Reduction and Cycloaddition of Heteroalkenes at Ga(I) Bisamide Center
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
Molecular Structures of Compounds 2–12
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hopkinson, M.N.; Richter, C.; Schedler, M.; Glorius, F. An overview of N-heterocyclic carbenes. Nature 2014, 510, 485–496. [Google Scholar] [CrossRef]
- Scholl, M.; Trnka, T.M.; Morgan, J.P.; Grubbs, R.H. Increased ring closing metathesis activity of ruthenium-based olefin metathesis catalysts coordinated with imidazolin-2-ylidene ligands. Tetrahedron Lett. 1999, 40, 2247–2250. [Google Scholar] [CrossRef]
- Soleilhavoup, M.; Bertrand, G. Cyclic (Alkyl)(Amino)Carbenes (CAACs): Stable Carbenes on the Rise. Acc. Chem. Res. 2015, 48, 256–266. [Google Scholar] [CrossRef] [PubMed]
- Bourissou, D.; Guerret, O.; Gabbaï, F.P.; Bertrand, G. Stable Carbenes. Chem. Rev. 2000, 100, 39–92. [Google Scholar] [CrossRef] [PubMed]
- Nesterov, V.; Reiter, D.; Bag, P.; Frisch, P.; Holzner, R.; Porzelt, A.; Inoue, S. NHCs in Main Group Chemistry. Chem. Rev. 2018, 118, 9678–9842. [Google Scholar] [CrossRef]
- Moerdyk, J.P.; Bielawski, C.W. Reductive generation of stable, five-membered N,N′-diamidocarbenes. Chem. Commun. 2014, 50, 4551–4553. [Google Scholar] [CrossRef]
- Dohmeier, C.; Robl, C.; Tacke, M.; Schnöckel, H. The Tetrameric Aluminum(I) Compound [{Al(η5-C5Me5)}4]. Angew. Chem. Int. Ed. 1991, 30, 564–565. [Google Scholar] [CrossRef]
- Uhl, W.; Hiller, W.; Layh, M.; Schwarz, W. [Ga4{C(SiMe3)3}4] with a Tetrahedral Ga4 Skeleton. Angew. Chem. Int. Ed. 1992, 31, 1364–1366. [Google Scholar] [CrossRef]
- Su, J.; Li, X.-W.; Crittendon, R.C.; Robinson, G.H. How Short is a -Ga⋮Ga- Triple Bond? Synthesis and Molecular Structure of Na2[Mes*2C6H3-Ga⋮Ga-C6H3Mes*2] (Mes* = 2,4,6-i-Pr3C6H2): The First Gallyne. J. Am. Chem. Soc. 1997, 119, 5471–5472. [Google Scholar] [CrossRef]
- Wright, R.J.; Brynda, M.; Power, P.P. Synthesis and Structure of the “Dialuminyne” Na2[Ar′AlAlAr′] and Na2[(Ar′′Al)3]: Al-Al Bonding in Al2Na2 and Al3Na2 Clusters. Angew. Chem. Int. Ed. 2006, 45, 5953–5956. [Google Scholar] [CrossRef]
- Bag, P.; Porzelt, A.; Altmann, P.J.; Inoue, S. A Stable Neutral Compound with an Aluminum–Aluminum Double Bond. J. Am. Chem. Soc. 2017, 139, 14384–14387. [Google Scholar] [CrossRef]
- Queen, J.D.; Lehmann, A.; Fettinger, J.C.; Tuononen, H.M.; Power, P.P. The Monomeric Alanediyl: AlAriPr8 (AriPr8 = C6H-2,6-(C6H2-2,4,6-Pri3)2-3,5-Pri2): An Organoaluminum(I) Compound with a One-Coordinate Aluminum Atom. J. Am. Chem. Soc. 2020, 142, 20554–20559. [Google Scholar] [CrossRef]
- Hicks, J.; Vasko, P.; Goicoechea, J.M.; Aldridge, S. Synthesis, structure and reaction chemistry of a nucleophilic aluminyl anion. Nature 2018, 557, 92–95. [Google Scholar] [CrossRef] [PubMed]
- Schwamm, R.J.; Anker, M.D.; Lein, M.; Coles, M.P. Reduction vs. Addition: The Reaction of an Aluminyl Anion with 1,3,5,7-Cyclooctatetraene. Angew. Chem. Int. Ed. 2019, 58, 1489–1493. [Google Scholar] [CrossRef] [PubMed]
- Grams, S.; Eyselein, J.; Langer, J.; Färber, C.; Harder, S. Boosting Low-Valent Aluminum(I) Reactivity with a Potassium Reagent. Angew. Chem. Int. Ed. 2020, 59, 15982–15986. [Google Scholar] [CrossRef] [PubMed]
- Kurumada, S.; Takamori, S.; Yamashita, M. An alkyl-substituted aluminium anion with strong basicity and nucleophilicity. Nat. Chem. 2020, 12, 36–39. [Google Scholar] [CrossRef]
- Schmidt, E.S.; Jockisch, A.; Schmidbaur, H. A Carbene Analogue with Low-Valent Gallium as a Heteroatom in a quasi-Aromatic Imidazolate Anion. J. Am. Chem. Soc. 1999, 121, 9758–9759. [Google Scholar] [CrossRef]
- Asay, M.; Jones, C.; Driess, M. N-Heterocyclic Carbene Analogues with Low-Valent Group 13 and Group 14 Elements: Syntheses, Structures, and Reactivities of a New Generation of Multitalented Ligands. Chem. Rev. 2011, 111, 354–396. [Google Scholar] [CrossRef]
- Abdalla, J.A.B.; Aldridge, S. Group 13 Metal–Metal Bonds. In Molecular Metal-Metal Bonds; Wiley: Hoboken, NJ, USA, 2015; pp. 455–484. [Google Scholar]
- Liu, Y.; Li, S.; Yang, X.-J.; Li, Q.-S.; Xie, Y.; Schaefer, H.F.; Wu, B. Alkali metal compounds of a gallium(I) carbene analogue {:Ga[N(Ar)C(Me)]2} (Ar = 2,6-iPr2C6H3). J. Organomet. Chem. 2011, 696, 1450–1455. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, Y.; Li, Q.-S.; Su, J.-H. Synthesis and structures of mononuclear and dinuclear gallium complexes with α-diimine ligands: Reduction of the metal or ligand? Dalton Trans. 2016, 45, 246–252. [Google Scholar] [CrossRef]
- Chen, W.; Zhao, Y.; Xu, W.; Su, J.-H.; Shen, L.; Liu, L.; Wu, B.; Yang, X.-J. Reductive linear- and cyclo-trimerization of isocyanides using an Al–Al-bonded compound. Chem. Commun. 2019, 55, 9452–9455. [Google Scholar] [CrossRef]
- Koshino, K.; Kinjo, R. Construction of σ-Aromatic AlB2 Ring via Borane Coupling with a Dicoordinate Cyclic (Alkyl)(Amino)Aluminyl Anion. J. Am. Chem. Soc. 2020, 142, 9057–9062. [Google Scholar] [CrossRef]
- Yan, C.; Kinjo, R. A Three-Membered Diazo-Aluminum Heterocycle to Access an Al=C π Bonding Species. Angew. Chem. Int. Ed. 2022, 61, e202211800. [Google Scholar] [CrossRef]
- Fedushkin, I.L.; Skatova, A.A.; Dodonov, V.A.; Chudakova, V.A.; Bazyakina, N.L.; Piskunov, A.V.; Demeshko, S.V.; Fukin, G.K. Digallane with Redox-Active Diimine Ligand: Dualism of Electron-Transfer Reactions. Inorg. Chem. 2014, 53, 5159–5170. [Google Scholar] [CrossRef] [PubMed]
- Dodonov, V.A.; Makarov, V.M.; Zemnyukova, M.N.; Razborov, D.A.; Baranov, E.V.; Bogomyakov, A.S.; Ovcharenko, V.I.; Fedushkin, I.L. Stability and Solution Behavior of [(dpp-Bian)Ln] and [(dpp-Bian)LnX] (Ln = Yb, Tm, or Dy; X = I, F, or N3). Organometallics 2023, 42, 2558–2567. [Google Scholar] [CrossRef]
- Dodonov, V.A.; Chen, W.; Zhao, Y.; Skatova, A.A.; Roesky, P.W.; Wu, B.; Yang, X.J.; Fedushkin, I.L. Gallium “Shears” for C=N and C=O Bonds of Isocyanates. Chem. Eur. J. 2019, 25, 8259–8267. [Google Scholar] [CrossRef] [PubMed]
- Dodonov, V.A.; Chen, W.; Liu, L.; Sokolov, V.G.; Baranov, E.V.; Skatova, A.A.; Zhao, Y.; Wu, B.; Yang, X.-J.; Fedushkin, I.L. Reactions of Iso(thio)cyanates with Dialanes: Cycloaddition, Reductive Coupling, or Cleavage of the C=S or C=O Bond. Inorg. Chem. 2021, 60, 14602–14612. [Google Scholar] [CrossRef] [PubMed]
- Fedushkin, I.L.; Skatova, A.A.; Dodonov, V.A.; Yang, X.-J.; Chudakova, V.A.; Piskunov, A.V.; Demeshko, S.; Baranov, E.V. Ligand “Brackets” for Ga–Ga Bond. Inorg. Chem. 2016, 55, 9047–9056. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Dodonov, V.A.; Chen, W.; Zhang, S.; Roesky, P.W.; Zhao, Y.; Fedushkin, I.L.; Yang, X.-J. Reactions of Low-Valent Gallium Species with Organic Azides: Formation of Imido-, Azoimido-, and Tetrazene Complexes. Inorg. Chem. 2023, 62, 6288–6296. [Google Scholar] [CrossRef]
- Fedushkin, I.L.; Dodonov, V.A.; Skatova, A.A.; Sokolov, V.G.; Piskunov, A.V.; Fukin, G.K. Redox-Active Ligand-Assisted Two-Electron Oxidative Addition to Gallium(II). Chem. Eur. J. 2018, 24, 1877–1889. [Google Scholar] [CrossRef]
- Dodonov, V.A.; Morozov, A.G.; Rumyantsev, R.V.; Fukin, G.K.; Skatova, A.A.; Roesky, P.W.; Fedushkin, I.L. Synthesis and ε-Caprolactone Polymerization Activity of Electron-Deficient Gallium and Aluminum Species Containing a Charged Redox-Active dpp-Bian Ligand. Inorg. Chem. 2019, 58, 16559–16573. [Google Scholar] [CrossRef] [PubMed]
- Zhong, M.; Sinhababu, S.; Roesky, H.W. The unique β-diketiminate ligand in aluminum(I) and gallium(I) chemistry. Dalton Trans. 2020, 49, 1351–1364. [Google Scholar] [CrossRef]
- Nagendran, S.; Roesky, H.W. The Chemistry of Aluminum(I), Silicon(II), and Germanium(II). Organometallics 2008, 27, 457–492. [Google Scholar] [CrossRef]
- Lopez, C.A. Aluminium, gallium, indium and thallium. Annu. Rep. Sect. A 2009, 105, 98–116. [Google Scholar] [CrossRef]
- Schoeller, W.W. Neutral Carbene Analogues of Group 13 Elements: The Dimerization Reaction to a Biradicaloid. Inorg. Chem. 2011, 50, 2629–2633. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Chen, W.; Li, J.; Cui, C. Chemistry of s-, p- and f-block metal complexes with ene-diamido ligands. Coord. Chem. Rev. 2019, 383, 132–154. [Google Scholar] [CrossRef]
- Helling, C.; Schulz, S. Thallium. In Comprehensive Organometallic Chemistry IV; Parkin, G., Meyer, K., O’hare, D., Eds.; Elsevier: Oxford, UK, 2022; pp. 370–406. [Google Scholar]
- Linti, G.; Schnöckel, H. Low valent aluminum and gallium compounds—Structural variety and coordination modes to transition metal fragments. Coord. Chem. Rev. 2000, 206–207, 285–319. [Google Scholar] [CrossRef]
- González-Gallardo, S.; Bollermann, T.; Fischer, R.A.; Murugavel, R. Cyclopentadiene Based Low-Valent Group 13 Metal Compounds: Ligands in Coordination Chemistry and Link between Metal Rich Molecules and Intermetallic Materials. Chem. Rev. 2012, 112, 3136–3170. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.L. Modulating the Frontier Orbitals of an Aluminylene for Facile Dearomatization of Inert Arenes. Angew. Chem. Int. Ed. 2022, 61, e202116658. [Google Scholar] [CrossRef]
- Dhara, D.; Jayaraman, A.; Härterich, M.; Dewhurst, R.D.; Braunschweig, H. Generation of a transient base-stabilised arylalumylene for the facile deconstruction of aromatic molecules. Chem. Sci. 2022, 13, 5631–5638. [Google Scholar] [CrossRef]
- Dmitrienko, A.; Pilkington, M.; Britten, J.F.; Gabidullin, B.M.; van der Est, A.; Nikonov, G.I. Shedding Light on the Diverse Reactivity of NacNacAl with N-Heterocycles. Angew. Chem. Int. Ed. 2020, 59, 16147–16153. [Google Scholar] [CrossRef] [PubMed]
- Kassymbek, A.; Vyboishchikov, S.F.; Gabidullin, B.M.; Spasyuk, D.; Pilkington, M.; Nikonov, G.I. Sequential Oxidation and C−H Bond Activation at a Gallium(I) Center. Angew. Chem. Int. Ed. 2019, 58, 18102–18107. [Google Scholar] [CrossRef] [PubMed]
- Kassymbek, A.; Spasyuk, D.; Dmitrienko, A.; Pilkington, M.; Nikonov, G.I. Facile C–H bond activation on a transient gallium imide. Chem. Commun. 2022, 58, 6946–6949. [Google Scholar] [CrossRef] [PubMed]
- Chu, T.; Boyko, Y.; Korobkov, I.; Nikonov, G.I. Transition Metal-like Oxidative Addition of C–F and C–O Bonds to an Aluminum(I) Center. Organometallics 2015, 34, 5363–5365. [Google Scholar] [CrossRef]
- Chu, T.; Vyboishchikov, S.F.; Gabidullin, B.M.; Nikonov, G.I. Oxidative Cleavage of the C=N Bond on Al(I). J. Am. Chem. Soc. 2017, 139, 8804–8807. [Google Scholar] [CrossRef] [PubMed]
- Chu, T.; Vyboishchikov, S.F.; Gabidullin, B.; Nikonov, G.I. Oxidative Cleavage of C=S and P=S Bonds at an AlI Center: Preparation of Terminally Bound Aluminum Sulfides. Angew. Chem. Int. Ed. 2016, 55, 13306–13311. [Google Scholar] [CrossRef] [PubMed]
- Seifert, A.; Scheid, D.; Linti, G.; Zessin, T. Oxidative Addition Reactions of Element–Hydrogen Bonds with Different Polarities to a Gallium(I) Compound. Chem. Eur. J. 2009, 15, 12114–12120. [Google Scholar] [CrossRef] [PubMed]
- Chu, T.; Korobkov, I.; Nikonov, G.I. Oxidative Addition of σ Bonds to an Al(I) Center. J. Am. Chem. Soc. 2014, 136, 9195–9202. [Google Scholar] [CrossRef]
- Chu, T.; Boyko, Y.; Korobkov, I.; Kuzmina, L.G.; Howard, J.A.K.; Nikonov, G.I. Oxidative Addition of Disulfides, Alkyl Sulfides, and Diphosphides to an Aluminum(I) Center. Inorg. Chem. 2016, 55, 9099–9104. [Google Scholar] [CrossRef]
- Falconer, R.L.; Nichol, G.S.; Smolyar, I.V.; Cockroft, S.L.; Cowley, M.J. Reversible Reductive Elimination in Aluminum(II) Dihydrides. Angew. Chem. Int. Ed. 2021, 60, 2047–2052. [Google Scholar] [CrossRef]
- Chu, T.; Nikonov, G.I. Oxidative Addition and Reductive Elimination at Main-Group Element Centers. Chem. Rev. 2018, 118, 3608–3680. [Google Scholar] [CrossRef]
- Weetman, C.; Inoue, S. The Road Travelled: After Main-Group Elements as Transition Metals. ChemCatChem 2018, 10, 4213–4228. [Google Scholar] [CrossRef]
- Ota, K.; Kinjo, R. Heavier element-containing aromatics of [4n + 2]-electron systems. Chem. Soc. Rev. 2021, 50, 10594–10673. [Google Scholar] [CrossRef] [PubMed]
- Weetman, C.; Bag, P.; Szilvási, T.; Jandl, C.; Inoue, S. CO2 Fixation and Catalytic Reduction by a Neutral Aluminum Double Bond. Angew. Chem. Int. Ed. 2019, 58, 10961–10965. [Google Scholar] [CrossRef] [PubMed]
- Weetman, C.; Porzelt, A.; Bag, P.; Hanusch, F.; Inoue, S. Dialumenes—Aryl vs. silyl stabilisation for small molecule activation and catalysis. Chem. Sci. 2020, 11, 4817–4827. [Google Scholar] [CrossRef] [PubMed]
- Cui, C.; Li, X.; Wang, C.; Zhang, J.; Cheng, J.; Zhu, X. Isolation of a 1,2-Dialuminacyclobutene. Angew. Chem. Int. Ed. 2006, 45, 2245–2247. [Google Scholar] [CrossRef] [PubMed]
- Agou, T.; Nagata, K.; Tokitoh, N. Synthesis of a Dialumene-Benzene Adduct and Its Reactivity as a Synthetic Equivalent of a Dialumene. Angew. Chem. Int. Ed. 2013, 52, 10818–10821. [Google Scholar] [CrossRef] [PubMed]
- Queen, J.D.; Power, P.P. Comproportionation of a dialuminyne with alane or dialane dihalides as a clean route to dialuminenes. Chem. Commun. 2023, 59, 43–46. [Google Scholar] [CrossRef] [PubMed]
- Caputo, C.A.; Zhu, Z.; Brown, Z.D.; Fettinger, J.C.; Power, P.P. Activation of olefins with low-valent gallium compounds under ambient conditions. Chem. Commun. 2011, 47, 7506–7508. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Chai, J.; Fan, H.; Roesky, H.W.; He, C.; Jancik, V.; Schmidt, H.-G.; Noltemeyer, M.; Merrill, W.A.; Power, P.P. A Stable Aluminacyclopropene LAl(η2-C2H2) and Its End-On Azide Insertion to an Aluminaazacyclobutene. Angew. Chem. Int. Ed. 2005, 44, 5090–5093. [Google Scholar] [CrossRef]
- Bakewell, C.; White, A.J.P.; Crimmin, M.R. Reversible alkene binding and allylic C–H activation with an aluminium(I) complex. Chem. Sci. 2019, 10, 2452–2458. [Google Scholar] [CrossRef] [PubMed]
- Bakewell, C.; Garçon, M.; Kong, R.Y.; O’Hare, L.; White, A.J.P.; Crimmin, M.R. Reactions of an Aluminum(I) Reagent with 1,2-, 1,3-, and 1,5-Dienes: Dearomatization, Reversibility, and a Pericyclic Mechanism. Inorg. Chem. 2020, 59, 4608–4616. [Google Scholar] [CrossRef] [PubMed]
- Dmitrienko, A.; Pilkington, M.; Nikonov, G.I. Reactions of an aluminium(I) diketiminate compound with arenes. Mendeleev Commun. 2022, 32, 68–70. [Google Scholar] [CrossRef]
- Dmitrienko, A.; Britten, J.F.; Spasyuk, D.; Nikonov, G.I. Adduct of NacNacAl with Benzophenone and Its Coupling Chemistry. Chem. Eur. J. 2020, 26, 206–211. [Google Scholar] [CrossRef]
- Koner, A.; Gabidullin, B.M.; Kelemen, Z.; Nyulászi, L.; Nikonov, G.I.; Streubel, R. 7-Metalla-1,4-diphosphanorbornadienes: Cycloaddition of monovalent group 13 NacNac complexes to a stable 1,4-diphosphinine. Dalton Trans. 2019, 48, 8248–8253. [Google Scholar] [CrossRef] [PubMed]
- Sugita, K.; Nakano, R.; Yamashita, M. Cycloaddition of Dialkylalumanyl Anion toward Unsaturated Hydrocarbons in (1 + 2) and (1 + 4) Modes. Chem. Eur. J. 2020, 26, 2174–2177. [Google Scholar] [CrossRef]
- Kassymbek, A.; Britten, J.F.; Spasyuk, D.; Gabidullin, B.; Nikonov, G.I. Interaction of Multiple Bonds with NacNacGa: Oxidative Cleavage vs. Coupling and Cyclization. Inorg. Chem. 2019, 58, 8665–8672. [Google Scholar] [CrossRef]
- Loh, Y.K.; Aldridge, S. Acid–Base Free Main Group Carbonyl Analogues. Angew. Chem. Int. Ed. 2021, 60, 8626–8648. [Google Scholar] [CrossRef]
- Fooken, U.; Saak, W.; Weidenbruch, M. Diarylstannylene reactions with some aryl azides: Formation of different ring systems. J. Organomet. Chem. 1999, 579, 280–284. [Google Scholar] [CrossRef]
- Anker, M.D.; Coles, M.P. Aluminium-Mediated Carbon Dioxide Reduction by an Isolated Monoalumoxane Anion. Angew. Chem. Int. Ed. 2019, 58, 18261–18265. [Google Scholar] [CrossRef]
- Cui, C.; Roesky, H.W.; Schmidt, H.-G.; Noltemeyer, M. [HC{(CMe)(NAr)}2]Al[(NSiMe3)2N2] (Ar = 2,6-iPr2C6H3): The First Five-Membered AlN4 Ring System. Angew. Chem. Int. Ed. 2000, 39, 4531–4533. [Google Scholar] [CrossRef]
- Hicks, J.; Vasko, P.; Goicoechea, J.M.; Aldridge, S. The Aluminyl Anion: A New Generation of Aluminium Nucleophile. Angew. Chem. Int. Ed. 2020, 60, 1702–1713. [Google Scholar] [CrossRef]
- Hicks, J.; Heilmann, A.; Vasko, P.; Goicoechea, J.M.; Aldridge, S. Trapping and Reactivity of a Molecular Aluminium Oxide Ion. Angew. Chem. Int. Ed. 2019, 58, 17265–17268. [Google Scholar] [CrossRef] [PubMed]
- Dodonov, V.A.; Kushnerova, O.A.; Rumyantsev, R.V.; Novikov, A.S.; Osmanov, V.K.; Fedushkin, I.L. Cycloaddition of isoselenocyanates to sodium and magnesium metallacycles. Dalton Trans. 2022, 51, 4113–4121. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Dodonov, V.A.; Chen, W.; Zhao, Y.; Skatova, A.A.; Fedushkin, I.L.; Roesky, P.W.; Wu, B.; Yang, X.-J. Cycloaddition versus Cleavage of C=S Bond of Isothiocyanates Promoted by Digallane Compounds with Non-Innocent α-Diimine Ligands. Chem. Eur. J. 2018, 24, 14994–15002. [Google Scholar] [CrossRef] [PubMed]
- Fedushkin, I.L.; Moskalev, M.V.; Lukoyanov, A.N.; Tishkina, A.N.; Baranov, E.V.; Abakumov, G.A. Dialane with a Redox-Active Bis-amido Ligand: Unique Reactivity towards Alkynes. Chem. Eur. J. 2012, 18, 11264–11276. [Google Scholar] [CrossRef]
- Feng, Z.; Liu, X.; Wang, Y.; Meng, C. Recent Advances on Gallium-Modified ZSM-5 for Conversion of Light Hydrocarbons. Molecules 2021, 26, 2234. [Google Scholar] [CrossRef]
- Feng, Z.; Liu, X.; Meng, C. Speciation and interconversion of atomically dispersed extra-framework Ga in ZSM-5 zeolite. Appl. Surf. Sci. 2023, 636, 157811. [Google Scholar] [CrossRef]
- Dmitrienko, A.; Pilkington, M.; Nikonov, G.I. Selective Cross-Coupling of Unsaturated Substrates on AlI. Chem. Eur. J. 2021, 27, 5730–5736. [Google Scholar] [CrossRef]
- Roy, M.M.D.; Heilmann, A.; Ellwanger, M.A.; Aldridge, S. Generation of a π-Bonded Isomer of [P4]4− by Aluminyl Reduction of White Phosphorus and its Ammonolysis to PH3. Angew. Chem. Int. Ed. 2021, 60, 26550–26554. [Google Scholar] [CrossRef]
- Kong, R.Y.; Crimmin, M.R. Reversible insertion of CO into an aluminium–carbon bond. Chem. Commun. 2019, 55, 6181–6184. [Google Scholar] [CrossRef]
- Hicks, J.; Vasko, P.; Goicoechea, J.M.; Aldridge, S. Reversible, Room-Temperature C-C Bond Activation of Benzene by an Isolable Metal Complex. J. Am. Chem. Soc. 2019, 141, 11000–11003. [Google Scholar] [CrossRef] [PubMed]
- Boronski, J.T.; Thomas-Hargreaves, L.R.; Ellwanger, M.A.; Crumpton, A.E.; Hicks, J.; Bekiş, D.F.; Aldridge, S.; Buchner, M.R. Inducing Nucleophilic Reactivity at Beryllium with an Aluminyl Ligand. J. Am. Chem. Soc. 2023, 145, 4408–4413. [Google Scholar] [CrossRef] [PubMed]
- Dodonov, V.A.; Xiao, L.; Kushnerova, O.A.; Baranov, E.V.; Zhao, Y.; Yang, X.-J.; Fedushkin, I.L. Transformation of carbodiimides to guanidine derivatives facilitated by gallylenes. Chem. Commun. 2020, 56, 7475–7478. [Google Scholar] [CrossRef] [PubMed]
- Dodonov, V.A.; Kushnerova, O.A.; Baranov, E.V.; Novikov, A.S.; Fedushkin, I.L. Activation and modification of carbon dioxide by redox-active low-valent gallium species. Dalton Trans. 2021, 50, 8899–8906. [Google Scholar] [CrossRef] [PubMed]
- Fedushkin, I.L.; Lukoyanov, A.N.; Tishkina, A.N.; Fukin, G.K.; Lyssenko, K.A.; Hummert, M. Reduction of digallane [(dpp-bian)Ga-Ga(dpp-bian)] with Group 1 and 2 metals. Chem. Eur. J. 2010, 16, 7563–7571. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.-T.; Huang, C.-A.; Chen, C.-T. Palladacyclic Complexes Containing C,N-Type Ligands as Catalysts in Cross-Coupling Reactions. Eur. J. Inorg. Chem. 2008, 2008, 3142–3150. [Google Scholar] [CrossRef]
- Delebecq, E.; Pascault, J.-P.; Boutevin, B.; Ganachaud, F. On the Versatility of Urethane/Urea Bonds: Reversibility, Blocked Isocyanate, and Non-isocyanate Polyurethane. Chem. Rev. 2013, 113, 80–118. [Google Scholar] [CrossRef] [PubMed]
- Saunders, J.H.; Slocombe, R.J. The Chemistry of the Organic Isocyanates. Chem. Rev. 1948, 43, 203–218. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Yamazaki, H. Low-valent isocyanide complexes and clusters of palladium and platinum. Crystal structure of [Pt{C(=NR)N(R)C(=NR}(RNC)2](R = 2,6-Me2C6H3). J. Chem. Soc. Dalton Trans. 1989, 1989, 2161–2166. [Google Scholar] [CrossRef]
- Riera, V.; Ruiz, J.; Tiripicchio, A.; Camellini, M.T. Synthesis of coordinated carbon monoxide from isocyanide iron(II) compounds. Crystal structure of [Fe(dppe)(CO)(CN-p-tol)(p-tolN=C-N-p-tol-C=N-p-tol)]. J. Organomet. Chem. 1987, 327, C5–C8. [Google Scholar] [CrossRef]
- Hoberg, H.; Oster, B.W.; Krüger, C.; Tsay, Y.H. Nickela-heteroringe aus nickel(0) und phenylisocyanat. J. Organomet. Chem. 1983, 252, 365–373. [Google Scholar] [CrossRef]
- Paul, F.; Fischer, J.; Ochsenbein, P.; Osborn, J.A. Syntheses, interconversions and reactivity of heteropalladacycles made from aryl isocyanates and various phenanthroline Pd(II) precursors with small molecules. Comptes Rendus Chim. 2002, 5, 267–287. [Google Scholar] [CrossRef]
- Lam, H.-W.; Wilkinson, G.; Hussain-Bates, B.; Hursthouse, M.B. Reactions of tert-butyl isocyanate and trimethylsilyl azide with imidoamido compounds of chromium, molybdenum and tungsten. J. Chem. Soc. Dalton Trans. 1993, 1993, 781–788. [Google Scholar] [CrossRef]
- Weber, L.; Lassahn, U.; Stammler, H.-G.; Neumann, B. Inversely Polarized Phosphaalkenes as Phosphinidene- and Carbene-Transfer Reagents. Eur. J. Inorg. Chem. 2005, 2005, 4590–4597. [Google Scholar] [CrossRef]
- Cui, C.; Köpke, S.; Herbst-Irmer, R.; Roesky, H.W.; Noltemeyer, M.; Schmidt, H.-G.; Wrackmeyer, B. Facile Synthesis of Cyclopropene Analogues of Aluminum and an Aluminum Pinacolate, and the Reactivity of LAl[η2-C2(SiMe3)2] toward Unsaturated Molecules (L = HC[(CMe)(NAr)]2, Ar = 2,6-i-Pr2C6H3). J. Am. Chem. Soc. 2001, 123, 9091–9098. [Google Scholar] [CrossRef] [PubMed]
- Fedushkin, I.L.; Skatova, A.A.; Cherkasov, V.K.; Chudakova, V.A.; Dechert, S.; Hummert, M.; Schumann, H. Reduction of Benzophenone and 9(10H)-Anthracenone with the Magnesium Complex [(2,6-iPr2C6H3-bian)Mg(thf)3]. Chem. Eur. J. 2003, 9, 5778–5783. [Google Scholar] [CrossRef] [PubMed]
- Fachinetti, G.; Biran, C.; Floriani, C.; Chiesi Villa, A.; Guastini, C. C:O and C:C bond activation in diphenylketene promoted by dicarbonylbis(.eta.-cyclopentadienyl)titanium(II). Inorg. Chem. 1978, 17, 2995–3002. [Google Scholar] [CrossRef]
- Evans, W.J.; Drummond, D.K. Reductive coupling of pyridazine and benzaldehyde azine and reduction of bipyridine by samarium complex (C5Me5)2Sm(THF)2. J. Am. Chem. Soc. 1989, 111, 3329–3335. [Google Scholar] [CrossRef]
- Ohff, A.; Zippel, T.; Arndt, P.; Spannenberg, A.; Kempe, R.; Rosenthal, U. Reactions of Azines with Titanocene: C-H Activation, C-C Coupling, and N-N Cleavage to Heterobimetallic Complexes. Organometallics 1998, 17, 1649–1651. [Google Scholar] [CrossRef]
- Fedushkin, I.L.; Lukoyanov, A.N.; Fukin, G.K.; Ketkov, S.Y.; Hummert, M.; Schumann, H. Synthesis, Molecular Structure and DFT Study of (dpp-bian)Ga-M(Et2O)3 (M = Li, Na; dpp-bian=1,2-bis(2,6-diisopropylphenyl)imino acenaphthene)). Chem. Eur. J. 2008, 14, 8465–8468. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kim, T.H.; Shin, Y.W.; Jeon, Y.; Kim, J. Amitraz. Acta Crystallogr. Sect. E 2013, 69, o1300. [Google Scholar] [CrossRef] [PubMed]
- Carugo, O.; Poli, G.; Manzoni, L. Structure of N,N′,N″-triphenylbiuret. Acta Crystallogr. Sect. C 1992, 48, 2013–2016. [Google Scholar] [CrossRef]
- Ghosh, R.; Samuelson, A.G. Catalytic metathesis of carbon dioxide with heterocumulenes mediated by titanium isopropoxide. Chem. Commun. 2005, 2005, 2017–2019. [Google Scholar] [CrossRef] [PubMed]
- Hardman, N.J.; Power, P.P. Dimeric Gallium Oxide and Sulfide Species Stabilized by a Sterically Encumbered β-Diketiminate Ligand. Inorg. Chem. 2001, 40, 2474–2475. [Google Scholar] [CrossRef] [PubMed]
- Lide, D.R. CRC Handbook of Chemistry and Physics, 90th ed.; CD-ROM Version 2010; CRC Press/Taylor and Francis: Boca Raton, FL, USA, 2010. [Google Scholar]
- Wang, X.M.; Fan, R.Q.; Qiang, L.S.; Li, W.Q.; Wang, P.; Zhang, H.J.; Yang, Y.L. Tunable luminescence from rare 2D Ga(III)/In(III) coordination polymers coexisting with three different conjugated system aromatic ligands. Chem. Commun. 2014, 50, 5023–5026. [Google Scholar] [CrossRef] [PubMed]
- Cordero, B.; Gomez, V.; Platero-Prats, A.E.; Reves, M.; Echeverria, J.; Cremades, E.; Barragan, F.; Alvarez, S. Covalent radii revisited. Dalton Trans. 2008, 2008, 2832–2838. [Google Scholar] [CrossRef]
- Arii, H.; Amari, T.; Kobayashi, J.; Mochida, K.; Kawashima, T. Low-Coordinate Germanium(II) Centers Within Distorted Axially Chiral Seven-Membered Chelates: Stereo- and Enantioselective Cycloadditions. Angew. Chem. Int. Ed. 2012, 51, 6738–6741. [Google Scholar] [CrossRef]
- Mom, V.; de With, G. A reinvestigation on benzalazine, influence of TDS and comparison with different experiments. Acta Crystallogr. Sect. B 1978, 34, 2785–2789. [Google Scholar] [CrossRef]
- Bruker APEX3. Bruker Molecular Analysis Research Tool; v. 2018.7-2; Bruker AXS: Madison, WI, USA, 2018. [Google Scholar]
- Data Collection, Reduction and Correction Program; CrysAlisPro 1.171.40.67a—Software Package; Rigaku OD: Tokyo, Japan, 2019.
- Bruker. SAINT Data Reduction and Correction Program v. 8.40B; Bruker AXS: Madison, WI, USA, 2019. [Google Scholar]
- Sheldrick, G.M. SADABS v.2016/2, Bruker/Siemens Area Detector Absorption Correction Program; Bruker AXS: Madison, WI, USA, 2016. [Google Scholar]
- Krause, L.; Herbst-Irmer, R.; Sheldrick, G.M.; Stalke, D. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Crystallogr. 2015, 48, 3–10. [Google Scholar] [CrossRef]
- SCALE3 ABSPACK: Empirical Absorption Correction; CrysAlisPro 1.171.40.67a—Software Package; Rigaku OD: Tokyo, Japan, 2019.
- Farrugia, L. WinGX and ORTEP for Windows: An update. J. Appl. Crystallogr. 2012, 45, 849–854. [Google Scholar] [CrossRef]
- Sheldrick, G. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. SHELXTL. Structure Determination Software Suite; Version 6.14; Bruker AXS: Madison, WI, USA, 2003. [Google Scholar]
- Sheldrick, G. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dodonov, V.A.; Kushnerova, O.A.; Baranov, E.V.; Fedushkin, I.L. Reduction and Cycloaddition of Heteroalkenes at Ga(I) Bisamide Center. Reactions 2024, 5, 213-230. https://doi.org/10.3390/reactions5010009
Dodonov VA, Kushnerova OA, Baranov EV, Fedushkin IL. Reduction and Cycloaddition of Heteroalkenes at Ga(I) Bisamide Center. Reactions. 2024; 5(1):213-230. https://doi.org/10.3390/reactions5010009
Chicago/Turabian StyleDodonov, Vladimir A., Olga A. Kushnerova, Evgeny V. Baranov, and Igor L. Fedushkin. 2024. "Reduction and Cycloaddition of Heteroalkenes at Ga(I) Bisamide Center" Reactions 5, no. 1: 213-230. https://doi.org/10.3390/reactions5010009
APA StyleDodonov, V. A., Kushnerova, O. A., Baranov, E. V., & Fedushkin, I. L. (2024). Reduction and Cycloaddition of Heteroalkenes at Ga(I) Bisamide Center. Reactions, 5(1), 213-230. https://doi.org/10.3390/reactions5010009