Testing of Roller-Crimper-and-Undercutting-Blade-Equipped Prototype for Plants Termination
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Experimental Layout
2.2. Description of the Prototype and the Commercial Roller Crimper
2.3. Data Collection
2.4. Statistical Analysis
- -
- Y corresponds to the dependent variable (i.e., the percentage of green pixels of the felled plant biomass);
- -
- Y0 is the value of the dependent variable at time 0 (i.e., the percentage of green pixels of the felled plant biomass immediately after the machines’ intervention);
- -
- Plateau is a parameter estimated by the software and corresponds to the asymptotic value of the dependent variable (i.e., the percentage of green pixels of the felled plant biomass, which occurs at an infinite time);
- -
- X is the independent variable (i.e., the time, which in this case corresponds to days after termination);
- -
- k corresponds to the constant of decay (i.e., a constant estimated by the software that presents as unit the inverse of X (in this case days−1)).
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El Bilali, H. Transition Heuristic Frameworks in Research on Agro-Food Sustainability Transitions. Environ. Dev. Sustain. 2020, 22, 1693–1728. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, A.; Santos, S. Sustainable Approach to Weed Management: The Role of Precision Weed Management. Agronomy 2022, 12, 118. [Google Scholar] [CrossRef]
- Hasanuzzaman, M. Agronomic Crops, Volume 2: Management Practices, 1st ed.; Springer Nature Singapore Pte Ltd.: Singapore, 2019. [Google Scholar]
- Kader, M.A.; Senge, M.; Mojid, M.A.; Ito, K. Recent Advances in Mulching Materials and Methods for Modifying Soil Environment. Soil Tillage Res. 2017, 168, 155–166. [Google Scholar] [CrossRef]
- Frasconi, C.; Martelloni, L.; Antichi, D.; Raffaelli, M.; Fontanelli, M.; Peruzzi, A.; Benincasa, P.; Tosti, G. Combining Roller Crimpers and Flaming for the Termination of Cover Crops in Herbicide-Free No-till Cropping Systems. PLoS ONE 2019, 14, e0211573. [Google Scholar] [CrossRef] [Green Version]
- Warren Raffa, D.; Antichi, D.; Carlesi, S.; Frasconi, C.; Marini, S.; Priori, S.; Bàrberi, P. Groundcover Mulching in Mediterranean Vineyards Improves Soil Chemical, Physical and Biological Health Already in the Short Term. Agronomy 2021, 11, 787. [Google Scholar] [CrossRef]
- Antichi, D.; Carlesi, S.; Mazzoncini, M.; Bàrberi, P. Targeted Timing of Hairy Vetch Cover Crop Termination with Roller Crimper Can Eliminate Glyphosate Requirements in No-till Sunflower. Agron. Sustain. Dev. 2022, 42, 87. [Google Scholar] [CrossRef]
- Mirsky, S.B.; Ryan, M.R.; Curran, W.S.; Teasdale, J.R.; Maul, J.; Spargo, J.T.; Moyer, J.; Grantham, A.M.; Weber, D.; Way, T.R.; et al. Conservation Tillage Issues: Cover Crop-Based Organic Rotational No-till Grain Production in the Mid-Atlantic Region, USA. Renew. Agric. Food Syst. 2012, 27, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Frasconi, C.; Martelloni, L.; Raffaelli, M.; Fontanelli, M.; Abou Chehade, L.; Peruzzi, A.; Antichi, D. A Field Vegetable Transplanter for Use in Both Tilled and No-Till Soils. Trans. ASABE 2019, 62, 593–602. [Google Scholar] [CrossRef]
- Tosti, G.; Benincasa, P.; Farneselli, M.; Guiducci, M.; Onofri, A.; Tei, F. Processing Tomato–Durum Wheat Rotation under Integrated, Organic and Mulch-Based No-Tillage Organic Systems: Yield, N Balance and N Loss. Agronomy 2019, 9, 718. [Google Scholar] [CrossRef] [Green Version]
- Teasdale, J.R.; Mohler, C.L. The Quantitative Relationship between Weed Emergence and the Physical Properties of Mulches. Weed Sci. 2000, 48, 385–392. [Google Scholar] [CrossRef]
- Canali, S.; Campanelli, G.; Ciaccia, C.; Leteo, F.; Testani, E.; Montemurro, F. Conservation Tillage Strategy Based on the Roller Crimper Technology for Weed Control in Mediterranean Vegetable Organic Cropping Systems. Eur. J. Agron. 2013, 50, 11–18. [Google Scholar] [CrossRef]
- Canali, S.; Diacono, M.; Campanelli, G.; Montemurro, F. Organic No-Till with Roller Crimpers: Agro-Ecosystem Services and Applications in Organic Mediterranean Vegetable Productions. Sustain. Agric. Res. 2015, 4, 70. [Google Scholar] [CrossRef]
- Kornecki, T.S.; Price, A.J.; Raper, R.L.; Arriaga, F.J. New Roller Crimper Concepts for Mechanical Termination of Cover Crops in Conservation Agriculture. Renew. Agric. Food Syst. 2009, 24, 165–173. [Google Scholar] [CrossRef] [Green Version]
- Kornecki, T.S.; Price, A.J.; Raper, R.L. Performance of Different Roller Designs in Terminating Rye Cover Crop and Reducing Vibration. Appl. Eng. Agric. 2006, 22, 633–641. [Google Scholar] [CrossRef]
- Vincent-Caboud, L.; Casagrande, M.; David, C.; Ryan, M.R.; Silva, E.M.; Peigne, J. Using Mulch from Cover Crops to Facilitate Organic No-till Soybean and Maize Production. A Review. Agron. Sustain. Dev. 2019, 39, 45. [Google Scholar] [CrossRef]
- Kornecki, T.S.; Price, A.J.; Raper, R.L.; Bergtold, J.S. Effectiveness of Different Herbicide Applicators Mounted on a Roller/Crimper for Accelerated Rye Cover Crop Termination. Appl. Eng. Agric. 2009, 25, 819–826. [Google Scholar] [CrossRef]
- Ashford, D.L.; Reeves, D.W. Use of a Mechanical Roller-Crimper as an Alternative Kill Method for Cover Crops. Am. J. Altern. Agric. 2003, 18, 37–45. [Google Scholar] [CrossRef]
- Creamer, N.G.; Dabney, S.M. Killing Cover Crops Mechanically: Review of Recent Literature and Assessment of New Research Results. Soil Use Manag. 2002, 17, 32–40. [Google Scholar] [CrossRef]
- Liebert, J.A.; DiTommaso, A.; Ryan, M.R. Rolled Mixtures of Barley and Cereal Rye for Weed Suppression in Cover Crop–Based Organic No-Till Planted Soybean. Weed Sci. 2017, 65, 426–439. [Google Scholar] [CrossRef]
- Mirsky, S.B.; Curran, W.S.; Mortensen, D.A.; Ryan, M.R.; Shumway, D.L. Control of Cereal Rye with a Roller/Crimper as Influenced by Cover Crop Phenology. Agron. J. 2009, 101, 1589–1596. [Google Scholar] [CrossRef] [Green Version]
- Diacono, M.; Persiani, A.; Testani, E.; Montemurro, F. Sustainability of Agro-Ecological Practices in Organic Horticulture: Yield, Energy-Use and Carbon Footprint. Agroecol. Sustain. Food Syst. 2020, 44, 726–746. [Google Scholar] [CrossRef]
- Hefner, M.; Gebremikael, M.T.; Canali, S.; Sans Serra, F.X.; Petersen, K.K.; Sorensen, J.N.; De Neve, S.; Labouriau, R.; Kristensen, H.L. Cover Crop Composition Mediates the Constraints and Benefits of Roller-Crimping and Incorporation in Organic White Cabbage Production. Agric. Ecosyst. Environ. 2020, 296, 106908. [Google Scholar] [CrossRef]
- Magagnoli, S.; Masetti, A.; Depalo, L.; Sommaggio, D.; Campanelli, G.; Leteo, F.; Lövei, G.L.; Burgio, G. Cover Crop Termination Techniques Affect Ground Predation within an Organic Vegetable Rotation System: A Test with Artificial Caterpillars. Biol. Control 2018, 117, 109–114. [Google Scholar] [CrossRef]
- Miville, D.; Leroux, G.D. Rolled Winter Rye–Hairy Vetch Cover Crops for Weed Control in No-till Pumpkin. Weed Technol. 2018, 32, 251–259. [Google Scholar] [CrossRef]
- Keene, C.L.; Curran, W.S.; Wallace, J.M.; Ryan, M.R.; Mirsky, S.B.; VanGessel, M.J.; Barbercheck, M.E. Cover Crop Termination Timing Is Critical in Organic Rotational No-Till Systems. Agron. J. 2017, 109, 272–282. [Google Scholar] [CrossRef]
- Carr, P.; Gramig, G.; Liebig, M. Impacts of Organic Zero Tillage Systems on Crops, Weeds, and Soil Quality. Sustainability 2013, 5, 3172–3201. [Google Scholar] [CrossRef] [Green Version]
- Davis, A.S. Cover-Crop Roller–Crimper Contributes to Weed Management in No-Till Soybean. Weed Sci. 2010, 58, 300–309. [Google Scholar] [CrossRef]
- Teasdale, J.R.; Mirsky, S.B.; Spargo, J.T.; Cavigelli, M.A.; Maul, J.E. Reduced-Tillage Organic Corn Production in a Hairy Vetch Cover Crop. Agron. J. 2012, 104, 621–628. [Google Scholar] [CrossRef]
- Kornecki, T.S.; Arriaga, F.J.; Price, A.J. Roller Type and Operating Speed Effects on Rye Termination Rates, Soil Moisture, and Yield of Sweet Corn in a No-till System. HortScience 2012, 47, 217–223. [Google Scholar] [CrossRef] [Green Version]
- Antichi, D.; Tramacere, L.G.; Sbrana, M.; Bendinelli, S.; Frasconi, C. Agronomic Aspects of Cover Crops Termination with Roller Crimper. In Proceedings of the 50th Conference of the Italian Society of Agronomy, Udine, Italy, 15 September 2021; p. 3. [Google Scholar]
- Kornecki, T.S.; Kichler, C.M. Influence of Recurrent Rolling/Crimping of a Cereal Rye/Crimson Clover Cover Crop on No-Till Bush Bean Yield. AgriEngineering 2022, 4, 855–870. [Google Scholar] [CrossRef]
- Augustin, K.; Kuhwald, M.; Brunotte, J.; Duttmann, R. Wheel Load and Wheel Pass Frequency as Indicators for Soil Compaction Risk: A Four-Year Analysis of Traffic Intensity at Field Scale. Geosciences 2020, 10, 292. [Google Scholar] [CrossRef]
- Google Earth Pro Version 7.3.6.9326; Google LLC: Mountain View, CA, USA, 2022.
- Patrignani, A.; Ochsner, T.E. Canopeo: A Powerful New Tool for Measuring Fractional Green Canopy Cover. Agron. J. 2015, 107, 2312–2320. [Google Scholar] [CrossRef] [Green Version]
- Software IBM SPSS; IBM: Armonk, NY, USA, 2022.
- GraphPad Software Version 9.4.1; Dotmatics: Boston, MA, USA, 2022.
- Pignatti, S.; Guarino, R.; La Rosa, M. Flora d’Italia; Edagricole: Milano, Italy, 2017; Volume 1. [Google Scholar]
- Meier, U. Growth Stages of Mono- and Dicotyledonous Plants (BBCH Monograph); Open Agrar Repositorium: Quedlinburg, Germany, 2018. [Google Scholar]
- Chicouene, D. Mechanical Destruction of Weeds. A Review. Agron. Sustain. Dev. 2007, 27, 19–27. [Google Scholar] [CrossRef]
- Kornecki, T.S. Effects of Different Rollers and Rye Termination Methods on Soil Moisture and Cotton Production in a No-Till System. J. Cotton Sci. 2020, 24, 197–210. [Google Scholar] [CrossRef]
- Kornecki, T.S.; Kichler, C.M. Effectiveness of Cover Crop Termination Methods on No-Till Cantaloupe. Agriculture 2022, 12, 66. [Google Scholar] [CrossRef]
- Kornecki, T.S. Influence of Recurrent Rolling/Crimping on Cover Crop Termination, Soil Strength and Yield in No-Till Cotton. AgriEngineering 2020, 2, 631–648. [Google Scholar] [CrossRef]
- Creamer, N.G.; Plassman, B.; Bennett, M.A.; Wood, R.K.; Stinner, B.R.; Cardina, J. A Method for Mechanically Killing Cover Crops to Optimize Weed Suppression. Am. J. Altern. Agric. 1995, 10, 157–162. [Google Scholar] [CrossRef]
- Wortman, S.E.; Francis, C.A.; Bernards, M.A.; Blankenship, E.E.; Lindquist, J.L. Mechanical Termination of Diverse Cover Crop Mixtures for Improved Weed Suppression in Organic Cropping Systems. Weed Sci. 2013, 61, 162–170. [Google Scholar] [CrossRef]
Growth Form 1 | Growth Stage (BBCH) 2 | Average Height (m) | Average Cover (%) | |
---|---|---|---|---|
Avena sterilis L. | T scap | 65 | 0.70 | 2.5 |
Convolvulus arvensis L. | G rhiz | 40 | 0.15 | 6.2 |
Lolium multiflorum Lam. | T scap | 41 | 0.40 | 26.5 |
Picris echioides L. | T scap | 19 | 0.20 | 62.0 |
Verbena officinalis L. | H scap | 51 | 0.25 | 1.8 |
Others | - | - | - | 1.0 |
Prototype | Commercial Roller Crimper | |
---|---|---|
Degree of freedom | 30 | 30 |
R2 | 0.985 | 0.981 |
R2 adjusted | 0.984 | 0.979 |
Prototype | Commercial Roller Crimper | |||||
---|---|---|---|---|---|---|
Parameters | Ll 95% | Ul 95% | Ll 95% | Ul 95% | ||
Y0 (%) | 85.70 | 84.76 | 86.64 | 85.75 | 81.82 | 89.70 |
Plateau (%) | 0.23 | −0.11 | 0.57 | 5.35 | 2.73 | 7.81 |
k (day−1) | 1.45 | 1.40 | 1.50 | 0.39 | 0.34 | 0.44 |
Half-life (days) | 0.48 | 0.46 | 0.49 | 1.80 | 1.59 | 2.04 |
Prototype | Commercial Roller Crimper | ||
---|---|---|---|
Parameters | |||
Working speed | km∙h−1 | 4 | 7 |
Working width | m | 1.5 | 1.95 |
Working capacity | ha∙h−1 | 0.6 | 1.37 |
Hourly fuel consumption | kg∙h−1 | 7.18 | 4.57 |
Fuel consumption per hectare | kg∙ha−1 | 11.96 | 3.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sportelli, M.; Frasconi, C.; Gagliardi, L.; Fontanelli, M.; Raffaelli, M.; Sbrana, M.; Antichi, D.; Peruzzi, A. Testing of Roller-Crimper-and-Undercutting-Blade-Equipped Prototype for Plants Termination. AgriEngineering 2023, 5, 182-192. https://doi.org/10.3390/agriengineering5010013
Sportelli M, Frasconi C, Gagliardi L, Fontanelli M, Raffaelli M, Sbrana M, Antichi D, Peruzzi A. Testing of Roller-Crimper-and-Undercutting-Blade-Equipped Prototype for Plants Termination. AgriEngineering. 2023; 5(1):182-192. https://doi.org/10.3390/agriengineering5010013
Chicago/Turabian StyleSportelli, Mino, Christian Frasconi, Lorenzo Gagliardi, Marco Fontanelli, Michele Raffaelli, Massimo Sbrana, Daniele Antichi, and Andrea Peruzzi. 2023. "Testing of Roller-Crimper-and-Undercutting-Blade-Equipped Prototype for Plants Termination" AgriEngineering 5, no. 1: 182-192. https://doi.org/10.3390/agriengineering5010013
APA StyleSportelli, M., Frasconi, C., Gagliardi, L., Fontanelli, M., Raffaelli, M., Sbrana, M., Antichi, D., & Peruzzi, A. (2023). Testing of Roller-Crimper-and-Undercutting-Blade-Equipped Prototype for Plants Termination. AgriEngineering, 5(1), 182-192. https://doi.org/10.3390/agriengineering5010013