Novel Design of [c2]Daisy-Chain Rotaxane Crosslinkers Bearing Long-Chain Alkenes and Development of Tough Topological Polymer
Abstract
1. Introduction
2. Experimental Section
2.1. Materials and Instruments
2.2. Syntheses
2.2.1. Syntheses of DFB24C8 (See Scheme S1)
2.2.2. Syntheses of G–H–G Compound (See Scheme S1)
2.2.3. Syntheses of [c2]Daisy-Chain Rotaxane Network (Thin Film)
2.3. Measurements
2.3.1. Swelling Test
2.3.2. Compression Test
2.3.3. Tensile Test
3. Results and Discussion
3.1. Synthesis of G–H–G Compound
3.2. Preparation of [c2]Daisy-Chain Rotaxane Network Polymer
3.3. Mechanical Properties of the [c2]Daisy-Chain Rotaxane Network Polymer
3.4. Shape-Memory Behavior of the [c2]Daisy-Chain Rotaxane Network Polymer
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ashton, P.R.; Baxter, I.; Cantrill, S.J.; Fyfe, M.C.T.; Glink, P.T.; Stoddart, J.F.; White, A.J.P.; Williams, D.J. Supramolecular daisy chains. Angew. Chem. Int. Ed. 1998, 37, 1294–1297. [Google Scholar] [CrossRef]
- Jiménez, M.C.; Dietrich-Buchecker, C.; Sauvage, J.P. Towards Synthetic Molecular Muscles: Contraction and Stretching of a Linear Rotaxane Dimer. Angew. Chem. Int. Ed. 2000, 39, 3284–3287. [Google Scholar] [CrossRef]
- Amirsakis, D.G.; Elizarov, A.M.; Garcia-Garibay, M.A.; Glink, P.T.; Stoddart, J.F.; White, A.J.P.; Williams, D.J. Diastereospecific Photochemical Dimerization of a Stilbene-Containing Daisy Chain Monomer in Solution as well as in the Solid State. Angew. Chem. Int. Ed. 2003, 42, 1126–1132. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Leung, K.C.F.; Bnitez, D.; Han, J.Y.; Cantrill, S.J.; Fang, L.; Stoddart, J.F. An Acid–Base-Controllable [c2]Daisy Chain. Angew. Chem. Int. Ed. 2008, 47, 7470–7474. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Klautzsch, F.; Xue, M.; Huang, F.; Schalley, C.A. Self-sorting of crown ether/secondary ammonium ion hetero-[c2]daisy chain pseudorotaxanes. Org. Chem. Front. 2014, 1, 532–540. [Google Scholar] [CrossRef][Green Version]
- Bruns, C.J.; Stoddart, J.F. Rotaxane-Based Molecular Muscles. Acc. Chem. Res. 2014, 47, 2186–2199. [Google Scholar] [CrossRef]
- Wang, P.; Gao, Z.; Yuan, M.; Zhu, J.; Wang, F. Mechanically linked poly[2]rotaxanes constructed from the benzo-21-crown-7/secondary ammonium salt recognition motif. Polym. Chem. 2016, 7, 3664–3668. [Google Scholar] [CrossRef]
- Zhang, Q.; Rao, S.; Xie, T.; Li, X.; Xu, T.; Li, D.; Qu, D.; Long, Y.; Tian, H. Muscle-like Artificial Molecular Actuators for Nanoparticles. Chem 2018, 4, 2670–2684. [Google Scholar] [CrossRef]
- Cai, K.; Shi, Y.; Zhuang, G.; Zhang, L.; Qiu, Y.; Shen, D.; Chen, H.; Jiao, Y.; Wu, H.; Cheng, C.; et al. Molecular-Pump-Enabled Synthesis of a Daisy Chain Polymer. J. Am. Chem. Soc. 2020, 142, 10308–10313. [Google Scholar] [CrossRef]
- Saura-Sanmartin, A.; Schalley, C.A. The Mobility of Homomeric Lasso- and Daisy Chain-Like Rotaxanes in Solution and in the Gas Phase as a means to Study Structure and Switching Behaviour. Isr. J. Chem. 2023, 63, e202300022. [Google Scholar] [CrossRef]
- Trung, N.T.; Nhien, P.Q.; Kim, C.T.T.; Wu, C.-H.; Buu Hue, B.T.; Wu, J.I.; Li, Y.-K.; Lin, H.-C. Controllable Aggregation-Induced Emission and Forster Resonance Energy Transfer Behaviors of Bistable [c2]Daisy Chain Rotaxanes for White-Light Emission and Temperature-Sensing Applications. ACS Appl. Mater. Interfaces 2023, 15, 15353–15366. [Google Scholar] [CrossRef]
- Tsuda, S.; Yano, Y.; Yamaguchi, M.; Fujiwara, S.; Nishiyama, Y. Simultaneous Hydrogenation of an Insulated Diarylacetylene Dimer Incorporated as Axle Molecules in a Cyclodextrin-Based [c2]Daisy Chain Rotaxane. Chem.—Eur. J. 2024, 30, e202403523. [Google Scholar] [CrossRef]
- Tsuda, S.; Yasumura, N.; Fujiwara, S.; Nishiyama, Y. Synthesis of an Insulated Oligo(phenylene ethynylene) Dimer Through Cyclodextrin-Based [c2]Daisy Chain Rotaxane. Molbank 2024, 2024, M1906. [Google Scholar] [CrossRef]
- Carmona-Vargas, C.C.; Faour, L.; Tokunaga, S.; Constantin, D.; Fleith, G.; Moulin, E.; Giuseppone, N. Molecular Actuation of a Bistable Liquid-Crystalline [c2]Daisy Chain Rotaxane. ChemistryEurope 2024, 2, e202300069. [Google Scholar] [CrossRef]
- Xu, J.; Deng, S.; Wei, P. Engineering Supramolecular [c2]Daisy Chains for Structural Hierarchy-Dependent Emission and Photoreactivity. J. Am. Chem. Soc. 2024, 146, 34176–34187. [Google Scholar] [CrossRef] [PubMed]
- Clark, P.G.; Day, M.W.; Grubbs, R.H. Switching and Extension of a [c2]Daisy-Chain Dimer Polymer. J. Am. Chem. Soc. 2009, 131, 13631–13633. [Google Scholar] [CrossRef]
- Hmadeh, M.; Fang, L.; Trabolsi, A.; Elhabiri, M.; Albrecht-Gary, A.M.; Stoddart, J.F. On the thermodynamic and kinetic investigations of a [c2]daisy chain polymer. J. Mater. Chem. 2010, 20, 3422–3430. [Google Scholar] [CrossRef]
- Du, G.; Moulin, E.; Jouault, N.; Buhler, E.; Giuseppone, N. Muscle-like Supramolecular Polymers: Integrated Motion from Thousands of Molecular Machines. Angew. Chem. Int. Ed. 2012, 51, 12504–12508. [Google Scholar] [CrossRef]
- Gao, L.; Zhang, Z.; Zheng, B.; Huang, F. Construction of muscle-like metallo-supramolecular polymers from a pillar[5]arene-based [c2]daisy chain. Polym. Chem. 2014, 5, 5734–5739. [Google Scholar] [CrossRef]
- Fu, X.; Gu, R.R.; Zhang, Q.; Rao, S.J.; Zheng, X.L.; Qu, D.H.; Tian, H. Phototriggered supramolecular polymerization of a [c2]daisy chain rotaxane. Polym. Chem. 2016, 7, 2166–2170. [Google Scholar] [CrossRef]
- Goujon, A.; Mariani, G.; Lang, T.; Moulin, E.; Rawiso, M.; Buhler, E.; Giuseppone, E. Controlled Sol–Gel Transitions by Actuating Molecular Machine Based Supramolecular Polymers. J. Am. Chem. Soc. 2017, 139, 4923–4928. [Google Scholar] [CrossRef]
- Goujon, A.; Lang, T.; Mariani, G.; Moulin, E.; Fuks, G.; Raya, J.; Buhler, E.; Giuseppone, N. Bistable [c2]Daisy Chain Rotaxanes as Reversible Muscle-like Actuators in Mechanically Active Gel. J. Am. Chem. Soc. 2017, 139, 14825–14828. [Google Scholar] [CrossRef]
- Goujon, A.; Moulin, E.; Fuks, G.; Giuseppone, N. [c2]Daisy chain rotaxanes as molecular muscles. CCS Chem. 2019, 1, 83–96. [Google Scholar] [CrossRef]
- Zhang, Z.; You, W.; Li, P.; Zhao, J.; Guo, Z.; Xu, T.; Chen, J.; Yu, W.; Yan, X. Insights into the Correlation of Microscopic Motions of [c2]Daisy Chains with Macroscopic Mechanical Performance for Mechanically Interlocked Networks. J. Am. Chem. Soc. 2023, 145, 567–578. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.; Tang, J.; Ma, C.; Yu, L.; Tan, Y.; Li, X.; Gan, Q. Foldaxane-Based Switchable [c2]Daisy Chains. Angew. Chem. Int. Ed. 2024, 63, e202315668. [Google Scholar] [CrossRef]
- Zhou, S.-W.; Zhou, D.; Gu, R.; Ma, C.-S.; Yu, C.; Qu, D.-H. Mechanically interlocked [c2]daisy chain backbone enabling advanced shape-memory polymeric materials. Nat. Commun. 2024, 15, 1690. [Google Scholar] [CrossRef]
- Cuc, T.T.K.; Hung, C.-H.; Wu, T.-C.; Nhien, P.Q.; Khang, T.M.; Hue, B.T.B.; Chuang, W.-T.; Lin, H.-C. Force-activated ratiometric fluorescence switching of tensile mechano-fluorophoric polyurethane elastomers with enhanced toughnesses improved by mechanically interlocked [c2] daisy chain rotaxanes. Chem. Eng. J. 2024, 485, 149694. [Google Scholar] [CrossRef]
- Tian, D.; Jiang, K.; Wu, W.; Xie, M.; He, H.; Sun, R. Fatigue resistant photo-responsive [c2] daisy chain Poly(rotaxane) hydrogel. Dye. Pigment. 2024, 231, 112404. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, G.; Zhang, Z.; Giuntoli, A.; Yan, X. Interfacial Dynamics and Mechanical Properties of Substrate-Supported [c2]Daisy Chain Networks. Macromolecules 2025, 58, 6418–6429. [Google Scholar] [CrossRef]
- Kamoto, R.; Onimura, K.; Yamabuki, K. One-Pot Synthesis of Stable Poly([c2]Daisy-chain Rotaxane) with Pseudo-Stopper via Metathesis Reaction and Thiol-Ene Reaction. Reactions 2023, 4, 448–464. [Google Scholar] [CrossRef]
- Kamoto, R.; Onimura, K.; Yamabuki, K. One-Pot Syntheses of [c2]Daisy-Chain Rotaxane Networks via Thiol-Ene Reaction and Its Application to Gel Electrolyte for Secondary Battery. Reactions 2024, 5, 800–811. [Google Scholar] [CrossRef]
- Oku, T.; Furusho, Y.; Takata, T. A Concept for Recyclable Cross-Linked Polymers: Topologically Networked Polyrotaxane Capable of Undergoing Reversible Assembly and Disassembly. Angew. Chem. Int. Ed. 2004, 43, 966–969. [Google Scholar] [CrossRef] [PubMed]










Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawashima, Y.; Koda, M.; Onimura, K.; Yamabuki, K. Novel Design of [c2]Daisy-Chain Rotaxane Crosslinkers Bearing Long-Chain Alkenes and Development of Tough Topological Polymer. Reactions 2025, 6, 62. https://doi.org/10.3390/reactions6040062
Kawashima Y, Koda M, Onimura K, Yamabuki K. Novel Design of [c2]Daisy-Chain Rotaxane Crosslinkers Bearing Long-Chain Alkenes and Development of Tough Topological Polymer. Reactions. 2025; 6(4):62. https://doi.org/10.3390/reactions6040062
Chicago/Turabian StyleKawashima, Yuuki, Moe Koda, Kenjiro Onimura, and Kazuhiro Yamabuki. 2025. "Novel Design of [c2]Daisy-Chain Rotaxane Crosslinkers Bearing Long-Chain Alkenes and Development of Tough Topological Polymer" Reactions 6, no. 4: 62. https://doi.org/10.3390/reactions6040062
APA StyleKawashima, Y., Koda, M., Onimura, K., & Yamabuki, K. (2025). Novel Design of [c2]Daisy-Chain Rotaxane Crosslinkers Bearing Long-Chain Alkenes and Development of Tough Topological Polymer. Reactions, 6(4), 62. https://doi.org/10.3390/reactions6040062

