Functional and Quality Assessment of a Spore Harvester for Entomopathogenic Fungi for Biopesticide Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Spore Harvester Design
2.2. Geometry, Material, and Power
2.3. Fungal Isolate and Culture Conditions
2.4. Inoculation and Incubation for Mass Production
2.5. Harvester Performance and Spore Counting
2.6. Colony-Forming Units
2.7. Statistical Analysis
3. Results
3.1. Harvester Operation Test
3.2. Quality Testing of the Obtained Product
3.3. Manufacturing Costs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharma, N.; Singhvi, R. Effects of Chemical Fertilizers and Pesticides on Human Health and Environment: A Review. Int. J. Agric. Environ. Biotechnol. 2017, 10, 675–680. [Google Scholar] [CrossRef]
- Khan, B.A.; Nadeem, M.A.; Nawaz, H.; Amin, M.M.; Abbasi, G.H.; Nadeem, M.; Ayub, M.A. Pesticides: Impacts on Agriculture Productivity, Environment, and Management Strategies. In Emerging Contaminants and Plants: Interactions, Adaptations and Remediation Technologies; Springer International Publishing: Cham, Switzerland, 2023; pp. 109–134. [Google Scholar]
- Glare, T.; Caradus, J.; Gelernter, W.; Jackson, T.; Keyhani, N.; Kohl, J.; Marrone, P.; Morin, N.; Stewart, A. Have Biopesticides Come of Age? Trends Biotechnol. 2012, 30, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Senthil-Nathan, S. A Review of Biopesticides and Their Mode of Action Against Insect Pests. In Environmental Sustainability; Springer: New Delhi, India, 2014; pp. 49–63. [Google Scholar] [CrossRef]
- Ferreira, J.M.; de Freitas Soares, F.E. Entomopathogenic Fungi Hydrolytic Enzymes: A New Approach to Biocontrol? J. Nat. Pestic. Res. 2023, 3, 100020. [Google Scholar] [CrossRef]
- Chandler, D.; Bailey, A.S.; Mark, G.T.; Davidson, G.; Greaves, J.; Grant, W.P. The development, regulation and use of bi-opesticides for integrated pest management (review). Phil. Trans. R. Soc. B 2011, 366, 1987–1998. [Google Scholar] [CrossRef]
- Samada, L.H.; Tambunan, U.S.F. Biopesticides as Promising Alternatives to Chemical Pesticides: A Review of Their Current and Future Status. Online J. Biol. Sci. 2020, 20, 66–76. [Google Scholar] [CrossRef]
- Nava, P.E.; García, G.C.; Camacho, B.J.R.; Vázquez, M.E.L. Bioplaguicidas: Una opción para el control biológico de plaga. Ra Ximhai 2012, 8, 17–29. (In Spanish) [Google Scholar] [CrossRef]
- Mantzoukas, S.; Eliopoulos, P.A. Endophytic Entomopathogenic Fungi: A Valuable Biological Control Tool against Plant Pests. Appl. Sci. 2020, 10, 360. [Google Scholar] [CrossRef]
- Sabbour, M.; Abd-El-Aziz, S.; Sherief, M. Efficacy of Three Entomopathogenic Fungi Alone or in Combination With Diatomaceous Earth Modifications for the Control of Three Pyralid Moths in Stored Grains. J. Plant Prot. Res. 2012, 52, 359–363. [Google Scholar] [CrossRef]
- Mohammed, A.A.; Hatcher, P.E. Combining entomopathogenic fungi and parasitoids to control the green peach aphid Myzus persicae. Biol. Control. 2017, 110, 44–55. [Google Scholar] [CrossRef]
- Javed, K.; Javed, H.; Mukhtar, T.; Qiu, D. Pathogenicity of some entomopathogenic fungal strains to green peach aphid, Myzus persicae Sulzer (Homoptera: Aphididae). Egypt. J. Biol. Pest Control 2019, 29, 92. [Google Scholar] [CrossRef]
- Fones, H.N.; Mardon, C.; Gurr, S.J. A role for the asexual spores in infection of Fraxinus excelsior by the ash-dieback fungus Hymenoscyphus fraxineus. Sci. Rep. 2016, 6, 34638. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-H.; Dong, J.-C.; Gao, J.-J.; Li, X.-P.; Hu, S.-J.; Li, J.; Hu, W.-X.; Zhao, X.-Y.; Wang, J.-J.; Qiu, L. Three Chitin Deacetylase Family Members of Beauveria bassiana Modulate Asexual Reproduction and Virulence of Fungi by Mediating Chitin Metabolism and Affect Fungal Parasitism and Saprophytic Life. Microbiol. Spectr. 2023, 11, e04748-22. [Google Scholar] [CrossRef]
- Leland, J.E.; McGuire, M.R.; Grace, J.A.; Jaronski, S.T.; Ulloa, M.; Park, Y.H.; Plattner, R.D. Strain Selection of a Fungal Ento-mopathogen, Beauveria bassiana, for Control of Plant Bugs (Lygus spp.) (Heteroptera: Miridae). Biol. Control 2005, 35, 104–114. [Google Scholar] [CrossRef]
- Zulfiana, D.; Zulfitri, A.; Lestari, A.S.; Krishanti, N.P.R.A.; Meisyara, D. Production of Conidia by Entomopathogenic Fungi and Their Pathogenicity against Coptotermes sp. Biosaintifika J. Biol. Biol. Educ. 2020, 12, 1–9. [Google Scholar] [CrossRef]
- Krishna, C. Solid-State Fermentation Systems—An Overview. Crit. Rev. Biotechnol. 2008, 28, 101–168. [Google Scholar] [CrossRef]
- Mota, D.P.A.; Murcia, O.B. Hongos entomopatógenos como alternativa para el control biológico de plagas. Ambi-Agua 2011, 6, 77–90. (In Spanish) [Google Scholar]
- Park, H.-S.; Yu, J.-H. Developmental regulators in Aspergillus fumigatus. J. Microbiol. 2016, 54, 223–231. [Google Scholar] [CrossRef]
- Hopke, A.; Mela, A.; Ellett, F.; Carter-House, D.; Peña, J.F.; Stajich, J.E.; Altamirano, S.; Lovett, B.; Egan, M.; Kale, S.; et al. Crowdsourced analysis of fungal growth and branching on microfluidic platforms. PLoS ONE 2021, 16, e0257823. [Google Scholar] [CrossRef] [PubMed]
- Feldbaum, R.A.; Yaakov, N.; Mani, K.A.; Yossef, E.; Metbeev, S.; Zelinger, E.; Belausov, E.; Koltai, H.; Ment, D.; Mechrez, G. Single cell encapsulation in a Pickering emulsion stabilized by TiO2 nanoparticles provides protection against UV radiation for a biopesticide. Colloids Surf. B Biointerfaces 2021, 206, 111958. [Google Scholar] [CrossRef] [PubMed]
- Nonomura, T.; Toyoda, H. Electrostatic Spore-Trapping Techniques for Managing Airborne Conidia Dispersed by the Powdery Mildew Pathogen. Agronomy 2022, 12, 2443. [Google Scholar] [CrossRef]
- Roy, H.E.; Steinkraus, D.C.; Eilenberg, J.; Hajek, A.E.; Pell, J.K. Bizarre Interactions and Endgames: Entomopathogenic Fungi and Their Arthropod Hosts. Annu. Rev. Entomol. 2006, 51, 331–357. [Google Scholar] [CrossRef]
- Gandarilla, P.F.; Arevalo, N.K.; Galán, W.L.; Sandoval, C.C.; Quintero, Z.I. Evaluation of Conidia Production and Mycelial Growth in Solid Culture Media from Native Strains of Entomopathogenic Fungi Isolated from Citrus-Growing Areas of México. Afr. J. Biotechnol. 2012, 11, 14453–14460. [Google Scholar] [CrossRef]
- Imoulan, A.; Hussain, M.; Kirk, P.M.; El Meziane, A.; Yao, Y.-J. Entomopathogenic fungus Beauveria: Host specificity, ecology and significance of morpho-molecular characterization in accurate taxonomic classification. J. Asia-Pac. Èntomol. 2017, 20, 1204–1212. [Google Scholar] [CrossRef]
- Cañedo, V.; Ames, T. Manual de Laboratorio para el Manejo de Hongos Entomopatógenos; Centro Internacional de la Papa (CIP): Lima, Perú, 2004. (In Spanish) [Google Scholar]
- Castillo, C.E.; Cañizalez, L.M.; Valera, R.; Godoy, J.C.; Guedez, C.; Olivar, R.; Morillo, S. Caracterización morfológica de Beauveria bassiana, aislada de diferentes insectos en Trujillo—Venezuela. Rev. Acad. 2012, 11, 275–281. (In Spanish) [Google Scholar]
- Mascarin, G.M.; Jaronski, S.T. The production and uses of Beauveria bassiana as a microbial insecticide. World J. Microbiol. Biotechnol. 2016, 32, 177. [Google Scholar] [CrossRef] [PubMed]
- Rivas-Franco, F.; Hampton, J.G.; Altier, N.A.; Swaminathan, J.; Rostás, M.; Wessman, P.; Glare, T.R. Production of micro-sclerotia from entomopathogenic fungi and use in maize seed coating as delivery for biocontrol against Fusarium graminearum. Front. Sustain. Food Syst. 2020, 4, 606828. [Google Scholar] [CrossRef]
- Meyling, N.V.; Eilenberg, J. Ecology of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in temperate agroecosystems: Potential for conservation biological control. Biol. Control 2007, 43, 145–155. [Google Scholar] [CrossRef]
- Rios-Velasco, C.; Pérez-Corral, D.A.; Salas-Marina, M.; Berlanga-Reyes, D.I.; Ornelas-Paz, J.J.; Muñiz, C.H.A.; Cambero-Campos, J.; Jacobo-Cuellar, J.L. Pathogenicity of the Hypocreales Fungi Beauveria Bassiana and Metarhizium Anisopliae against Insect Pests of Tomato. Southwest. Entomol. 2014, 39, 739–750. [Google Scholar] [CrossRef]
- Bapfubusa Niyibizi, I.A.; Hanna, R.; Kekeunou, S.; Membang, G.; Fiaboe, K.K.M.; Mahot, H.C.; Nchinda, V.P.; Tchoum-bougnang, F.; Kuate, J.; Ndjomatchoua, F.T.; et al. Potential of Cameroon-indigenous isolates of the ento-mopathogenic fungi Beauveria bassiana and Metarhizium anisopliae as microbial control agents of the flea beetle Nisotra uniformis. Biocontrol Sci. Technol. 2023, 33, 1–15. [Google Scholar] [CrossRef]
- Haik, Y.; Shahin, T.M. Engineering Design Process, 3rd ed.; Cengage Learning: Stanford, CA, USA, 2018. [Google Scholar]
- Jaronski, S.T.; Jackson, M.A. Mass Production of Entomopathogenic Hypocreales; Academic Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Kumar, E.V. Design and analysis of rotor shaft assembly of hammer mill crusher. Int. J. Eng. Manag. Res. 2013, 3, 22–30. [Google Scholar]
- Ojo, O.T.; Mohammed, T.I. Development of a Screw Press Briquette Making Machine. J. Adv. Appl. Sci. (JAAS) 2015, 3, 1–10. [Google Scholar]
- Senthamizhlselvan, P.; Sujeetha, J.A.R.; Jeyalakshmi, C. Growth, Sporulation and Biomass Production of Native Ento-mopathogenic Fungal Isolates on a Suitable Medium. J. Biopestic. 2010, 3, 466–470. [Google Scholar]
- Oghaz, N.A.; Hatamzadeh, S.; Rahnama, K.; Moghaddam, M.K.; Vaziee, S.; Tazik, Z. Adjustment and quantification of UV–visible spectrophotometry analysis: An accurate and rapid method for estimating Cladosporium spp. spore concentration in a water suspension. World J. Microbiol. Biotechnol. 2022, 38, 183. [Google Scholar] [CrossRef] [PubMed]
- Ghadge, P.N.; Prasad, K. Some Physical Properties of Rice Kernels: Variety PR-106. J. Food Process Technol. 2012, 3, 175. [Google Scholar] [CrossRef]
- Kumar, A.B.; Rao, P.V.; Edukondalu, L. Physical propieties of maize of grains. Int. J. Agric. Sci. 2017, 9, 4338–4434. [Google Scholar]
- Sandhya, C.; Sumantha, A.; Szakacs, G.; Pandey, A. Comparative evaluation of neutral protease production by Aspergillus oryzae in submerged and solid-state fermentation. Process. Biochem. 2005, 40, 2689–2694. [Google Scholar] [CrossRef]
- Amadi, O.; Onyema, N.; Nwagu, T.; Moneke, A.; Okolo, B.; Agu, R. Evaluating the Potential of Wild Cocoyam “Caladium Bicolor” for Ethanol Production Using Indigenous Fungal Isolates. Procedia Environ. Sci. 2016, 35, 809–817. [Google Scholar] [CrossRef]
- Jiang, X.; Fang, W.; Tong, J.; Liu, S.; Wu, H.; Shi, J. Metarhizium robertsii as a promising microbial agent for rice in situ cadmium reduction and plant growth promotion. Chemosphere 2022, 305, 135427. [Google Scholar] [CrossRef]
- Mathulwe, L.L.; Malan, A.P.; Stokwe, N.F. Mass Production of Entomopathogenic Fungi, Metarhizium robertsii and Metarhizium pinghaense, for Commercial Application against Insect Pests. J. Vis. Exp. 2022, 181, e63246. [Google Scholar]
- Gava, C.A.T.; Pereira, C.A.; Tavares, P.F.d.S.; da Paz, C.D. Applying antagonist yeast strains to control mango decay caused by Lasiodiplodia theobromae and Neofusicoccum parvum. Biol. Control. 2022, 170, 104912. [Google Scholar] [CrossRef]
- Bhuyan, S.; Yadav, M.; Giri, S.J.; Begum, S.; Das, S.; Phukan, A.; Priyadarshani, P.; Sarkar, S.; Jayswal, A.; Kabyashree, K.; et al. Microliter spotting and micro-colony observation: A rapid and simple approach for counting bacterial colony forming units. bioRxiv 2022. [Google Scholar] [CrossRef]
- Jaronski, S.T. Chapter 11—Mass Production of Entomopathogenic Fungi: State of the Art. In Mass Production of Beneficial Organisms; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Jenkins, N.E.; Heviefo, G.; Langewald, J.; Cherry, E.J.; Lomer, C.J. Development of mass production technology for aerial conidia for use as mycopesticides. Biocontrol News Inf. 1998, 19, 21–31. [Google Scholar]
- Posada, F.F. Production of Beauveria bassiana fungal spores on rice to control the coffee berry borer, Hypothenemus hampei, in Colombia. J. Insect Sci. 2008, 8, 41. [Google Scholar]
- Labarrete, S.N.; Ávila, R.I.; Orozco, M.J.E.; Pauste, R.H.; Fernández, L.B.L.; Guevara, A.M.E.; Díaz, P.H. Afecciones limitantes para trabajar en la elaboración de bioplaguicidas fúngicos producidos sobre sustratos sólidos. Rev. Cubana Salud Trab. 2014, 15, 21–24. (In Spanish) [Google Scholar]
- Bateman, R. Dropdata. El nuevo MycoHarvester (Versión 2017). Available online: http://www.dropdata.net/mycoharvester/MycoHarvester6_Spanish.pdf (accessed on 1 March 2023).
- Elósegui, C.; Fernández, L.O.; Ponce, E.; Borgues, G.; Rovesti, L.; Jimenez, J. Colecta de Esporas de Trichoderma Harzianum Rifai Cepa A-34 por Lecho Fluidizado y Ciclón Dual y por Tamizaje Vibratorio. Fitosanidad 2009, 13, 265–270. (In Spanish) [Google Scholar]
- DROPDATA Sites (2023). Available online: http://www.dropdata.net/mycoharvester/mhspec.htm (accessed on 27 February 2023).
- Pandey, A.K.; Kanaujia, K.R. Effect of different grains as solid substrates on sporulation, viability and pathogenicity of Metarhizium anisopliae (Metschnikoff) Sorokin. J. Biol. Control 2008, 22, 369–374. [Google Scholar]
- Sahayaraj, K.; Namasivayam, S.K.R. Mass Production of Entomopathogenic Fungi Using Agricultural Products and By Products. Afr. J. Biotechnol. 2008, 7, 1898–1906. [Google Scholar]
- Karanja, L.W.; Phiri, N.A.; Oduor, G.I. Effect of different solid substrates on mass production of Beauveria bassiana and Metarhizium anisopliae entomopathogens. In Proceedings of the 12th KARI Biennial Science Conference, Nairobi, Kenya, 8–12 November 2010; pp. 789–797. [Google Scholar]
- Gómez, H.R.; Zapata, A.G.; Torres, E.D.; Tenorio, M.C. Manual de Producción y Uso de Hongos Entomopatógenos; SENASA: La Molina, Perú, 2014. (In Spanish) [Google Scholar]
- Cabral, J.P. Can we use indoor fungi as bioindicators of indoor air quality? Historical perspectives and open questions. Sci. Total. Environ. 2010, 408, 4285–4295. [Google Scholar] [CrossRef]
- Harirchi, S.; Rousta, N.; Varjani, S.; Taherzadeh, M.J. Sampling, Preservation, and Growth Monitoring of Filamentous Fungi. In Current Developments in Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2023; pp. 149–180. [Google Scholar]
- Saha, B.C.; Cotta, M.A. Enzymatic saccharification and fermentation of alkaline peroxide pretreated rice hulls to ethanol. Enzym. Microb. Technol. 2007, 41, 528–532. [Google Scholar] [CrossRef]
- Navarro, D.M.D.L.; Abelilla, J.J.; Stein, H.H. Structures and characteristics of carbohydrates in diets fed to pigs: A review. J. Anim. Sci. Biotechnol. 2019, 10, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Gregorich, E.G.; Monreal, C.M.; Schnitzer, M.; Schulten, H.-R. Transformation of Plant Residues into Soil Organic Matter: Chemical Characterization of Plant Tissue, Isolated Soil Fractions, and Whole Soils. Soil Sci. 1996, 161, 680–693. [Google Scholar] [CrossRef]
- Nayak, S.K.; Behera, G.R.; Mishra, P.C. Physio-chemical characteristics of Punnang oil and rice husk-generated producer gas. Energy Sources Part A Recovery Util. Environ. Eff. 2017, 39, 291–298. [Google Scholar] [CrossRef]
- Liu, H.; Wu, M.; Gao, H.; Liu, Z.; Gao, J.; Wang, S. Crude oil removal by Meyerozyma consortium and nitrogen supplement: Hydrocarbon transformation, nitrogen fate, and enhancement mechanism. J. Environ. Chem. Eng. 2023, 11, 109034. [Google Scholar] [CrossRef]
- Fan, M.; Yuan, S.; Li, L.; Zheng, J.; Zhao, D.; Wang, C.; Wang, H.; Liu, X.; Liu, J. Application of Terpenoid Compounds in Food and Pharmaceutical Products. Fermentation 2023, 9, 119. [Google Scholar] [CrossRef]
- Reischke, S.; Rousk, J.; Bååth, E. The effects of glucose loading rates on bacterial and fungal growth in soil. Soil Biol. Biochem. 2014, 70, 88–95. [Google Scholar] [CrossRef]
- Cuero, R.; Ouellet, T.; Yu, J.; Mogongwa, N. Metal ion enhancement of fungal growth, gene expression and aflatoxin synthesis in Aspergillus flavus: RT-PCR characterization. J. Appl. Microbiol. 2003, 94, 953–961. [Google Scholar] [CrossRef]
- Rousta, N.; Larsson, K.; Fristedt, R.; Undeland, I.; Agnihotri, S.; Taherzadeh, M.J. Production of fungal biomass from oat flour for the use as a nutritious food source. NFS J. 2022, 29, 8–15. [Google Scholar] [CrossRef]
- Jenkins, N.E.; Grzywacz, D. Towards the standardization of quality control of fungal and viral biological control agents. In Quality Control and Production of Biological Control Agents: Theory and Testing Procedures; CAB International: Wallingford, UK, 2003; pp. 247–263. [Google Scholar]
- Elósegui, C.O.; Fernández-Larrea, V.O.; Ponce, G.E.; Borges, M.G.; Rovesti, L.; Jiménez, R.J. Collect of Trichoderma harzianum Rifai Cepa A34 spores using the method os separation by a fluid-bed and dual cyclone machine, and separation by electric vibratory sieving. Fitosanidad 2009, 13, 265–270. (In Spanish) [Google Scholar]
Substrate/Fungus | NHS (g per kg of the Substrate) | Concentration (Spores mL−1) | s2 | s | t (df, α) | t * | CFU mL−1 | |
---|---|---|---|---|---|---|---|---|
Corn-Ma | 34.15 ± 0.19 d | 2.0 × 1011 | 0.187 | 0.433 | 0.194 | 2.132 (4) | 13.685 | 1.51 × 109 |
Rice-Ma | 57.35 ± 0.17 a | 1.8 × 1011 | 0.148 | 0.384 | 0.172 | 2.132 (4) | 150.505 | 1.59 × 109 |
Corn-Bb | 35.47 ± 0.25 c | 3.1 × 1010 | 0.314 | 0.560 | 0.250 | 2.132 (4) | 15.850 | 1.00 × 109 |
Rice-Bb | 38.26 ± 0.23 b | 3.2 × 1010 | 0.273 | 0.522 | 0.234 | 2.132 (4) | 28.941 | 4.50 × 108 |
Quantity | Material | Unit Price | Total Price 1 |
---|---|---|---|
5 pieces | Stainless steel AISI-304 flat bar, 3 m long, 12.7 mm wide, and 3.17 mm thick | $8.48 | $42.42 |
1/2 piece | Stainless steel AISI-304 round bar, 6 m long and 12.7 mm in diameter | $48.86 | $27.14 |
1 piece | Stainless steel AISI-304 sheet, 22 gauge | $65.15 | $65.15 |
1 m | Stainless steel ASTM-20 mesh | $58.57 | $58.57 |
1 m | Stainless steel ASTM-30 mesh | $58.57 | $58.57 |
1 m | Stainless steel ASTM-40 mesh | $58.57 | $58.57 |
1 kg | 308l welding wire for stainless steel, 3.17 mm in diameter | $16.29 | $16.29 |
1 kg | 6013 welding rod, 3.17 mm in diameter | $3.53 | $3.53 |
6 pieces | Snap closure | $0.54 | $3.26 |
2 pieces | Floor bearing, 12.7 mm in diameter | $9.77 | $19.54 |
2 pieces | Square tubular profile, 18 gauge and 31.75 mm wide | $9.90 | $19.80 |
200 pieces | 3.17 mm metal screw | $0.01 | $2.17 |
4 pieces | 9.5 mm × 63.5 mm bolt | $0.27 | $1.09 |
8 pieces | 4.7 mm × 50.8 mm bolt | $0.11 | $0.87 |
20 pieces | 3.17 mm × 76.2 mm bolt with butterfly spring nut | $0.22 | $4.34 |
1 piece | 11.11 mm × 38.1 mm bolt | $0.27 | $0.27 |
1 bottle/jar | Nitrile contact adhesive | $2.74 | $2.74 |
2 pieces | Metal sandpaper, number 100 | $0.81 | $1.63 |
1 piece | Chrome color spray paint | $3.28 | $3.28 |
8 m | Industrial use of foam sealant | $2.17 | $17.37 |
1 piece | White silicone sealant | $2.71 | $2.71 |
Total | $409.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diego-Nava, F.; Granados-Echegoyen, C.; Ruíz-Vega, J.; Aquino-Bolaños, T.; Pérez-Pacheco, R.; Díaz-Ramos, A.; Alonso-Hernández, N.; Arroyo-Balán, F.; López-Hernández, M.B. Functional and Quality Assessment of a Spore Harvester for Entomopathogenic Fungi for Biopesticide Production. AgriEngineering 2023, 5, 801-813. https://doi.org/10.3390/agriengineering5020049
Diego-Nava F, Granados-Echegoyen C, Ruíz-Vega J, Aquino-Bolaños T, Pérez-Pacheco R, Díaz-Ramos A, Alonso-Hernández N, Arroyo-Balán F, López-Hernández MB. Functional and Quality Assessment of a Spore Harvester for Entomopathogenic Fungi for Biopesticide Production. AgriEngineering. 2023; 5(2):801-813. https://doi.org/10.3390/agriengineering5020049
Chicago/Turabian StyleDiego-Nava, Fidel, Carlos Granados-Echegoyen, Jaime Ruíz-Vega, Teodulfo Aquino-Bolaños, Rafael Pérez-Pacheco, Alejo Díaz-Ramos, Nancy Alonso-Hernández, Fabián Arroyo-Balán, and Mónica Beatriz López-Hernández. 2023. "Functional and Quality Assessment of a Spore Harvester for Entomopathogenic Fungi for Biopesticide Production" AgriEngineering 5, no. 2: 801-813. https://doi.org/10.3390/agriengineering5020049
APA StyleDiego-Nava, F., Granados-Echegoyen, C., Ruíz-Vega, J., Aquino-Bolaños, T., Pérez-Pacheco, R., Díaz-Ramos, A., Alonso-Hernández, N., Arroyo-Balán, F., & López-Hernández, M. B. (2023). Functional and Quality Assessment of a Spore Harvester for Entomopathogenic Fungi for Biopesticide Production. AgriEngineering, 5(2), 801-813. https://doi.org/10.3390/agriengineering5020049