Reduction and Cycloaddition of Heteroalkenes at Ga(I) Bisamide Center
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
Molecular Structures of Compounds 2–12
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hopkinson, M.N.; Richter, C.; Schedler, M.; Glorius, F. An overview of N-heterocyclic carbenes. Nature 2014, 510, 485–496. [Google Scholar] [CrossRef]
- Scholl, M.; Trnka, T.M.; Morgan, J.P.; Grubbs, R.H. Increased ring closing metathesis activity of ruthenium-based olefin metathesis catalysts coordinated with imidazolin-2-ylidene ligands. Tetrahedron Lett. 1999, 40, 2247–2250. [Google Scholar] [CrossRef]
- Soleilhavoup, M.; Bertrand, G. Cyclic (Alkyl)(Amino)Carbenes (CAACs): Stable Carbenes on the Rise. Acc. Chem. Res. 2015, 48, 256–266. [Google Scholar] [CrossRef] [PubMed]
- Bourissou, D.; Guerret, O.; Gabbaï, F.P.; Bertrand, G. Stable Carbenes. Chem. Rev. 2000, 100, 39–92. [Google Scholar] [CrossRef] [PubMed]
- Nesterov, V.; Reiter, D.; Bag, P.; Frisch, P.; Holzner, R.; Porzelt, A.; Inoue, S. NHCs in Main Group Chemistry. Chem. Rev. 2018, 118, 9678–9842. [Google Scholar] [CrossRef]
- Moerdyk, J.P.; Bielawski, C.W. Reductive generation of stable, five-membered N,N′-diamidocarbenes. Chem. Commun. 2014, 50, 4551–4553. [Google Scholar] [CrossRef]
- Dohmeier, C.; Robl, C.; Tacke, M.; Schnöckel, H. The Tetrameric Aluminum(I) Compound [{Al(η5-C5Me5)}4]. Angew. Chem. Int. Ed. 1991, 30, 564–565. [Google Scholar] [CrossRef]
- Uhl, W.; Hiller, W.; Layh, M.; Schwarz, W. [Ga4{C(SiMe3)3}4] with a Tetrahedral Ga4 Skeleton. Angew. Chem. Int. Ed. 1992, 31, 1364–1366. [Google Scholar] [CrossRef]
- Su, J.; Li, X.-W.; Crittendon, R.C.; Robinson, G.H. How Short is a -Ga⋮Ga- Triple Bond? Synthesis and Molecular Structure of Na2[Mes*2C6H3-Ga⋮Ga-C6H3Mes*2] (Mes* = 2,4,6-i-Pr3C6H2): The First Gallyne. J. Am. Chem. Soc. 1997, 119, 5471–5472. [Google Scholar] [CrossRef]
- Wright, R.J.; Brynda, M.; Power, P.P. Synthesis and Structure of the “Dialuminyne” Na2[Ar′AlAlAr′] and Na2[(Ar′′Al)3]: Al-Al Bonding in Al2Na2 and Al3Na2 Clusters. Angew. Chem. Int. Ed. 2006, 45, 5953–5956. [Google Scholar] [CrossRef]
- Bag, P.; Porzelt, A.; Altmann, P.J.; Inoue, S. A Stable Neutral Compound with an Aluminum–Aluminum Double Bond. J. Am. Chem. Soc. 2017, 139, 14384–14387. [Google Scholar] [CrossRef]
- Queen, J.D.; Lehmann, A.; Fettinger, J.C.; Tuononen, H.M.; Power, P.P. The Monomeric Alanediyl: AlAriPr8 (AriPr8 = C6H-2,6-(C6H2-2,4,6-Pri3)2-3,5-Pri2): An Organoaluminum(I) Compound with a One-Coordinate Aluminum Atom. J. Am. Chem. Soc. 2020, 142, 20554–20559. [Google Scholar] [CrossRef]
- Hicks, J.; Vasko, P.; Goicoechea, J.M.; Aldridge, S. Synthesis, structure and reaction chemistry of a nucleophilic aluminyl anion. Nature 2018, 557, 92–95. [Google Scholar] [CrossRef] [PubMed]
- Schwamm, R.J.; Anker, M.D.; Lein, M.; Coles, M.P. Reduction vs. Addition: The Reaction of an Aluminyl Anion with 1,3,5,7-Cyclooctatetraene. Angew. Chem. Int. Ed. 2019, 58, 1489–1493. [Google Scholar] [CrossRef] [PubMed]
- Grams, S.; Eyselein, J.; Langer, J.; Färber, C.; Harder, S. Boosting Low-Valent Aluminum(I) Reactivity with a Potassium Reagent. Angew. Chem. Int. Ed. 2020, 59, 15982–15986. [Google Scholar] [CrossRef] [PubMed]
- Kurumada, S.; Takamori, S.; Yamashita, M. An alkyl-substituted aluminium anion with strong basicity and nucleophilicity. Nat. Chem. 2020, 12, 36–39. [Google Scholar] [CrossRef]
- Schmidt, E.S.; Jockisch, A.; Schmidbaur, H. A Carbene Analogue with Low-Valent Gallium as a Heteroatom in a quasi-Aromatic Imidazolate Anion. J. Am. Chem. Soc. 1999, 121, 9758–9759. [Google Scholar] [CrossRef]
- Asay, M.; Jones, C.; Driess, M. N-Heterocyclic Carbene Analogues with Low-Valent Group 13 and Group 14 Elements: Syntheses, Structures, and Reactivities of a New Generation of Multitalented Ligands. Chem. Rev. 2011, 111, 354–396. [Google Scholar] [CrossRef]
- Abdalla, J.A.B.; Aldridge, S. Group 13 Metal–Metal Bonds. In Molecular Metal-Metal Bonds; Wiley: Hoboken, NJ, USA, 2015; pp. 455–484. [Google Scholar]
- Liu, Y.; Li, S.; Yang, X.-J.; Li, Q.-S.; Xie, Y.; Schaefer, H.F.; Wu, B. Alkali metal compounds of a gallium(I) carbene analogue {:Ga[N(Ar)C(Me)]2} (Ar = 2,6-iPr2C6H3). J. Organomet. Chem. 2011, 696, 1450–1455. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, Y.; Li, Q.-S.; Su, J.-H. Synthesis and structures of mononuclear and dinuclear gallium complexes with α-diimine ligands: Reduction of the metal or ligand? Dalton Trans. 2016, 45, 246–252. [Google Scholar] [CrossRef]
- Chen, W.; Zhao, Y.; Xu, W.; Su, J.-H.; Shen, L.; Liu, L.; Wu, B.; Yang, X.-J. Reductive linear- and cyclo-trimerization of isocyanides using an Al–Al-bonded compound. Chem. Commun. 2019, 55, 9452–9455. [Google Scholar] [CrossRef]
- Koshino, K.; Kinjo, R. Construction of σ-Aromatic AlB2 Ring via Borane Coupling with a Dicoordinate Cyclic (Alkyl)(Amino)Aluminyl Anion. J. Am. Chem. Soc. 2020, 142, 9057–9062. [Google Scholar] [CrossRef]
- Yan, C.; Kinjo, R. A Three-Membered Diazo-Aluminum Heterocycle to Access an Al=C π Bonding Species. Angew. Chem. Int. Ed. 2022, 61, e202211800. [Google Scholar] [CrossRef]
- Fedushkin, I.L.; Skatova, A.A.; Dodonov, V.A.; Chudakova, V.A.; Bazyakina, N.L.; Piskunov, A.V.; Demeshko, S.V.; Fukin, G.K. Digallane with Redox-Active Diimine Ligand: Dualism of Electron-Transfer Reactions. Inorg. Chem. 2014, 53, 5159–5170. [Google Scholar] [CrossRef] [PubMed]
- Dodonov, V.A.; Makarov, V.M.; Zemnyukova, M.N.; Razborov, D.A.; Baranov, E.V.; Bogomyakov, A.S.; Ovcharenko, V.I.; Fedushkin, I.L. Stability and Solution Behavior of [(dpp-Bian)Ln] and [(dpp-Bian)LnX] (Ln = Yb, Tm, or Dy; X = I, F, or N3). Organometallics 2023, 42, 2558–2567. [Google Scholar] [CrossRef]
- Dodonov, V.A.; Chen, W.; Zhao, Y.; Skatova, A.A.; Roesky, P.W.; Wu, B.; Yang, X.J.; Fedushkin, I.L. Gallium “Shears” for C=N and C=O Bonds of Isocyanates. Chem. Eur. J. 2019, 25, 8259–8267. [Google Scholar] [CrossRef] [PubMed]
- Dodonov, V.A.; Chen, W.; Liu, L.; Sokolov, V.G.; Baranov, E.V.; Skatova, A.A.; Zhao, Y.; Wu, B.; Yang, X.-J.; Fedushkin, I.L. Reactions of Iso(thio)cyanates with Dialanes: Cycloaddition, Reductive Coupling, or Cleavage of the C=S or C=O Bond. Inorg. Chem. 2021, 60, 14602–14612. [Google Scholar] [CrossRef] [PubMed]
- Fedushkin, I.L.; Skatova, A.A.; Dodonov, V.A.; Yang, X.-J.; Chudakova, V.A.; Piskunov, A.V.; Demeshko, S.; Baranov, E.V. Ligand “Brackets” for Ga–Ga Bond. Inorg. Chem. 2016, 55, 9047–9056. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Dodonov, V.A.; Chen, W.; Zhang, S.; Roesky, P.W.; Zhao, Y.; Fedushkin, I.L.; Yang, X.-J. Reactions of Low-Valent Gallium Species with Organic Azides: Formation of Imido-, Azoimido-, and Tetrazene Complexes. Inorg. Chem. 2023, 62, 6288–6296. [Google Scholar] [CrossRef]
- Fedushkin, I.L.; Dodonov, V.A.; Skatova, A.A.; Sokolov, V.G.; Piskunov, A.V.; Fukin, G.K. Redox-Active Ligand-Assisted Two-Electron Oxidative Addition to Gallium(II). Chem. Eur. J. 2018, 24, 1877–1889. [Google Scholar] [CrossRef]
- Dodonov, V.A.; Morozov, A.G.; Rumyantsev, R.V.; Fukin, G.K.; Skatova, A.A.; Roesky, P.W.; Fedushkin, I.L. Synthesis and ε-Caprolactone Polymerization Activity of Electron-Deficient Gallium and Aluminum Species Containing a Charged Redox-Active dpp-Bian Ligand. Inorg. Chem. 2019, 58, 16559–16573. [Google Scholar] [CrossRef] [PubMed]
- Zhong, M.; Sinhababu, S.; Roesky, H.W. The unique β-diketiminate ligand in aluminum(I) and gallium(I) chemistry. Dalton Trans. 2020, 49, 1351–1364. [Google Scholar] [CrossRef]
- Nagendran, S.; Roesky, H.W. The Chemistry of Aluminum(I), Silicon(II), and Germanium(II). Organometallics 2008, 27, 457–492. [Google Scholar] [CrossRef]
- Lopez, C.A. Aluminium, gallium, indium and thallium. Annu. Rep. Sect. A 2009, 105, 98–116. [Google Scholar] [CrossRef]
- Schoeller, W.W. Neutral Carbene Analogues of Group 13 Elements: The Dimerization Reaction to a Biradicaloid. Inorg. Chem. 2011, 50, 2629–2633. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Chen, W.; Li, J.; Cui, C. Chemistry of s-, p- and f-block metal complexes with ene-diamido ligands. Coord. Chem. Rev. 2019, 383, 132–154. [Google Scholar] [CrossRef]
- Helling, C.; Schulz, S. Thallium. In Comprehensive Organometallic Chemistry IV; Parkin, G., Meyer, K., O’hare, D., Eds.; Elsevier: Oxford, UK, 2022; pp. 370–406. [Google Scholar]
- Linti, G.; Schnöckel, H. Low valent aluminum and gallium compounds—Structural variety and coordination modes to transition metal fragments. Coord. Chem. Rev. 2000, 206–207, 285–319. [Google Scholar] [CrossRef]
- González-Gallardo, S.; Bollermann, T.; Fischer, R.A.; Murugavel, R. Cyclopentadiene Based Low-Valent Group 13 Metal Compounds: Ligands in Coordination Chemistry and Link between Metal Rich Molecules and Intermetallic Materials. Chem. Rev. 2012, 112, 3136–3170. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.L. Modulating the Frontier Orbitals of an Aluminylene for Facile Dearomatization of Inert Arenes. Angew. Chem. Int. Ed. 2022, 61, e202116658. [Google Scholar] [CrossRef]
- Dhara, D.; Jayaraman, A.; Härterich, M.; Dewhurst, R.D.; Braunschweig, H. Generation of a transient base-stabilised arylalumylene for the facile deconstruction of aromatic molecules. Chem. Sci. 2022, 13, 5631–5638. [Google Scholar] [CrossRef]
- Dmitrienko, A.; Pilkington, M.; Britten, J.F.; Gabidullin, B.M.; van der Est, A.; Nikonov, G.I. Shedding Light on the Diverse Reactivity of NacNacAl with N-Heterocycles. Angew. Chem. Int. Ed. 2020, 59, 16147–16153. [Google Scholar] [CrossRef] [PubMed]
- Kassymbek, A.; Vyboishchikov, S.F.; Gabidullin, B.M.; Spasyuk, D.; Pilkington, M.; Nikonov, G.I. Sequential Oxidation and C−H Bond Activation at a Gallium(I) Center. Angew. Chem. Int. Ed. 2019, 58, 18102–18107. [Google Scholar] [CrossRef] [PubMed]
- Kassymbek, A.; Spasyuk, D.; Dmitrienko, A.; Pilkington, M.; Nikonov, G.I. Facile C–H bond activation on a transient gallium imide. Chem. Commun. 2022, 58, 6946–6949. [Google Scholar] [CrossRef] [PubMed]
- Chu, T.; Boyko, Y.; Korobkov, I.; Nikonov, G.I. Transition Metal-like Oxidative Addition of C–F and C–O Bonds to an Aluminum(I) Center. Organometallics 2015, 34, 5363–5365. [Google Scholar] [CrossRef]
- Chu, T.; Vyboishchikov, S.F.; Gabidullin, B.M.; Nikonov, G.I. Oxidative Cleavage of the C=N Bond on Al(I). J. Am. Chem. Soc. 2017, 139, 8804–8807. [Google Scholar] [CrossRef] [PubMed]
- Chu, T.; Vyboishchikov, S.F.; Gabidullin, B.; Nikonov, G.I. Oxidative Cleavage of C=S and P=S Bonds at an AlI Center: Preparation of Terminally Bound Aluminum Sulfides. Angew. Chem. Int. Ed. 2016, 55, 13306–13311. [Google Scholar] [CrossRef] [PubMed]
- Seifert, A.; Scheid, D.; Linti, G.; Zessin, T. Oxidative Addition Reactions of Element–Hydrogen Bonds with Different Polarities to a Gallium(I) Compound. Chem. Eur. J. 2009, 15, 12114–12120. [Google Scholar] [CrossRef] [PubMed]
- Chu, T.; Korobkov, I.; Nikonov, G.I. Oxidative Addition of σ Bonds to an Al(I) Center. J. Am. Chem. Soc. 2014, 136, 9195–9202. [Google Scholar] [CrossRef]
- Chu, T.; Boyko, Y.; Korobkov, I.; Kuzmina, L.G.; Howard, J.A.K.; Nikonov, G.I. Oxidative Addition of Disulfides, Alkyl Sulfides, and Diphosphides to an Aluminum(I) Center. Inorg. Chem. 2016, 55, 9099–9104. [Google Scholar] [CrossRef]
- Falconer, R.L.; Nichol, G.S.; Smolyar, I.V.; Cockroft, S.L.; Cowley, M.J. Reversible Reductive Elimination in Aluminum(II) Dihydrides. Angew. Chem. Int. Ed. 2021, 60, 2047–2052. [Google Scholar] [CrossRef]
- Chu, T.; Nikonov, G.I. Oxidative Addition and Reductive Elimination at Main-Group Element Centers. Chem. Rev. 2018, 118, 3608–3680. [Google Scholar] [CrossRef]
- Weetman, C.; Inoue, S. The Road Travelled: After Main-Group Elements as Transition Metals. ChemCatChem 2018, 10, 4213–4228. [Google Scholar] [CrossRef]
- Ota, K.; Kinjo, R. Heavier element-containing aromatics of [4n + 2]-electron systems. Chem. Soc. Rev. 2021, 50, 10594–10673. [Google Scholar] [CrossRef] [PubMed]
- Weetman, C.; Bag, P.; Szilvási, T.; Jandl, C.; Inoue, S. CO2 Fixation and Catalytic Reduction by a Neutral Aluminum Double Bond. Angew. Chem. Int. Ed. 2019, 58, 10961–10965. [Google Scholar] [CrossRef] [PubMed]
- Weetman, C.; Porzelt, A.; Bag, P.; Hanusch, F.; Inoue, S. Dialumenes—Aryl vs. silyl stabilisation for small molecule activation and catalysis. Chem. Sci. 2020, 11, 4817–4827. [Google Scholar] [CrossRef] [PubMed]
- Cui, C.; Li, X.; Wang, C.; Zhang, J.; Cheng, J.; Zhu, X. Isolation of a 1,2-Dialuminacyclobutene. Angew. Chem. Int. Ed. 2006, 45, 2245–2247. [Google Scholar] [CrossRef] [PubMed]
- Agou, T.; Nagata, K.; Tokitoh, N. Synthesis of a Dialumene-Benzene Adduct and Its Reactivity as a Synthetic Equivalent of a Dialumene. Angew. Chem. Int. Ed. 2013, 52, 10818–10821. [Google Scholar] [CrossRef] [PubMed]
- Queen, J.D.; Power, P.P. Comproportionation of a dialuminyne with alane or dialane dihalides as a clean route to dialuminenes. Chem. Commun. 2023, 59, 43–46. [Google Scholar] [CrossRef] [PubMed]
- Caputo, C.A.; Zhu, Z.; Brown, Z.D.; Fettinger, J.C.; Power, P.P. Activation of olefins with low-valent gallium compounds under ambient conditions. Chem. Commun. 2011, 47, 7506–7508. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Chai, J.; Fan, H.; Roesky, H.W.; He, C.; Jancik, V.; Schmidt, H.-G.; Noltemeyer, M.; Merrill, W.A.; Power, P.P. A Stable Aluminacyclopropene LAl(η2-C2H2) and Its End-On Azide Insertion to an Aluminaazacyclobutene. Angew. Chem. Int. Ed. 2005, 44, 5090–5093. [Google Scholar] [CrossRef]
- Bakewell, C.; White, A.J.P.; Crimmin, M.R. Reversible alkene binding and allylic C–H activation with an aluminium(I) complex. Chem. Sci. 2019, 10, 2452–2458. [Google Scholar] [CrossRef] [PubMed]
- Bakewell, C.; Garçon, M.; Kong, R.Y.; O’Hare, L.; White, A.J.P.; Crimmin, M.R. Reactions of an Aluminum(I) Reagent with 1,2-, 1,3-, and 1,5-Dienes: Dearomatization, Reversibility, and a Pericyclic Mechanism. Inorg. Chem. 2020, 59, 4608–4616. [Google Scholar] [CrossRef] [PubMed]
- Dmitrienko, A.; Pilkington, M.; Nikonov, G.I. Reactions of an aluminium(I) diketiminate compound with arenes. Mendeleev Commun. 2022, 32, 68–70. [Google Scholar] [CrossRef]
- Dmitrienko, A.; Britten, J.F.; Spasyuk, D.; Nikonov, G.I. Adduct of NacNacAl with Benzophenone and Its Coupling Chemistry. Chem. Eur. J. 2020, 26, 206–211. [Google Scholar] [CrossRef]
- Koner, A.; Gabidullin, B.M.; Kelemen, Z.; Nyulászi, L.; Nikonov, G.I.; Streubel, R. 7-Metalla-1,4-diphosphanorbornadienes: Cycloaddition of monovalent group 13 NacNac complexes to a stable 1,4-diphosphinine. Dalton Trans. 2019, 48, 8248–8253. [Google Scholar] [CrossRef] [PubMed]
- Sugita, K.; Nakano, R.; Yamashita, M. Cycloaddition of Dialkylalumanyl Anion toward Unsaturated Hydrocarbons in (1 + 2) and (1 + 4) Modes. Chem. Eur. J. 2020, 26, 2174–2177. [Google Scholar] [CrossRef]
- Kassymbek, A.; Britten, J.F.; Spasyuk, D.; Gabidullin, B.; Nikonov, G.I. Interaction of Multiple Bonds with NacNacGa: Oxidative Cleavage vs. Coupling and Cyclization. Inorg. Chem. 2019, 58, 8665–8672. [Google Scholar] [CrossRef]
- Loh, Y.K.; Aldridge, S. Acid–Base Free Main Group Carbonyl Analogues. Angew. Chem. Int. Ed. 2021, 60, 8626–8648. [Google Scholar] [CrossRef]
- Fooken, U.; Saak, W.; Weidenbruch, M. Diarylstannylene reactions with some aryl azides: Formation of different ring systems. J. Organomet. Chem. 1999, 579, 280–284. [Google Scholar] [CrossRef]
- Anker, M.D.; Coles, M.P. Aluminium-Mediated Carbon Dioxide Reduction by an Isolated Monoalumoxane Anion. Angew. Chem. Int. Ed. 2019, 58, 18261–18265. [Google Scholar] [CrossRef]
- Cui, C.; Roesky, H.W.; Schmidt, H.-G.; Noltemeyer, M. [HC{(CMe)(NAr)}2]Al[(NSiMe3)2N2] (Ar = 2,6-iPr2C6H3): The First Five-Membered AlN4 Ring System. Angew. Chem. Int. Ed. 2000, 39, 4531–4533. [Google Scholar] [CrossRef]
- Hicks, J.; Vasko, P.; Goicoechea, J.M.; Aldridge, S. The Aluminyl Anion: A New Generation of Aluminium Nucleophile. Angew. Chem. Int. Ed. 2020, 60, 1702–1713. [Google Scholar] [CrossRef]
- Hicks, J.; Heilmann, A.; Vasko, P.; Goicoechea, J.M.; Aldridge, S. Trapping and Reactivity of a Molecular Aluminium Oxide Ion. Angew. Chem. Int. Ed. 2019, 58, 17265–17268. [Google Scholar] [CrossRef] [PubMed]
- Dodonov, V.A.; Kushnerova, O.A.; Rumyantsev, R.V.; Novikov, A.S.; Osmanov, V.K.; Fedushkin, I.L. Cycloaddition of isoselenocyanates to sodium and magnesium metallacycles. Dalton Trans. 2022, 51, 4113–4121. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Dodonov, V.A.; Chen, W.; Zhao, Y.; Skatova, A.A.; Fedushkin, I.L.; Roesky, P.W.; Wu, B.; Yang, X.-J. Cycloaddition versus Cleavage of C=S Bond of Isothiocyanates Promoted by Digallane Compounds with Non-Innocent α-Diimine Ligands. Chem. Eur. J. 2018, 24, 14994–15002. [Google Scholar] [CrossRef] [PubMed]
- Fedushkin, I.L.; Moskalev, M.V.; Lukoyanov, A.N.; Tishkina, A.N.; Baranov, E.V.; Abakumov, G.A. Dialane with a Redox-Active Bis-amido Ligand: Unique Reactivity towards Alkynes. Chem. Eur. J. 2012, 18, 11264–11276. [Google Scholar] [CrossRef]
- Feng, Z.; Liu, X.; Wang, Y.; Meng, C. Recent Advances on Gallium-Modified ZSM-5 for Conversion of Light Hydrocarbons. Molecules 2021, 26, 2234. [Google Scholar] [CrossRef]
- Feng, Z.; Liu, X.; Meng, C. Speciation and interconversion of atomically dispersed extra-framework Ga in ZSM-5 zeolite. Appl. Surf. Sci. 2023, 636, 157811. [Google Scholar] [CrossRef]
- Dmitrienko, A.; Pilkington, M.; Nikonov, G.I. Selective Cross-Coupling of Unsaturated Substrates on AlI. Chem. Eur. J. 2021, 27, 5730–5736. [Google Scholar] [CrossRef]
- Roy, M.M.D.; Heilmann, A.; Ellwanger, M.A.; Aldridge, S. Generation of a π-Bonded Isomer of [P4]4− by Aluminyl Reduction of White Phosphorus and its Ammonolysis to PH3. Angew. Chem. Int. Ed. 2021, 60, 26550–26554. [Google Scholar] [CrossRef]
- Kong, R.Y.; Crimmin, M.R. Reversible insertion of CO into an aluminium–carbon bond. Chem. Commun. 2019, 55, 6181–6184. [Google Scholar] [CrossRef]
- Hicks, J.; Vasko, P.; Goicoechea, J.M.; Aldridge, S. Reversible, Room-Temperature C-C Bond Activation of Benzene by an Isolable Metal Complex. J. Am. Chem. Soc. 2019, 141, 11000–11003. [Google Scholar] [CrossRef] [PubMed]
- Boronski, J.T.; Thomas-Hargreaves, L.R.; Ellwanger, M.A.; Crumpton, A.E.; Hicks, J.; Bekiş, D.F.; Aldridge, S.; Buchner, M.R. Inducing Nucleophilic Reactivity at Beryllium with an Aluminyl Ligand. J. Am. Chem. Soc. 2023, 145, 4408–4413. [Google Scholar] [CrossRef] [PubMed]
- Dodonov, V.A.; Xiao, L.; Kushnerova, O.A.; Baranov, E.V.; Zhao, Y.; Yang, X.-J.; Fedushkin, I.L. Transformation of carbodiimides to guanidine derivatives facilitated by gallylenes. Chem. Commun. 2020, 56, 7475–7478. [Google Scholar] [CrossRef] [PubMed]
- Dodonov, V.A.; Kushnerova, O.A.; Baranov, E.V.; Novikov, A.S.; Fedushkin, I.L. Activation and modification of carbon dioxide by redox-active low-valent gallium species. Dalton Trans. 2021, 50, 8899–8906. [Google Scholar] [CrossRef] [PubMed]
- Fedushkin, I.L.; Lukoyanov, A.N.; Tishkina, A.N.; Fukin, G.K.; Lyssenko, K.A.; Hummert, M. Reduction of digallane [(dpp-bian)Ga-Ga(dpp-bian)] with Group 1 and 2 metals. Chem. Eur. J. 2010, 16, 7563–7571. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.-T.; Huang, C.-A.; Chen, C.-T. Palladacyclic Complexes Containing C,N-Type Ligands as Catalysts in Cross-Coupling Reactions. Eur. J. Inorg. Chem. 2008, 2008, 3142–3150. [Google Scholar] [CrossRef]
- Delebecq, E.; Pascault, J.-P.; Boutevin, B.; Ganachaud, F. On the Versatility of Urethane/Urea Bonds: Reversibility, Blocked Isocyanate, and Non-isocyanate Polyurethane. Chem. Rev. 2013, 113, 80–118. [Google Scholar] [CrossRef] [PubMed]
- Saunders, J.H.; Slocombe, R.J. The Chemistry of the Organic Isocyanates. Chem. Rev. 1948, 43, 203–218. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Yamazaki, H. Low-valent isocyanide complexes and clusters of palladium and platinum. Crystal structure of [Pt{C(=NR)N(R)C(=NR}(RNC)2](R = 2,6-Me2C6H3). J. Chem. Soc. Dalton Trans. 1989, 1989, 2161–2166. [Google Scholar] [CrossRef]
- Riera, V.; Ruiz, J.; Tiripicchio, A.; Camellini, M.T. Synthesis of coordinated carbon monoxide from isocyanide iron(II) compounds. Crystal structure of [Fe(dppe)(CO)(CN-p-tol)(p-tolN=C-N-p-tol-C=N-p-tol)]. J. Organomet. Chem. 1987, 327, C5–C8. [Google Scholar] [CrossRef]
- Hoberg, H.; Oster, B.W.; Krüger, C.; Tsay, Y.H. Nickela-heteroringe aus nickel(0) und phenylisocyanat. J. Organomet. Chem. 1983, 252, 365–373. [Google Scholar] [CrossRef]
- Paul, F.; Fischer, J.; Ochsenbein, P.; Osborn, J.A. Syntheses, interconversions and reactivity of heteropalladacycles made from aryl isocyanates and various phenanthroline Pd(II) precursors with small molecules. Comptes Rendus Chim. 2002, 5, 267–287. [Google Scholar] [CrossRef]
- Lam, H.-W.; Wilkinson, G.; Hussain-Bates, B.; Hursthouse, M.B. Reactions of tert-butyl isocyanate and trimethylsilyl azide with imidoamido compounds of chromium, molybdenum and tungsten. J. Chem. Soc. Dalton Trans. 1993, 1993, 781–788. [Google Scholar] [CrossRef]
- Weber, L.; Lassahn, U.; Stammler, H.-G.; Neumann, B. Inversely Polarized Phosphaalkenes as Phosphinidene- and Carbene-Transfer Reagents. Eur. J. Inorg. Chem. 2005, 2005, 4590–4597. [Google Scholar] [CrossRef]
- Cui, C.; Köpke, S.; Herbst-Irmer, R.; Roesky, H.W.; Noltemeyer, M.; Schmidt, H.-G.; Wrackmeyer, B. Facile Synthesis of Cyclopropene Analogues of Aluminum and an Aluminum Pinacolate, and the Reactivity of LAl[η2-C2(SiMe3)2] toward Unsaturated Molecules (L = HC[(CMe)(NAr)]2, Ar = 2,6-i-Pr2C6H3). J. Am. Chem. Soc. 2001, 123, 9091–9098. [Google Scholar] [CrossRef] [PubMed]
- Fedushkin, I.L.; Skatova, A.A.; Cherkasov, V.K.; Chudakova, V.A.; Dechert, S.; Hummert, M.; Schumann, H. Reduction of Benzophenone and 9(10H)-Anthracenone with the Magnesium Complex [(2,6-iPr2C6H3-bian)Mg(thf)3]. Chem. Eur. J. 2003, 9, 5778–5783. [Google Scholar] [CrossRef] [PubMed]
- Fachinetti, G.; Biran, C.; Floriani, C.; Chiesi Villa, A.; Guastini, C. C:O and C:C bond activation in diphenylketene promoted by dicarbonylbis(.eta.-cyclopentadienyl)titanium(II). Inorg. Chem. 1978, 17, 2995–3002. [Google Scholar] [CrossRef]
- Evans, W.J.; Drummond, D.K. Reductive coupling of pyridazine and benzaldehyde azine and reduction of bipyridine by samarium complex (C5Me5)2Sm(THF)2. J. Am. Chem. Soc. 1989, 111, 3329–3335. [Google Scholar] [CrossRef]
- Ohff, A.; Zippel, T.; Arndt, P.; Spannenberg, A.; Kempe, R.; Rosenthal, U. Reactions of Azines with Titanocene: C-H Activation, C-C Coupling, and N-N Cleavage to Heterobimetallic Complexes. Organometallics 1998, 17, 1649–1651. [Google Scholar] [CrossRef]
- Fedushkin, I.L.; Lukoyanov, A.N.; Fukin, G.K.; Ketkov, S.Y.; Hummert, M.; Schumann, H. Synthesis, Molecular Structure and DFT Study of (dpp-bian)Ga-M(Et2O)3 (M = Li, Na; dpp-bian=1,2-bis(2,6-diisopropylphenyl)imino acenaphthene)). Chem. Eur. J. 2008, 14, 8465–8468. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kim, T.H.; Shin, Y.W.; Jeon, Y.; Kim, J. Amitraz. Acta Crystallogr. Sect. E 2013, 69, o1300. [Google Scholar] [CrossRef] [PubMed]
- Carugo, O.; Poli, G.; Manzoni, L. Structure of N,N′,N″-triphenylbiuret. Acta Crystallogr. Sect. C 1992, 48, 2013–2016. [Google Scholar] [CrossRef]
- Ghosh, R.; Samuelson, A.G. Catalytic metathesis of carbon dioxide with heterocumulenes mediated by titanium isopropoxide. Chem. Commun. 2005, 2005, 2017–2019. [Google Scholar] [CrossRef] [PubMed]
- Hardman, N.J.; Power, P.P. Dimeric Gallium Oxide and Sulfide Species Stabilized by a Sterically Encumbered β-Diketiminate Ligand. Inorg. Chem. 2001, 40, 2474–2475. [Google Scholar] [CrossRef] [PubMed]
- Lide, D.R. CRC Handbook of Chemistry and Physics, 90th ed.; CD-ROM Version 2010; CRC Press/Taylor and Francis: Boca Raton, FL, USA, 2010. [Google Scholar]
- Wang, X.M.; Fan, R.Q.; Qiang, L.S.; Li, W.Q.; Wang, P.; Zhang, H.J.; Yang, Y.L. Tunable luminescence from rare 2D Ga(III)/In(III) coordination polymers coexisting with three different conjugated system aromatic ligands. Chem. Commun. 2014, 50, 5023–5026. [Google Scholar] [CrossRef] [PubMed]
- Cordero, B.; Gomez, V.; Platero-Prats, A.E.; Reves, M.; Echeverria, J.; Cremades, E.; Barragan, F.; Alvarez, S. Covalent radii revisited. Dalton Trans. 2008, 2008, 2832–2838. [Google Scholar] [CrossRef]
- Arii, H.; Amari, T.; Kobayashi, J.; Mochida, K.; Kawashima, T. Low-Coordinate Germanium(II) Centers Within Distorted Axially Chiral Seven-Membered Chelates: Stereo- and Enantioselective Cycloadditions. Angew. Chem. Int. Ed. 2012, 51, 6738–6741. [Google Scholar] [CrossRef]
- Mom, V.; de With, G. A reinvestigation on benzalazine, influence of TDS and comparison with different experiments. Acta Crystallogr. Sect. B 1978, 34, 2785–2789. [Google Scholar] [CrossRef]
- Bruker APEX3. Bruker Molecular Analysis Research Tool; v. 2018.7-2; Bruker AXS: Madison, WI, USA, 2018. [Google Scholar]
- Data Collection, Reduction and Correction Program; CrysAlisPro 1.171.40.67a—Software Package; Rigaku OD: Tokyo, Japan, 2019.
- Bruker. SAINT Data Reduction and Correction Program v. 8.40B; Bruker AXS: Madison, WI, USA, 2019. [Google Scholar]
- Sheldrick, G.M. SADABS v.2016/2, Bruker/Siemens Area Detector Absorption Correction Program; Bruker AXS: Madison, WI, USA, 2016. [Google Scholar]
- Krause, L.; Herbst-Irmer, R.; Sheldrick, G.M.; Stalke, D. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Crystallogr. 2015, 48, 3–10. [Google Scholar] [CrossRef]
- SCALE3 ABSPACK: Empirical Absorption Correction; CrysAlisPro 1.171.40.67a—Software Package; Rigaku OD: Tokyo, Japan, 2019.
- Farrugia, L. WinGX and ORTEP for Windows: An update. J. Appl. Crystallogr. 2012, 45, 849–854. [Google Scholar] [CrossRef]
- Sheldrick, G. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. SHELXTL. Structure Determination Software Suite; Version 6.14; Bruker AXS: Madison, WI, USA, 2003. [Google Scholar]
- Sheldrick, G. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dodonov, V.A.; Kushnerova, O.A.; Baranov, E.V.; Fedushkin, I.L. Reduction and Cycloaddition of Heteroalkenes at Ga(I) Bisamide Center. Reactions 2024, 5, 213-230. https://doi.org/10.3390/reactions5010009
Dodonov VA, Kushnerova OA, Baranov EV, Fedushkin IL. Reduction and Cycloaddition of Heteroalkenes at Ga(I) Bisamide Center. Reactions. 2024; 5(1):213-230. https://doi.org/10.3390/reactions5010009
Chicago/Turabian StyleDodonov, Vladimir A., Olga A. Kushnerova, Evgeny V. Baranov, and Igor L. Fedushkin. 2024. "Reduction and Cycloaddition of Heteroalkenes at Ga(I) Bisamide Center" Reactions 5, no. 1: 213-230. https://doi.org/10.3390/reactions5010009
APA StyleDodonov, V. A., Kushnerova, O. A., Baranov, E. V., & Fedushkin, I. L. (2024). Reduction and Cycloaddition of Heteroalkenes at Ga(I) Bisamide Center. Reactions, 5(1), 213-230. https://doi.org/10.3390/reactions5010009