blackwell, P.G.; Ramsey, C.B.; Butzin, M.; Cheng, H.; Edwards, R.L.; Friedrich, M.; et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 2020, 62, 725–757. [Google Scholar] [CrossRef]
- Hua, Q.; Turnbull, J.; Santos, G.; Rakowski, A.; Ancapichún, S.; De Pol-Holz, R.; Hammer, S.; Lehman, S.J.; Levin, I.; Miller, J.B.; et al. Atmospheric radiocarbon for the period 1950–2019. Radiocarbon 2021, 1–23. [Google Scholar] [CrossRef]
- Klein, U. L’étude numismatique des monnaies. In Le dépôt monétaire de Preuschdorf: Autopsie d’un Trésor; Cercle d’Histoire et d’Archéologie de l’Alsace du Nord: Soultz-sous-forêts, Val de Moder, France, 2017; pp. 31–55. [Google Scholar]
- Schneider, K. Pfennige, Heller, Kupfergeld. Kleingeld im Rheinland vom Spätmittelalter bis ins 19.Jahrhundert; Numis. Gessel. Speyer: Hanhofen, Germany, 2003; pp. 55–67, 114–120. [Google Scholar]
- Arles, A.; Téreygeol, F. Le procédé de blanchiment dans les ateliers monétaires français au XV-XVIème siècle: Approche archéométrique et expérimentale. Anu. Estud. Mediev. 2011, 41, 699–721. [Google Scholar] [CrossRef] [Green Version]
- Anheuser, K. Where is all the amalgam silvering? MRS Online Proceed. Library 1996, 462, 127–134. [Google Scholar] [CrossRef]
- Uhlir, K.; Padilla-Alvarez, R.; Migliori, A.; Karydas, A.G.; Božičević Mihalić, I.; Jakšić, M.; Zamboni, I.; Lehmann, R.; Stelter, M.; Griesser, M.; et al. The mystery of mercury-layers on ancient coins—A multianalytical study on the Sasanian coins under the Reign of Khusro II. Microchem. J. 2016, 125, 159–169. [Google Scholar] [CrossRef]
- Vlachou, C.; McDonnell, J.G.; Janaway, R.C. Experimental investigation of silvering in late Roman coinage. MRS Online Proceed. Library 2001, 712, 92. [Google Scholar] [CrossRef] [Green Version]
- La Niece, S. Technology of silver-plated coin forgeries. In Metallurgy in Numismatics. Volume 3; Archibald, M.M., Cowell, M.R., Eds.; Royal Numismatic Society: London, UK, 1993; pp. 227–239. [Google Scholar]
- Arles, A.; Téreygeol, F.; Gratuze, B. Two silvering processes used in the French medieval minting. In Proceedings of the 2nd International Conference Archaeometallurgy in Europe, Aquileia, Italy, 17–21 June 2007. [Google Scholar]
- Deraisme, A.; Beck, L.; Pilon, F.; Barrandon, J.-N. A study of the silvering process of the Gallo-Roman coins forged during the third century AD. Archaeometry 2006, 48, 469–480. [Google Scholar] [CrossRef]
- Levin, I.; Kromer, B.; Hammer, S. Atmospheric Δ14CO2 trend in Western European background air from 2000 to 2012. Tellus B Chem. Phys. Meteorol. 2013, 65, 20092. [Google Scholar] [CrossRef] [Green Version]
- Brock, F.; Eastaugh, N.; Ford, T.; Townsend, J.H. Bomb-pulse radiocarbon dating of modern paintings on canvas. Radiocarbon 2019, 61, 39–49. [Google Scholar] [CrossRef] [Green Version]
- Hajdas, I.; Jull, A.; Huysecom, E.; Mayor, A.; Renold, M.; Synal, H.-A.; Hatté, C.; Hong, W.; Chivall, D.; Beck, L.; et al. Radiocarbon dating and the protection of cultural heritage. Radiocarbon 2019, 61, 1133–1134. [Google Scholar] [CrossRef] [Green Version]
Imitation Type and Entity | Catalogue Number | Estimated Date | Number of Coins | Corresponding Figure |
---|---|---|---|---|
Pfalz-Veldenz, IAP–Johann August of Palatinate-Lützelstein–Pfalz-Veldenz county | 104.F | 1598 to 1611 | 12 | Figure 1d |
St Gallen City | 195.F | 2d. half 16th c | 7 | Figure 1f |
Chur PEC–Peter II Rascher- Chur Bishopric | 188.F | 1581–1601 | 3 | |
Strasbourg City | 151.F | 16th–begin. 17th c. | 2 | Figure 1e |
Marquard von Hattstein–Speyer bishopric | 133.F | 1560–1581 | 2 | |
Ludwig II of Stolberg-Königstein–County | 135.F | 1535–1574 | 1 | |
Wolfgang von Dalberg–Mainz bishopric | 60.F | 1582–1601 | 1 | |
Otto von Salm-Kirburg–Salm county | 118.F | 1548–1607 | 1 | |
Johann VII. von Schönenberg | 160.F | 1581–1590 | 1 | |
Other (Stolberg VLG, Zweibrücken) | 146.F, 112.F | 2 | ||
Unidentified | 6 |
Painting 1 | Estimated Date | Samples |
---|---|---|
Impressionist | Before 1945 | W, F |
Post-Impressionist | Before 1940 | W, F |
Expressionist | Before 1950 | F |
Abstract | ~1970s | W, F, P |
Contemporary | ~1990s | W, F |
Painting | Radiocarbon Age (BP) | Calibrated Dates (95.4%) | AMS Laboratory Number |
---|---|---|---|
Impressionist | 30 ± 23 | 1697–1724 (29.6%) | SacA57262 |
1812–1836 (28.4%) | |||
1880–1911 (37.5%) | |||
Pointillist | 135 ± 23 | 1675–1744 (26.5%) | SacA57264 |
1750–1765 (4.2%) | |||
1798–1942 (64.7%) | |||
Expressionist | No sample | - | - |
Abstract | 220 ± 21 | 1644–1681 (42.1%) | SacA57267 |
1739–1753 (5.4%) | |||
1762–1800 (45.5%) | |||
Contemporary | 120 ± 21 | 1939–… (2.6%) | SacA57269 |
1683–1735 (24.9%) | |||
1803–1938 (70.6%) |
Painting | F14C | Calibrated Dates (95.4%) | AMS Lab Number |
---|---|---|---|
Impressionist | 1.0859 ± 0.0027 | 1957 & 2000–2003 | SacA57263 |
Pointillist | 1.0560 ± 0.0027 | 1956–1957 & 2004–2010 | SacA57265 |
Expressionist | 1.1646 ± 0.0027 | 1957–1959 &1987–1990 | SacA64025 |
Abstract, canvas | 1.0301 ± 0.0027 | 1955–1956 & 2012–2015 | SacA57268 |
Abstract, paint | 1.0094 ± 0.0027 | 1954–1955 & 2017–… | SacA57275 |
Contemporary | Failed | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beck, L. Ion Beam Analysis and 14C Accelerator Mass Spectroscopy to Identify Ancient and Recent Art Forgeries. Physics 2022, 4, 462-472. https://doi.org/10.3390/physics4020031
Beck L. Ion Beam Analysis and 14C Accelerator Mass Spectroscopy to Identify Ancient and Recent Art Forgeries. Physics. 2022; 4(2):462-472. https://doi.org/10.3390/physics4020031
Chicago/Turabian StyleBeck, Lucile. 2022. "Ion Beam Analysis and 14C Accelerator Mass Spectroscopy to Identify Ancient and Recent Art Forgeries" Physics 4, no. 2: 462-472. https://doi.org/10.3390/physics4020031
APA StyleBeck, L. (2022). Ion Beam Analysis and 14C Accelerator Mass Spectroscopy to Identify Ancient and Recent Art Forgeries. Physics, 4(2), 462-472. https://doi.org/10.3390/physics4020031