Cellular Effects of Rhynchophylline and Relevance to Sleep Regulation
Abstract
:1. Introduction
1.1. Rhynchophylline Pharmacology
1.2. Sleep and Its Regulation
1.3. Rhynchophylline and Sleep
2. Rhy Targets and Links to Sleep Regulation
2.1. Ion Channels
2.1.1. Voltage-Gated Calcium Channels
2.1.2. Potassium Channels
2.2. NMDA Receptors
2.3. EphA4 and Downstream Pathways
2.4. BDNF/TrkB Signaling
2.5. ERK/MAPK Pathway
2.6. PI3K/AKT Signaling Network
2.7. NF-κB and Neuroinflammation
2.8. Neurotransmitters Signaling
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sarris, J.; Panossian, A.; Schweitzer, I.; Stough, C.; Scholey, A. Herbal medicine for depression, anxiety and insomnia: A review of psychopharmacology and clinical evidence. Eur. Neuropsychopharmacol. 2011, 21, 841–860. [Google Scholar] [CrossRef]
- Singh, A.; Zhao, K. Treatment of insomnia with traditional chinese herbal medicine. Int. Rev. Neurobiol. 2017, 135, 97–115. [Google Scholar] [CrossRef]
- Yang, W.; Ip, S.P.; Liu, L.; Xian, Y.F.; Lin, Z.X. Uncaria rhynchophylla and its major constituents on central nervous system: A review on their pharmacological actions. Curr. Vasc. Pharmacol. 2019. [Google Scholar] [CrossRef]
- Ndagijimana, A.; Wang, X.; Pan, G.; Zhang, F.; Feng, H.; Olaleye, O. A review on indole alkaloids isolated from Uncaria rhynchophylla and their pharmacological studies. Fitoterapia 2013, 86, 35–47. [Google Scholar] [CrossRef]
- Shi, J.S.; Yu, J.X.; Chen, X.P.; Xu, R.X. Pharmacological actions of Uncaria alkaloids, rhynchophylline and isorhynchophylline. Acta Pharmacol. Sin. 2003, 24, 97–101. [Google Scholar]
- Shinno, H.; Inami, Y.; Inagaki, T.; Nakamura, Y.; Horiguchi, J. Effect of Yi-Gan San on psychiatric symptoms and sleep structure at patients with behavioral and psychological symptoms of dementia. Prog. Neuropsychopharmacol. Biol. Psychiatry 2008, 32, 881–885. [Google Scholar] [CrossRef] [PubMed]
- Ozone, M.; Yagi, T.; Chiba, S.; Aoki, K.; Kuroda, A.; Mitsui, K.; Itoh, H.; Sasaki, M. Effect of yokukansan on psychophysiological insomnia evaluated using cyclic alternating pattern as an objective marker of sleep instability. Sleep Biol. Rhythm 2012, 10, 157–160. [Google Scholar] [CrossRef]
- Nakamura, Y.; Tajima, K.; Kawagoe, I.; Kanai, M.; Mitsuhata, H. Efficacy of traditional herbal medicine, Yokukansan on patients with neuropathic pain. Masui 2009, 58, 1248–1255. [Google Scholar]
- Yamanaka, E.; Kimizuka, Y.; Aimi, N.; Sakai, S.; Haginiwa, J. Studies of plants containing indole alkaloids. IX. Quantitative analysis of tertiary alkaloids in various parts of Uncaria rhynchophylla MIQ. Yakugaku Zasshi 1983, 103, 1028–1033. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Zhou, S. Antihypertensive and neuroprotective activities of rhynchophylline: The role of rhynchophylline in neurotransmission and ion channel activity. J. Ethnopharmacol. 2010, 132, 15–27. [Google Scholar] [CrossRef]
- Laus, G.; Teppner, H. The alkaloids of an Uncaria rhynchophylla (Rubiaceae-Coptosapelteae). Phyton (Horn Austria) 1996, 36, 185–196. [Google Scholar]
- Laus, G.; Brössner, D.; Keplinger, K. Alkaloids of peruvian Uncaria tomentosa. Phytochemistry 1997, 45, 855–860. [Google Scholar] [CrossRef]
- Wang, X.; Zheng, M.; Liu, J.; Huang, Z.; Bai, Y.; Ren, Z.; Wang, Z.; Tian, Y.; Qiao, Z.; Liu, W.; et al. Differences of first-pass effect in the liver and intestine contribute to the stereoselective pharmacokinetics of rhynchophylline and isorhynchophylline epimers in rats. J. Ethnopharmacol. 2017, 209, 175–183. [Google Scholar] [CrossRef]
- Wu, Z.F.; Wang, Y.Q.; Wan, N.; Ke, G.; Yue, P.F.; Chen, H.; Zhan, J.J.; Yang, M. Structural stabilities and transformation mechanism of Rhynchophylline and Isorhynchophylline by ultra performance liquid chromatography/time-of-flight mass spectrometry (UPLC/Q-TOF-MS). Molecules 2015, 20, 14849–14859. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.J.; Hsueh, T.Y.; Lin, L.C.; Tsai, T.H. Determination of protein-unbound rhynchophylline brain distribution by microdialysis and ultra-performance liquid chromatography with tandem mass spectrometry. Biomed. Chromatogr. 2014, 28, 901–906. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.N.; Yang, Y.F.; Xu, W.; Yang, X.W. The blood-brain barrier permeability of six indole alkaloids from Uncariae Ramulus cum Uncis in the MDCK-pHaMDR cell monolayer model. Molecules 2017, 22, 1944. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.C.; Yao, W.; Qu, Y.; Nakamura, M.; Dong, C.; Yang, C.; Ren, Q.; Ma, M.; Han, M.; Shirayama, Y.; et al. Increased EphA4-ephexin1 signaling in the medial prefrontal cortex plays a role in depression-like phenotype. Sci. Rep. 2017, 7, 7133. [Google Scholar] [CrossRef] [Green Version]
- Fu, A.K.; Hung, K.W.; Huang, H.; Gu, S.; Shen, Y.; Cheng, E.Y.; Ip, F.C.; Huang, X.; Fu, W.Y.; Ip, N.Y. Blockade of EphA4 signaling ameliorates hippocampal synaptic dysfunctions in mouse models of Alzheimer's disease. Proc. Natl. Acad. Sci. USA 2014, 111, 9959–9964. [Google Scholar] [CrossRef] [Green Version]
- Shao, H.; Yang, Y.; Mi, Z.; Zhu, G.X.; Qi, A.P.; Ji, W.G.; Zhu, Z.R. Anticonvulsant effect of Rhynchophylline involved in the inhibition of persistent sodium current and NMDA receptor current in the pilocarpine rat model of temporal lobe epilepsy. Neuroscience 2016, 337, 355–369. [Google Scholar] [CrossRef]
- Zhou, J.Y.; Mo, Z.X.; Zhou, S.W. Rhynchophylline down-regulates NR2B expression in cortex and hippocampal CA1 area of amphetamine-induced conditioned place preference rat. Arch. Pharm. Res. 2010, 33, 557–565. [Google Scholar] [CrossRef]
- Guo, Y.; Luo, C.; Tu, G.; Li, C.; Liu, Y.; Liu, W.; Lam Yung, K.K.; Mo, Z. Rhynchophylline downregulates phosphorylated cAMP response element binding protein, nuclear receptor-related-1, and brain-derived neurotrophic factor expression in the hippocampus of ketamine-induced conditioned place preference rats. Pharmacogn. Mag. 2018, 14, 81–86. [Google Scholar] [CrossRef]
- Yoo, J.H.; Ha, T.W.; Hong, J.T.; Oh, K.W. Rhynchophylline, one of major constituents of Uncariae Ramulus et Uncus enhances pentobarbital-induced sleep behaviors and Rapid Eye Movement Sleep in rodents. Nat. Prod. Sci. 2016, 22, 263–269. [Google Scholar] [CrossRef] [Green Version]
- Frank, M.G.; Heller, H.C. The function(s) of sleep. Handb. Exp. Pharmacol. 2019, 253, 3–34. [Google Scholar] [CrossRef] [PubMed]
- Kempf, A.; Song, S.M.; Talbot, C.B.; Miesenbock, G. A potassium channel beta-subunit couples mitochondrial electron transport to sleep. Nature 2019, 568, 230–234. [Google Scholar] [CrossRef]
- Vyazovskiy, V.V.; Walton, M.E.; Peirson, S.N.; Bannerman, D.M. Sleep homeostasis, habits and habituation. Curr. Opin. Neurobiol. 2017, 44, 202–211. [Google Scholar] [CrossRef]
- Boyce, R.; Williams, S.; Adamantidis, A. REM sleep and memory. Curr. Opin. Neurobiol. 2017, 44, 167–177. [Google Scholar] [CrossRef]
- Timofeev, I.; Chauvette, S. Sleep slow oscillation and plasticity. Curr. Opin. Neurobiol. 2017, 44, 116–126. [Google Scholar] [CrossRef]
- Irwin, M.R. Sleep and inflammation: Partners in sickness and in health. Nat. Rev. Immunol. 2019, 19, 702–715. [Google Scholar] [CrossRef]
- Abel, T.; Havekes, R.; Saletin, J.M.; Walker, M.P. Sleep, plasticity and memory from molecules to whole-brain networks. Curr. Biol. 2013, 23, R774–R788. [Google Scholar] [CrossRef] [Green Version]
- Headley, D.B.; Pare, D. Common oscillatory mechanisms across multiple memory systems. NPJ Sci. Learn. 2017, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franken, P.; Dijk, D.J.; Tobler, I.; Borbely, A.A. Sleep deprivation in rats: Effects on EEG power spectra, vigilance states, and cortical temperature. Am. J. Physiol. 1991, 261, R198–R208. [Google Scholar] [CrossRef] [PubMed]
- Hubbard, J.; Gent, T.C.; Hoekstra, M.M.B.; Emmenegger, Y.; Mongrain, V.; Landolt, H.P.; Adamantidis, A.R.; Franken, P. Rapid fast-delta decay following prolonged wakefulness marks a phase of wake-inertia in NREM sleep. Nat. Commun. 2020, 11, 3130. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, S.M.; Sirota, A.; Buzsaki, G. Theta and gamma coordination of hippocampal networks during waking and rapid eye movement sleep. J. Neurosci. 2008, 28, 6731–6741. [Google Scholar] [CrossRef] [Green Version]
- Steriade, M.; McCormick, D.A.; Sejnowski, T.J. Thalamocortical oscillations in the sleeping and aroused brain. Science 1993, 262, 679–685. [Google Scholar] [CrossRef]
- Steriade, M.; Timofeev, I.; Grenier, F. Natural waking and sleep states: A view from inside neocortical neurons. J. Neurophysiol. 2001, 85, 1969–1985. [Google Scholar] [CrossRef]
- Borbely, A.A. A two process model of sleep regulation. Hum. Neurobiol. 1982, 1, 195–204. [Google Scholar] [PubMed]
- Daan, S.; Beersma, D.G.; Borbely, A.A. Timing of human sleep: Recovery process gated by a circadian pacemaker. Am. J. Physiol. 1984, 246, R161–R183. [Google Scholar] [CrossRef] [PubMed]
- Dijk, D.J.; Czeisler, C.A. Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans. J. Neurosci. 1995, 15, 3526–3538. [Google Scholar] [CrossRef]
- Jones, B.E. Arousal and sleep circuits. Neuropsychopharmacology 2020, 45, 6–20. [Google Scholar] [CrossRef]
- Saper, C.B.; Scammell, T.E.; Lu, J. Hypothalamic regulation of sleep and circadian rhythms. Nature 2005, 437, 1257–1263. [Google Scholar] [CrossRef]
- Adamantidis, A.R.; Zhang, F.; Aravanis, A.M.; Deisseroth, K.; de Lecea, L. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 2007, 450, 420–424. [Google Scholar] [CrossRef]
- Carter, M.E.; Yizhar, O.; Chikahisa, S.; Nguyen, H.; Adamantidis, A.; Nishino, S.; Deisseroth, K.; de Lecea, L. Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat. Neurosci. 2010, 13, 1526–1533. [Google Scholar] [CrossRef]
- Han, Y.; Shi, Y.F.; Xi, W.; Zhou, R.; Tan, Z.B.; Wang, H.; Li, X.M.; Chen, Z.; Feng, G.; Luo, M.; et al. Selective activation of cholinergic basal forebrain neurons induces immediate sleep-wake transitions. Curr. Biol. 2014, 24, 693–698. [Google Scholar] [CrossRef] [Green Version]
- Kroeger, D.; Ferrari, L.L.; Petit, G.; Mahoney, C.E.; Fuller, P.M.; Arrigoni, E.; Scammell, T.E. Cholinergic, glutamatergic, and GABAergic neurons of the pedunculopontine tegmental nucleus have distinct effects on sleep/wake behavior in mice. J. Neurosci. 2017, 37, 1352–1366. [Google Scholar] [CrossRef] [PubMed]
- Smith, H.R.; Leibold, N.K.; Rappoport, D.A.; Ginapp, C.M.; Purnell, B.S.; Bode, N.M.; Alberico, S.L.; Kim, Y.C.; Audero, E.; Gross, C.T.; et al. Dorsal raphe serotonin neurons mediate CO2-induced arousal from sleep. J. Neurosci. 2018, 38, 1915–1925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boucetta, S.; Cisse, Y.; Mainville, L.; Morales, M.; Jones, B.E. Discharge profiles across the sleep-waking cycle of identified cholinergic, GABAergic, and glutamatergic neurons in the pontomesencephalic tegmentum of the rat. J. Neurosci. 2014, 34, 4708–4727. [Google Scholar] [CrossRef] [Green Version]
- Chung, S.; Weber, F.; Zhong, P.; Tan, C.L.; Nguyen, T.N.; Beier, K.T.; Hormann, N.; Chang, W.C.; Zhang, Z.; Do, J.P.; et al. Identification of preoptic sleep neurons using retrograde labelling and gene profiling. Nature 2017, 545, 477–481. [Google Scholar] [CrossRef] [Green Version]
- Van Dort, C.J.; Zachs, D.P.; Kenny, J.D.; Zheng, S.; Goldblum, R.R.; Gelwan, N.A.; Ramos, D.M.; Nolan, M.A.; Wang, K.; Weng, F.J.; et al. Optogenetic activation of cholinergic neurons in the PPT or LDT induces REM sleep. Proc. Natl. Acad. Sci. USA 2015, 112, 584–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luppi, P.H.; Billwiller, F.; Fort, P. Selective activation of a few limbic structures during paradoxical (REM) sleep by the claustrum and the supramammillary nucleus: Evidence and function. Curr. Opin. Neurobiol. 2017, 44, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Shinno, H.; Kamei, M.; Nakamura, Y.; Inami, Y.; Horiguchi, J. Successful treatment with Yi-Gan San for rapid eye movement sleep behavior disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 2008, 32, 1749–1751. [Google Scholar] [CrossRef] [PubMed]
- Matsui, K.; Sasai-Sakuma, T.; Ishigooka, J.; Nishimura, K.; Inoue, Y. Effect of Yokukansan for the treatment of idiopathic rapid eye movement sleep behavior disorder: A retrospective analysis of consecutive patients. J. Clin. Sleep Med. 2019, 15, 1173–1178. [Google Scholar] [CrossRef]
- Ozone, M.; Shimazaki, H.; Ichikawa, H.; Shigeta, M. Efficacy of yokukansan compared with clonazepam for rapid eye movement sleep behaviour disorder: A preliminary retrospective study. Psychogeriatrics 2020. [Google Scholar] [CrossRef] [PubMed]
- Ohtomo, Y.; Umino, D.; Nijama, S.; Fujinaga, S.; Shimizu, T. Yokukansan: A treatment option for nocturnal enuresis in children by improving sleep quality. Juntendo Med. J. 2014, 60, 536–542. [Google Scholar] [CrossRef] [Green Version]
- Aizawa, R.; Kanbayashi, T.; Saito, Y.; Ogawa, Y.; Sugiyama, T.; Kitajima, T.; Kaneko, Y.; Abe, M.; Shimizu, T. Effects of Yoku-kan-san-ka-chimpi-hange on the sleep of normal healthy adult subjects. Psychiatry Clin. Neurosci. 2002, 56, 303–304. [Google Scholar] [CrossRef]
- Pan, W.; Kwak, S.; Li, G.; Chen, Y.; Cai, D. Therapeutic effect of Yang-Xue-Qing-Nao granules on sleep dysfunction in Parkinson’s disease. Chin. Med. 2013, 8, 14. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.Z.; Liu, R. Therapeutic evaluation on needling method of regulating the conception vessel and calming the mind for perimenopausal sleep disorder. J. Acupunct. Tuina Sci. 2013, 11, 142–146. [Google Scholar] [CrossRef]
- Egashira, N.; Nogami, A.; Iwasaki, K.; Ishibashi, A.; Uchida, N.; Takasaki, K.; Mishima, K.; Nishimura, R.; Oishi, R.; Fujiwara, M. Yokukansan enhances pentobarbital-induced sleep in socially isolated mice: Possible involvement of GABA(A)-benzodiazepine receptor complex. J. Pharmacol. Sci. 2011, 116, 316–320. [Google Scholar] [CrossRef] [Green Version]
- Murata, K.; Li, F.; Shinguchi, K.; Ogata, M.; Fujita, N.; Takahashi, R. Yokukansankachimpihange improves the social isolation-induced sleep disruption and allopregnanolone reduction in mice. Front. Nutr. 2020, 7, 8. [Google Scholar] [CrossRef] [Green Version]
- Nagao, M.; Takasaki, K.; Nogami, A.; Hirai, Y.; Moriyama, H.; Uchida, N.; Kubota, K.; Katsurabayashi, S.; Mishima, K.; Nishimura, R.; et al. Effect of Yokukansan on sleep disturbance in a rat model of cerebrovascular dementia. Tradit. Kampo Med. 2014, 1, 19–26. [Google Scholar] [CrossRef]
- Jeenapongsa, R.; Tohda, M. Effects of Choto-san and Chotoko on thiopental-induced sleeping time. J. Tradit. Med. 2003, 20, 165–167. [Google Scholar]
- Shi, J.S.; Huang, B.; Wu, Q.; Ren, R.X.; Xie, X.L. Effects of rhynchophylline on motor activity of mice and serotonin and dopamine in rat brain. Zhongguo Yao Li Xue Bao 1993, 14, 114–117. [Google Scholar]
- Sakakibara, I.; Terabayashi, S.; Kubo, M.; Higuchi, M.; Komatsu, Y.; Okada, M.; Taki, K.; Kamei, J. Effect on locomotion of indole alkaloids from the hooks of uncaria plants. Phytomedicine 1999, 6, 163–168. [Google Scholar] [CrossRef]
- Quílez, A.; Saenz, M.T.; García, M.D. Uncaria tomentosa (Willd. ex. Roem. & Schult.) DC. and Eucalyptus globulus Labill. interactions when administered with diazepam. Phytother. Res. 2012, 26, 458–461. [Google Scholar]
- Chou, C.H.; Gong, C.L.; Chao, C.C.; Lin, C.H.; Kwan, C.Y.; Hsieh, C.L.; Leung, Y.M. Rhynchophylline from Uncaria rhynchophylla functionally turns delayed rectifiers into A-Type K+ channels. J. Nat. Prod. 2009, 72, 830–834. [Google Scholar] [CrossRef]
- Kang, T.H.; Murakami, Y.; Takayama, H.; Kitajima, M.; Aimi, N.; Watanabe, H.; Matsumoto, K. Protective effect of rhynchophylline and isorhynchophylline on in vitro ischemia-induced neuronal damage in the hippocampus: Putative neurotransmitter receptors involved in their action. Life Sci. 2004, 76, 331–343. [Google Scholar] [CrossRef] [PubMed]
- Kai, L.; Wang, Z.F.; Xue, C.H. Effects of Rhynchophylline on L-type calcium channels in isolated rat cortical neurons during acute hypoxia. J. Chin. Pharm. Sci. 1998, 7, 205–208. [Google Scholar]
- Wang, X.L.; Zhang, L.M.; Hua, Z. Blocking effect of rhynchophylline on calcium channels in isolated rat ventricular myocytes. Zhongguo Yao Li Xue Bao 1994, 15, 115–118. [Google Scholar] [PubMed]
- Kang, T.H.; Murakami, Y.; Matsumoto, K.; Takayama, H.; Kitajima, M.; Aimi, N.; Watanabe, H. Rhynchophylline and isorhynchophylline inhibit NMDA receptors expressed in Xenopus oocytes. Eur. J. Pharmacol. 2002, 455, 27–34. [Google Scholar] [CrossRef]
- Li, P.Y.; Zeng, X.R.; Cheng, J.; Wen, J.; Inoue, I.; Yang, Y. Rhynchophylline-induced vasodilation in human mesenteric artery is mainly due to blockage of L-type calcium channels in vascular smooth muscle cells. Naunyn Schmiedebergs Arch. Pharmacol. 2013, 386, 973–982. [Google Scholar] [CrossRef] [PubMed]
- Qin, Q.J.; Cui, L.Q.; Li, P.; Wang, Y.B.; Zhang, X.Z.; Guo, M.L. Rhynchophylline ameliorates myocardial ischemia/reperfusion injury through the modulation of mitochondrial mechanisms to mediate myocardial apoptosis. Mol. Med. Rep. 2019, 19, 2581–2590. [Google Scholar] [CrossRef]
- Song, Y.; Qu, R.; Zhu, S.; Zhang, R.; Ma, S. Rhynchophylline attenuates LPS-induced pro-inflammatory responses through down-regulation of MAPK/NF-kappaB signaling pathways in primary microglia. Phytother. Res. 2012, 26, 1528–1533. [Google Scholar] [CrossRef]
- He, Y.; Zeng, S.Y.; Zhou, S.W.; Qian, G.S.; Peng, K.; Mo, Z.X.; Zhou, J.Y. Effects of rhynchophylline on GluN1 and GluN2B expressions in primary cultured hippocampal neurons. Fitoterapia 2014, 98, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Hao, H.F.; Liu, L.M.; Pan, C.S.; Wang, C.S.; Gao, Y.S.; Fan, J.Y.; Han, J.Y. Rhynchophylline ameliorates endothelial dysfunction via Src-PI3K/Akt-eNOS cascade in the cultured intrarenal arteries of spontaneous hypertensive rats. Front. Physiol. 2017, 8, 928. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Niu, C.; Zhang, X.; Dong, M. Gastrodin and Isorhynchophylline synergistically inhibit MPP(+)-induced oxidative stress in SH-SY5Y cells by targeting ERK1/2 and GSK-3beta pathways: Involvement of Nrf2 nuclear translocation. ACS Chem. Neurosci. 2018, 9, 482–493. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Mak, S.; Zuo, X.; Li, H.; Wang, Y.; Han, Y. Neuroprotection against MPP(+)-induced cytotoxicity through the activation of PI3-K/Akt/GSK3beta/MEF2D signaling pathway by Rhynchophylline, the major tetracyclic oxindole alkaloid isolated from Uncaria rhynchophylla. Front. Pharmacol. 2018, 9, 768. [Google Scholar] [CrossRef] [PubMed]
- Yuan, D.; Ma, B.; Yang, J.Y.; Xie, Y.Y.; Wang, L.; Zhang, L.J.; Kano, Y.; Wu, C.F. Anti-inflammatory effects of rhynchophylline and isorhynchophylline in mouse N9 microglial cells and the molecular mechanism. Int. Immunopharmacol. 2009, 9, 1549–1554. [Google Scholar] [CrossRef]
- Zhou, J.Y.; Chen, J.; Zhou, S.W.; Mo, Z.X. Individual and combined effects of rhynchophylline and ketamine on proliferation, NMDAR1 and GluA2/3 protein expression in PC12 cells. Fitoterapia 2013, 85, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, Y.; Coats, A.B.; Tuazon, J.P.; Jo, M.; Borlongan, C.V. Rhynchophylline promotes stem cell autonomous metabolic homeostasis. Cytotherapy 2020, 22, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Chen, M.; Wang, W.; Zhou, M.; Liu, C.; Fan, Y.; Shi, D. Protection by rhynchophylline against MPTP/MPP(+)-induced neurotoxicity via regulating PI3K/Akt pathway. J. Ethnopharmacol. 2021, 268, 113568. [Google Scholar] [CrossRef]
- Shao, H.; Mi, Z.; Ji, W.G.; Zhang, C.H.; Zhang, T.; Ren, S.C.; Zhu, Z.R. Rhynchophylline protects against the amyloid beta-induced increase of spontaneous discharges in the hippocampal CA1 region of rats. Neurochem. Res. 2015, 40, 2365–2373. [Google Scholar] [CrossRef]
- Lu, Y.F.; Xie, X.L.; Wu, Q.; Wen, G.R.; Yang, S.F.; Shi, J.S. Effects of rhynchophylline on monoamine transmitter contents of striatum and hippocampus in cerebral ischemic rats. Chin. J. Pharmacol. Toxicol. 2004, 18, 253–258. [Google Scholar]
- Lai, T.; Chen, L.; Chen, X.; He, J.; Lv, P.; Ge, H. Rhynchophylline attenuates migraine in trigeminal nucleus caudalis in nitroglycerin-induced rat model by inhibiting MAPK/NF-kB signaling. Mol. Cell. Biochem. 2019, 461, 205–212. [Google Scholar] [CrossRef]
- Yang, Y.; Ji, W.G.; Zhu, Z.R.; Wu, Y.L.; Zhang, Z.Y.; Qu, S.C. Rhynchophylline suppresses soluble Abeta1-42-induced impairment of spatial cognition function via inhibiting excessive activation of extrasynaptic NR2B-containing NMDA receptors. Neuropharmacology 2018, 135, 100–112. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Wang, Y.; Lv, X.; Yu, X.; Li, X.; Li, H.; Wang, Y.; Lu, D.; Qi, R.; Wang, H. Rhynchophylline prevents cardiac dysfunction and improves survival in lipopolysaccharide-challenged mice via suppressing macrophage I-kappaBalpha phosphorylation. Int. Immunopharmacol. 2012, 14, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Ho, T.Y.; Tang, N.Y.; Hsiang, C.Y.; Hsieh, C.L. Uncaria rhynchophylla and rhynchophylline improved kainic acid-induced epileptic seizures via IL-1beta and brain-derived neurotrophic factor. Phytomedicine 2014, 21, 893–900. [Google Scholar] [CrossRef]
- Hsieh, C.L.; Ho, T.Y.; Su, S.Y.; Lo, W.Y.; Liu, C.H.; Tang, N.Y. Uncaria rhynchophylla and Rhynchophylline inhibit c-Jun N-terminal kinase phosphorylation and nuclear factor-kappaB activity in kainic acid-treated rats. Am. J. Chin. Med. 2009, 37, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Hsu, H.C.; Tang, N.Y.; Liu, C.H.; Hsieh, C.L. Antiepileptic effect of Uncaria rhynchophylla and Rhynchophylline involved in the initiation of c-Jun N-terminal kinase phosphorylation of MAPK signal pathways in acute seizures of kainic acid-treated rats. Evid. Based Complement. Altern. Med. 2013, 2013, 961289. [Google Scholar] [CrossRef] [Green Version]
- Jiang, M.; Chen, Y.; Li, C.; Peng, Q.; Fang, M.; Liu, W.; Kang, Q.; Lin, Y.; Yung, K.K.; Mo, Z. Inhibiting effects of rhynchophylline on zebrafish methamphetamine dependence are associated with amelioration of neurotransmitters content and down-regulation of TH and NR2B expression. Prog. Neuropsychopharmacol. Biol. Psychiatry 2016, 68, 31–43. [Google Scholar] [CrossRef]
- Zhu, C.; Liu, W.; Li, J.; Chen, Z.J.; Li, C.; Zhou, Y.T.; Mo, Z.X. Rhynchophylline reverses methamphetamine-induced CPP by regulating GluR1 expression in zebrafish. Chin. Pharmacol. Bull. 2019, 35, 620–623. [Google Scholar]
- Liu, W.; Peng, Q.X.; Lin, X.L.; Luo, C.H.; Jiang, M.J.; Mo, Z.X.; Yung, K.K. Effect of rhynchophylline on the expression of p-CREB and sc-Fos in striatum and hippocampal CA1 area of methamphetamine-induced conditioned place preference rats. Fitoterapia 2014, 92, 16–22. [Google Scholar] [CrossRef]
- Zhou, J.Y.; Mo, Z.X.; Zhou, S.W. Effect of rhynchophylline on central neurotransmitter levels in amphetamine-induced conditioned place preference rat brain. Fitoterapia 2010, 81, 844–848. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Tu, G.; Luo, C.; Guo, Y.; Fang, M.; Zhu, C.; Li, H.; Ou, J.; Zhou, Y.; Liu, W.; et al. Effects of rhynchophylline on the hippocampal miRNA expression profile in ketamine-addicted rats. Prog. Neuropsychopharmacol. Biol. Psychiatry 2018, 86, 379–389. [Google Scholar] [CrossRef]
- Li, J.; Liu, W.; Peng, Q.; Jiang, M.; Luo, C.; Guo, Y.; Liu, Y.; Fang, M.; Mo, Z. Effect of rhynchophylline on conditioned place preference on expression of NR2B in methamphetamine-dependent mice. Biochem. Biophys Res. Commun. 2014, 452, 695–700. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Zhong, R.; Xia, Z.; Song, J.; Feng, L. Neuroprotective effects of rhynchophylline against ischemic brain injury via regulation of the Akt/mTOR and TLRs signaling pathways. Molecules 2014, 19, 11196–11210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.W.; Hsieh, C.L. Oral Uncaria rhynchophylla (UR) reduces kainic acid-induced epileptic seizures and neuronal death accompanied by attenuating glial cell proliferation and S100B proteins in rats. J. Ethnopharmacol. 2011, 135, 313–320. [Google Scholar] [CrossRef]
- Long, H.; Ruan, J.; Zhang, M.; Wang, C.; Huang, Y. Rhynchophylline attenuates Tourette Syndrome via BDNF/NF-kappaB pathway in vivo and in vitro. Neurotox Res. 2019, 36, 756–763. [Google Scholar] [CrossRef]
- Long, H.; Zhang, M.; Wang, C.; Hang, Y. Rhynchophylline attenuates neurotoxicity in Tourette Syndrome rats. Neurotox. Res. 2019, 36, 679–687. [Google Scholar] [CrossRef]
- Xian, Y.F.; Mao, Q.Q.; Wu, J.C.; Su, Z.R.; Chen, J.N.; Lai, X.P.; Ip, S.P.; Lin, Z.X. Isorhynchophylline treatment improves the amyloid-beta-induced cognitive impairment in rats via inhibition of neuronal apoptosis and tau protein hyperphosphorylation. J. Alzheimers Dis. 2014, 39, 331–346. [Google Scholar] [CrossRef]
- Xian, Y.F.; Ip, S.P.; Li, H.Q.; Qu, C.; Su, Z.R.; Chen, J.N.; Lin, Z.X. Isorhynchophylline exerts antidepressant-like effects in mice via modulating neuroinflammation and neurotrophins: Involvement of the PI3K/Akt/GSK-3beta signaling pathway. FASEB J. 2019, 33, 10393–10408. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Li, H.; Zhao, Y.; Lv, C.; Zhou, G. Rhynchophylline attenuates allergic bronchial asthma by inhibiting transforming growth factor-beta1-mediated Smad and mitogen-activated protein kinase signaling transductions in vivo and in vitro. Exp. Ther. Med. 2019, 17, 251–259. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Cui, Y.; Dai, S.; Deng, W.; Wang, H.; Qin, W.; Yang, H.; Liu, H.; Yue, J.; Wu, D.; et al. Isorhynchophylline enhances Nrf2 and inhibits MAPK pathway in cardiac hypertrophy. Naunyn Schmiedebergs Arch. Pharmacol. 2020, 393, 203–212. [Google Scholar] [CrossRef]
- Lipscombe, D.; Helton, T.D.; Xu, W. L-type calcium channels: The low down. J. Neurophysiol. 2004, 92, 2633–2641. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.B.; Chen, C.X.; Sim, S.M.; Kwan, C.Y. In vitro vasodilator mechanisms of the indole alkaloids rhynchophylline and isorhynchophylline, isolated from the hook of Uncaria rhynchophylla (Miquel). Naunyn Schmiedebergs Arch. Pharmacol. 2004, 369, 232–238. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, G.X.; Huang, X.N. Effect of rhynchophylline on the contraction of rabbit aorta. Zhongguo Yao Li Xue Bao 1987, 8, 425–429. [Google Scholar] [PubMed]
- Wiera, G.; Nowak, D.; van Hove, I.; Dziegiel, P.; Moons, L.; Mozrzymas, J.W. Mechanisms of NMDA receptor- and voltage-gated L-Type calcium channel-dependent hippocampal LTP critically rely on proteolysis that is mediated by distinct metalloproteinases. J. Neurosci. 2017, 37, 1240–1256. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; John, M.; Madhavan, M.; James, J.; Omkumar, R.V. Alteration in the phosphorylation status of NMDA receptor GluN2B subunit by activation of both NMDA receptor and L-type voltage gated calcium channel. Neurosci. Lett. 2019, 709, 134343. [Google Scholar] [CrossRef] [PubMed]
- Zamponi, G.W. Targeting voltage-gated calcium channels in neurological and psychiatric diseases. Nat. Rev. Drug Discov. 2016, 15, 19–34. [Google Scholar] [CrossRef]
- Lacinova, L.; Moosmang, S.; Langwieser, N.; Hofmann, F.; Kleppisch, T. Cav1.2 calcium channels modulate the spiking pattern of hippocampal pyramidal cells. Life Sci. 2008, 82, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Hansen, A.K.; Nedergaard, S.; Andreasen, M. Intrinsic Ca2+-dependent theta oscillations in apical dendrites of hippocampal CA1 pyramidal cells in vitro. J. Neurophysiol. 2014, 112, 631–643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plumbly, W.; Brandon, N.; Deeb, T.Z.; Hall, J.; Harwood, A.J. L-type voltage-gated calcium channel regulation of in vitro human cortical neuronal networks. Sci. Rep. 2019, 9, 13810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kabir, Z.D.; Che, A.; Fischer, D.K.; Rice, R.C.; Rizzo, B.K.; Byrne, M.; Glass, M.J.; De Marco Garcia, N.V.; Rajadhyaksha, A.M. Rescue of impaired sociability and anxiety-like behavior in adult cacna1c-deficient mice by pharmacologically targeting eIF2alpha. Mol. Psychiatry 2017, 22, 1096–1109. [Google Scholar] [CrossRef]
- Ode, K.L.; Katsumata, T.; Tone, D.; Ueda, H.R. Fast and slow Ca(2+)-dependent hyperpolarization mechanisms connect membrane potential and sleep homeostasis. Curr. Opin. Neurobiol. 2017, 44, 212–221. [Google Scholar] [CrossRef] [PubMed]
- Bazhenov, M.; Timofeev, I.; Steriade, M.; Sejnowski, T.J. Model of thalamocortical slow-wave sleep oscillations and transitions to activated States. J. Neurosci. 2002, 22, 8691–8704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinnegger-Brauns, M.J.; Huber, I.G.; Koschak, A.; Wild, C.; Obermair, G.J.; Einzinger, U.; Hoda, J.C.; Sartori, S.B.; Striessnig, J. Expression and 1,4-dihydropyridine-binding properties of brain L-type calcium channel isoforms. Mol. Pharmacol. 2009, 75, 407–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, D.; Dedic, N.; Flachskamm, C.; Voule, S.; Deussing, J.M.; Kimura, M. Cacna1c (Cav1.2) modulates electroencephalographic rhythm and rapid eye movement sleep recovery. Sleep 2015, 38, 1371–1380. [Google Scholar] [CrossRef] [Green Version]
- Kantojarvi, K.; Liuhanen, J.; Saarenpaa-Heikkila, O.; Satomaa, A.L.; Kylliainen, A.; Polkki, P.; Jaatela, J.; Toivola, A.; Milani, L.; Himanen, S.L.; et al. Variants in calcium voltage-gated channel subunit Alpha1 C-gene (CACNA1C) are associated with sleep latency in infants. PLoS ONE 2017, 12, e0180652. [Google Scholar] [CrossRef] [Green Version]
- Schmutz, I.; Chavan, R.; Ripperger, J.A.; Maywood, E.S.; Langwieser, N.; Jurik, A.; Stauffer, A.; Delorme, J.E.; Moosmang, S.; Hastings, M.H.; et al. A specific role for the REV-ERBalpha-controlled L-Type Voltage-Gated Calcium Channel CaV1.2 in resetting the circadian clock in the late night. J. Biol. Rhythm 2014, 29, 288–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manis, P.B. Delayed rectifier and A-Type potassium channels. In Encyclopedia of Computational Neuroscience; Jaeger, D., Jung, R., Eds.; Springer: New York, NY, USA, 2015; pp. 971–985. [Google Scholar]
- Sheng, M.; Tsaur, M.L.; Jan, Y.N.; Jan, L.Y. Contrasting subcellular localization of the Kv1.2 K+ channel subunit in different neurons of rat brain. J. Neurosci. 1994, 14, 2408–2417. [Google Scholar] [CrossRef]
- Tsaur, M.L.; Sheng, M.; Lowenstein, D.H.; Jan, Y.N.; Jan, L.Y. Differential expression of K+ channel mRNAs in the rat brain and down-regulation in the hippocampus following seizures. Neuron 1992, 8, 1055–1067. [Google Scholar] [CrossRef]
- Espinosa, F.; Marks, G.; Heintz, N.; Joho, R.H. Increased motor drive and sleep loss in mice lacking Kv3-type potassium channels. Genes Brain Behav. 2004, 3, 90–100. [Google Scholar] [CrossRef]
- Douglas, C.L.; Vyazovskiy, V.; Southard, T.; Chiu, S.Y.; Messing, A.; Tononi, G.; Cirelli, C. Sleep in Kcna2 knockout mice. BMC Biol. 2007, 5, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vyazovskiy, V.V.; Deboer, T.; Rudy, B.; Lau, D.; Borbely, A.A.; Tobler, I. Sleep EEG in mice that are deficient in the potassium channel subunit K.v.3.2. Brain Res. 2002, 947, 204–211. [Google Scholar] [CrossRef]
- Douglas, C.L.; Vyazovskiy, V.; Southard, T.; Faraguna, U.; Cirelli, C.; Tononi, G. Voltage-dependent potassium channel Kv1.2: Effects on sleep and EEG power spectrum of intracortical injections of an anti-Kv1.2 antibody. Sleep 2006, 29, A36. [Google Scholar]
- Bushey, D.; Huber, R.; Tononi, G.; Cirelli, C. Drosophila Hyperkinetic mutants have reduced sleep and impaired memory. J. Neurosci. 2007, 27, 5384–5393. [Google Scholar] [CrossRef]
- Tatsuki, F.; Sunagawa, G.A.; Shi, S.; Susaki, E.A.; Yukinaga, H.; Perrin, D.; Sumiyama, K.; Ukai-Tadenuma, M.; Fujishima, H.; Ohno, R.; et al. Involvement of Ca(2+)-dependent hyperpolarization in sleep duration in mammals. Neuron 2016, 90, 70–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malinow, R.; Malenka, R.C. AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci. 2002, 25, 103–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Wong, T.P.; Aarts, M.; Rooyakkers, A.; Liu, L.; Lai, T.W.; Wu, D.C.; Lu, J.; Tymianski, M.; Craig, A.M.; et al. NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo. J. Neurosci. 2007, 27, 2846–2857. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Kurup, P.; Zhang, Y.; Goebel-Goody, S.M.; Wu, P.H.; Hawasli, A.H.; Baum, M.L.; Bibb, J.A.; Lombroso, P.J. Extrasynaptic NMDA receptors couple preferentially to excitotoxicity via calpain-mediated cleavage of STEP. J. Neurosci. 2009, 29, 9330–9343. [Google Scholar] [CrossRef]
- Yin, D.; Dong, H.; Wang, T.X.; Hu, Z.Z.; Cheng, N.N.; Qu, W.M.; Huang, Z.L. Glutamate activates the histaminergic tuberomammillary nucleus and increases wakefulness in rats. Neuroscience 2019, 413, 86–98. [Google Scholar] [CrossRef] [PubMed]
- Manfridi, A.; Brambilla, D.; Mancia, M. Stimulation of NMDA and AMPA receptors in the rat nucleus basalis of Meynert affects sleep. Am. J. Physiol. 1999, 277, R1488–R1492. [Google Scholar] [CrossRef]
- Datta, S.; Siwek, D.F. Excitation of the brain stem pedunculopontine tegmentum cholinergic cells induces wakefulness and REM sleep. J. Neurophysiol. 1997, 77, 2975–2988. [Google Scholar] [CrossRef] [PubMed]
- Datta, S.; Spoley, E.E.; Patterson, E.H. Microinjection of glutamate into the pedunculopontine tegmentum induces REM sleep and wakefulness in the rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2001, 280, R752–R759. [Google Scholar] [CrossRef] [PubMed]
- Campbell, I.G.; Feinberg, I. NREM delta stimulation following MK-801 is a response of sleep systems. J. Neurophysiol. 1996, 76, 3714–3720. [Google Scholar] [CrossRef]
- Campbell, I.G.; Feinberg, I. Comparison of MK-801 and sleep deprivation effects on NREM, REM, and waking spectra in the rat. Sleep 1999, 22, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, I.; Shinno, H.; Ando, N.; Mori, T.; Nakamura, Y. The effect of memantine on sleep architecture and psychiatric symptoms in patients with Alzheimer’s disease. Acta Neuropsychiatr. 2016, 28, 157–164. [Google Scholar] [CrossRef]
- Kaushik, M.K.; Kumar, V.M.; Mallick, H.N. Glutamate microinjection at the medial preoptic area enhances slow wave sleep in rats. Behav. Brain Res. 2011, 217, 240–243. [Google Scholar] [CrossRef]
- Mukherjee, D.; Kaushik, M.K.; Jaryal, A.K.; Kumar, V.M.; Mallick, H.N. Glutamate microinjection in the medial septum of rats decreases paradoxical sleep and increases slow wave sleep. Neuroreport 2012, 23, 451–456. [Google Scholar] [CrossRef]
- Kocsis, B. State-dependent increase of cortical gamma activity during REM sleep after selective blockade of NR2B subunit containing NMDA receptors. Sleep 2012, 35, 1011–1016. [Google Scholar] [CrossRef]
- El Gaamouch, F.; Buisson, A.; Moustie, O.; Lemieux, M.; Labrecque, S.; Bontempi, B.; De Koninck, P.; Nicole, O. Interaction between alphaCaMKII and GluN2B controls ERK-dependent plasticity. J. Neurosci. 2012, 32, 10767–10779. [Google Scholar] [CrossRef]
- Krapivinsky, G.; Krapivinsky, L.; Manasian, Y.; Ivanov, A.; Tyzio, R.; Pellegrino, C.; Ben-Ari, Y.; Clapham, D.E.; Medina, I. The NMDA receptor is coupled to the ERK pathway by a direct interaction between NR2B and RasGRF1. Neuron 2003, 40, 775–784. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, W.; Li, D.; Li, M.; Wang, P.; Wen, J.; Liang, M.; Su, B.; Yin, Y. IGF-1 alleviates NMDA-induced excitotoxicity in cultured hippocampal neurons against autophagy via the NR2B/PI3K-AKT-mTOR pathway. J. Cell. Physiol. 2014, 229, 1618–1629. [Google Scholar] [CrossRef]
- Yoshii, A.; Constantine-Paton, M. BDNF induces transport of PSD-95 to dendrites through PI3K-AKT signaling after NMDA receptor activation. Nat. Neurosci. 2007, 10, 702–711. [Google Scholar] [CrossRef] [PubMed]
- Dolmetsch, R.E.; Pajvani, U.; Fife, K.; Spotts, J.M.; Greenberg, M.E. Signaling to the nucleus by an L-type calcium channel-calmodulin complex through the MAP kinase pathway. Science 2001, 294, 333–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wheeler, D.G.; Groth, R.D.; Ma, H.; Barrett, C.F.; Owen, S.F.; Safa, P.; Tsien, R.W. Ca(V)1 and Ca(V)2 channels engage distinct modes of Ca(2+) signaling to control CREB-dependent gene expression. Cell 2012, 149, 1112–1124. [Google Scholar] [CrossRef] [Green Version]
- Gale, N.W.; Baluk, P.; Pan, L.; Kwan, M.; Holash, J.; DeChiara, T.M.; McDonald, D.M.; Yancopoulos, G.D. Ephrin-B2 selectively marks arterial vessels and neovascularization sites in the adult, with expression in both endothelial and smooth-muscle cells. Dev. Biol. 2001, 230, 151–160. [Google Scholar] [CrossRef] [Green Version]
- Matsuo, K.; Otaki, N. Bone cell interactions through Eph/ephrin: Bone modeling, remodeling and associated diseases. Cell Adh. Migr. 2012, 6, 148–156. [Google Scholar] [CrossRef] [Green Version]
- Stark, D.A.; Karvas, R.M.; Siegel, A.L.; Cornelison, D.D. Eph/ephrin interactions modulate muscle satellite cell motility and patterning. Development 2011, 138, 5279–5289. [Google Scholar] [CrossRef] [Green Version]
- Murai, K.K.; Pasquale, E.B. ‘Eph’ective signaling: Forward, reverse and crosstalk. J. Cell Sci. 2003, 116, 2823–2832. [Google Scholar] [CrossRef] [Green Version]
- Murai, K.K.; Pasquale, E.B. Eph receptors and ephrins in neuron-astrocyte communication at synapses. Glia 2011, 59, 1567–1578. [Google Scholar] [CrossRef] [PubMed]
- Carmona, M.A.; Murai, K.K.; Wang, L.; Roberts, A.J.; Pasquale, E.B. Glial ephrin-A3 regulates hippocampal dendritic spine morphology and glutamate transport. Proc. Natl. Acad. Sci. USA 2009, 106, 12524–12529. [Google Scholar] [CrossRef] [Green Version]
- Fu, A.K.; Hung, K.W.; Fu, W.Y.; Shen, C.; Chen, Y.; Xia, J.; Lai, K.O.; Ip, N.Y. APC(Cdh1) mediates EphA4-dependent downregulation of AMPA receptors in homeostatic plasticity. Nat. Neurosci. 2011, 14, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Fu, W.Y.; Chen, Y.; Sahin, M.; Zhao, X.S.; Shi, L.; Bikoff, J.B.; Lai, K.O.; Yung, W.H.; Fu, A.K.; Greenberg, M.E.; et al. Cdk5 regulates EphA4-mediated dendritic spine retraction through an ephexin1-dependent mechanism. Nat. Neurosci. 2007, 10, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Freyburger, M.; Pierre, A.; Paquette, G.; Belanger-Nelson, E.; Bedont, J.; Gaudreault, P.O.; Drolet, G.; Laforest, S.; Blackshaw, S.; Cermakian, N.; et al. EphA4 is involved in sleep regulation but not in the electrophysiological response to sleep deprivation. Sleep 2016, 39, 613–624. [Google Scholar] [CrossRef] [Green Version]
- Freyburger, M.; Poirier, G.; Carrier, J.; Mongrain, V. Shorter duration of non-rapid eye movement sleep slow waves in EphA4 knockout mice. J. Sleep Res. 2017, 26, 539–546. [Google Scholar] [CrossRef] [PubMed]
- Kiessling, S.; O’Callaghan, E.K.; Freyburger, M.; Cermakian, N.; Mongrain, V. The cell adhesion molecule EphA4 is involved in circadian clock functions. Genes Brain Behav. 2018, 17, 82–92. [Google Scholar] [CrossRef] [Green Version]
- Korte, M.; Carroll, P.; Wolf, E.; Brem, G.; Thoenen, H.; Bonhoeffer, T. Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. Proc. Natl. Acad. Sci. USA 1995, 92, 8856–8860. [Google Scholar] [CrossRef] [Green Version]
- Kang, H.; Schuman, E.M. Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus. Science 1995, 267, 1658–1662. [Google Scholar] [CrossRef]
- Lu, B. BDNF and activity-dependent synaptic modulation. Learn. Mem. 2003, 10, 86–98. [Google Scholar] [CrossRef] [Green Version]
- Vigers, A.J.; Amin, D.S.; Talley-Farnham, T.; Gorski, J.A.; Xu, B.; Jones, K.R. Sustained expression of brain-derived neurotrophic factor is required for maintenance of dendritic spines and normal behavior. Neuroscience 2012, 212, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, A.; Carnahan, J.; Greenberg, M.E. Requirement for BDNF in activity-dependent survival of cortical neurons. Science 1994, 263, 1618–1623. [Google Scholar] [CrossRef]
- Kowianski, P.; Lietzau, G.; Czuba, E.; Waskow, M.; Steliga, A.; Morys, J. BDNF: A key factor with multipotent impact on brain signaling and synaptic plasticity. Cell. Mol. Neurobiol. 2018, 38, 579–593. [Google Scholar] [CrossRef]
- Li, W.; Keifer, J. BDNF-induced synaptic delivery of AMPAR subunits is differentially dependent on NMDA receptors and requires ERK. Neurobiol. Learn. Mem. 2009, 91, 243–249. [Google Scholar] [CrossRef] [Green Version]
- Ying, S.W.; Futter, M.; Rosenblum, K.; Webber, M.J.; Hunt, S.P.; Bliss, T.V.; Bramham, C.R. Brain-derived neurotrophic factor induces long-term potentiation in intact adult hippocampus: Requirement for ERK activation coupled to CREB and upregulation of Arc synthesis. J. Neurosci. 2002, 22, 1532–1540. [Google Scholar] [CrossRef] [Green Version]
- Yasuda, M.; Fukuchi, M.; Tabuchi, A.; Kawahara, M.; Tsuneki, H.; Azuma, Y.; Chiba, Y.; Tsuda, M. Robust stimulation of TrkB induces delayed increases in BDNF and Arc mRNA expressions in cultured rat cortical neurons via distinct mechanisms. J. Neurochem. 2007, 103, 626–636. [Google Scholar] [CrossRef]
- Blum, R.; Konnerth, A. Neurotrophin-mediated rapid signaling in the central nervous system: Mechanisms and functions. Physiology (Bethesda) 2005, 20, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, M.; Rahmani, F.; Rezaei, N. The brain-derived neurotrophic factor: Missing link between sleep deprivation, insomnia, and depression. Neurochem. Res. 2020, 45, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, B.C.; Monteiro, S.; Candida, M.; Adler, N.; Paes, F.; Rocha, N.; Nardi, A.E.; Murillo-Rodriguez, E.; Machado, S. Relationship between brain-derived neurotrofic factor (Bdnf) and sleep on depression: A critical review. Clin. Pract. Epidemiol. Ment. Health 2017, 13, 213–219. [Google Scholar] [CrossRef]
- Schmitt, K.; Holsboer-Trachsler, E.; Eckert, A. BDNF in sleep, insomnia, and sleep deprivation. Ann. Med. 2016, 48, 42–51. [Google Scholar] [CrossRef]
- Kushikata, T.; Fang, J.; Krueger, J.M. Brain-derived neurotrophic factor enhances spontaneous sleep in rats and rabbits. Am. J. Physiol. 1999, 276, R1334–R1338. [Google Scholar] [CrossRef]
- Deuschle, M.; Schredl, M.; Wisch, C.; Schilling, C.; Gilles, M.; Geisel, O.; Hellweg, R. Serum brain-derived neurotrophic factor (BDNF) in sleep-disordered patients: Relation to sleep stage N3 and rapid eye movement (REM) sleep across diagnostic entities. J. Sleep Res. 2018, 27, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Fan, T.T.; Chen, W.H.; Shi, L.; Lin, X.; Tabarak, S.; Chen, S.J.; Que, J.Y.; Bao, Y.P.; Tang, X.D.; Shi, J.; et al. Objective sleep duration is associated with cognitive deficits in primary insomnia: BDNF may play a role. Sleep 2019, 42. [Google Scholar] [CrossRef]
- Watson, A.J.; Henson, K.; Dorsey, S.G.; Frank, M.G. The truncated TrkB receptor influences mammalian sleep. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2015, 308, R199–R207. [Google Scholar] [CrossRef] [Green Version]
- Faraguna, U.; Vyazovskiy, V.V.; Nelson, A.B.; Tononi, G.; Cirelli, C. A causal role for brain-derived neurotrophic factor in the homeostatic regulation of sleep. J. Neurosci. 2008, 28, 4088–4095. [Google Scholar] [CrossRef] [Green Version]
- Bachmann, V.; Klein, C.; Bodenmann, S.; Schafer, N.; Berger, W.; Brugger, P.; Landolt, H.P. The BDNF Val66Met polymorphism modulates sleep intensity: EEG frequency- and state-specificity. Sleep 2012, 35, 335–344. [Google Scholar] [CrossRef]
- Guindalini, C.; Mazzotti, D.R.; Castro, L.S.; D’Aurea, C.V.; Andersen, M.L.; Poyares, D.; Bittencourt, L.R.; Tufik, S. Brain-derived neurotrophic factor gene polymorphism predicts interindividual variation in the sleep electroencephalogram. J. Neurosci. Res. 2014, 92, 1018–1023. [Google Scholar] [CrossRef] [PubMed]
- Gosselin, N.; De Beaumont, L.; Gagnon, K.; Baril, A.A.; Mongrain, V.; Blais, H.; Montplaisir, J.; Gagnon, J.F.; Pelleieux, S.; Poirier, J.; et al. BDNF Val66Met polymorphism interacts with sleep consolidation to predict ability to create new declarative memories. J. Neurosci. 2016, 36, 8390–8398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, T.; Zhang, H.; Xu, Z.P.; Lu, Y.; Fu, Q.; Wang, W.; Li, G.H.; Wang, Y.Y.; Yang, Y.T.; Mi, W.D. Activation of brain-derived neurotrophic factor signaling in the basal forebrain reverses acute sleep deprivation-induced fear memory impairments. Brain Behav. 2020, 10, e01592. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Li, H.; Xu, Z.; Ma, D.; Guo, R.; Yang, K.; Wang, Y. Paradoxical sleep deprivation aggravates and prolongs incision-induced pain hypersensitivity via BDNF signaling-mediated descending facilitation in rats. Neurochem. Res. 2018, 43, 2353–2361. [Google Scholar] [CrossRef] [PubMed]
- Barnes, A.K.; Koul-Tiwari, R.; Garner, J.M.; Geist, P.A.; Datta, S. Activation of brain-derived neurotrophic factor-tropomyosin receptor kinase B signaling in the pedunculopontine tegmental nucleus: A novel mechanism for the homeostatic regulation of rapid eye movement sleep. J. Neurochem. 2017, 141, 111–123. [Google Scholar] [CrossRef] [Green Version]
- Datta, S.; Knapp, C.M.; Koul-Tiwari, R.; Barnes, A. The homeostatic regulation of REM sleep: A role for localized expression of brain-derived neurotrophic factor in the brainstem. Behav. Brain Res. 2015, 292, 381–392. [Google Scholar] [CrossRef] [Green Version]
- Giese, M.; Beck, J.; Brand, S.; Muheim, F.; Hemmeter, U.; Hatzinger, M.; Holsboer-Trachsler, E.; Eckert, A. Fast BDNF serum level increase and diurnal BDNF oscillations are associated with therapeutic response after partial sleep deprivation. J. Psychiatr. Res. 2014, 59, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giese, M.; Unternahrer, E.; Huttig, H.; Beck, J.; Brand, S.; Calabrese, P.; Holsboer-Trachsler, E.; Eckert, A. BDNF: An indicator of insomnia? Mol. Psychiatry 2014, 19, 151–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.H.; Bae, C.H.; Park, S.Y.; Lee, S.J.; Kim, Y. Uncaria rhynchophylla inhibits the production of nitric oxide and interleukin-1beta through blocking nuclear factor kappaB, Akt, and mitogen-activated protein kinase activation in macrophages. J. Med. Food 2010, 13, 1133–1140. [Google Scholar] [CrossRef]
- Cao, H.; Ren, W.H.; Zhu, M.Y.; Zhao, Z.Q.; Zhang, Y.Q. Activation of glycine site and GluN2B subunit of NMDA receptors is necessary for ERK/CREB signaling cascade in rostral anterior cingulate cortex in rats: Implications for affective pain. Neurosci. Bull. 2012, 28, 77–87. [Google Scholar] [CrossRef] [Green Version]
- Mikhail, C.; Vaucher, A.; Jimenez, S.; Tafti, M. ERK signaling pathway regulates sleep duration through activity-induced gene expression during wakefulness. Sci. Signal. 2017, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, X.; Gotoh, T.; Tsuji, K.; Lo, E.H.; Huang, S.; Feig, L.A. Developmentally regulated role for Ras-GRFs in coupling NMDA glutamate receptors to Ras, Erk and CREB. EMBO J. 2004, 23, 1567–1575. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Paik, P.K.; Chen, J.; Yarilina, A.; Kockeritz, L.; Lu, T.T.; Woodgett, J.R.; Ivashkiv, L.B. IFN-gamma suppresses IL-10 production and synergizes with TLR2 by regulating GSK3 and CREB/AP-1 proteins. Immunity 2006, 24, 563–574. [Google Scholar] [CrossRef] [Green Version]
- Su, X.; Wang, C.; Wang, X.; Han, F.; Lv, C.; Zhang, X. Sweet dream liquid chinese medicine ameliorates learning and memory deficit in a rat model of paradoxical sleep deprivation through the ERK/CREB signaling pathway. J. Med. Food 2016, 19, 472–480. [Google Scholar] [CrossRef]
- Foltenyi, K.; Greenspan, R.J.; Newport, J.W. Activation of EGFR and ERK by rhomboid signaling regulates the consolidation and maintenance of sleep in Drosophila. Nat. Neurosci. 2007, 10, 1160–1167. [Google Scholar] [CrossRef]
- Dumoulin Bridi, M.C.; Aton, S.J.; Seibt, J.; Renouard, L.; Coleman, T.; Frank, M.G. Rapid eye movement sleep promotes cortical plasticity in the developing brain. Sci. Adv. 2015, 1, e1500105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graves, L.A.; Hellman, K.; Veasey, S.; Blendy, J.A.; Pack, A.I.; Abel, T. Genetic evidence for a role of CREB in sustained cortical arousal. J. Neurophysiol. 2003, 90, 1152–1159. [Google Scholar] [CrossRef]
- Wimmer, M.E.; Cui, R.; Blackwell, J.M.; Abel, T. Cyclic AMP response element-binding protein is required in excitatory neurons in the forebrain to sustain wakefulness. Sleep 2020, zsaa267. [Google Scholar] [CrossRef]
- Cirelli, C.; Tononi, G. Differential expression of plasticity-related genes in waking and sleep and their regulation by the noradrenergic system. J. Neurosci. 2000, 20, 9187–9194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cirelli, C.; Pompeiano, M.; Tononi, G. Neuronal gene expression in the waking state: A role for the locus coeruleus. Science 1996, 274, 1211–1215. [Google Scholar] [CrossRef]
- Hendricks, J.C.; Williams, J.A.; Panckeri, K.; Kirk, D.; Tello, M.; Yin, J.C.; Sehgal, A. A non-circadian role for cAMP signaling and CREB activity in Drosophila rest homeostasis. Nat. Neurosci. 2001, 4, 1108–1115. [Google Scholar] [CrossRef]
- Fruman, D.A.; Chiu, H.; Hopkins, B.D.; Bagrodia, S.; Cantley, L.C.; Abraham, R.T. The PI3K pathway in human disease. Cell 2017, 170, 605–635. [Google Scholar] [CrossRef] [Green Version]
- Alessi, D.R.; James, S.R.; Downes, C.P.; Holmes, A.B.; Gaffney, P.R.; Reese, C.B.; Cohen, P. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr. Biol. 1997, 7, 261–269. [Google Scholar] [CrossRef] [Green Version]
- Sarbassov, D.D.; Guertin, D.A.; Ali, S.M.; Sabatini, D.M. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 2005, 307, 1098–1101. [Google Scholar] [CrossRef] [Green Version]
- Cross, D.A.; Alessi, D.R.; Cohen, P.; Andjelkovich, M.; Hemmings, B.A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 1995, 378, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Inoki, K.; Li, Y.; Zhu, T.; Wu, J.; Guan, K.L. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat. Cell Biol. 2002, 4, 648–657. [Google Scholar] [CrossRef] [PubMed]
- Manning, B.D.; Toker, A. AKT/PKB signaling: Navigating the network. Cell 2017, 169, 381–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brunet, A.; Bonni, A.; Zigmond, M.J.; Lin, M.Z.; Juo, P.; Hu, L.S.; Anderson, M.J.; Arden, K.C.; Blenis, J.; Greenberg, M.E. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999, 96, 857–868. [Google Scholar] [CrossRef] [Green Version]
- Coloff, J.L.; Mason, E.F.; Altman, B.J.; Gerriets, V.A.; Liu, T.; Nichols, A.N.; Zhao, Y.; Wofford, J.A.; Jacobs, S.R.; Ilkayeva, O.; et al. Akt requires glucose metabolism to suppress puma expression and prevent apoptosis of leukemic T cells. J. Biol. Chem. 2011, 286, 5921–5933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- del Peso, L.; Gonzalez-Garcia, M.; Page, C.; Herrera, R.; Nunez, G. Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 1997, 278, 687–689. [Google Scholar] [CrossRef] [PubMed]
- Pugazhenthi, S.; Nesterova, A.; Sable, C.; Heidenreich, K.A.; Boxer, L.M.; Heasley, L.E.; Reusch, J.E. Akt/protein kinase B up-regulates Bcl-2 expression through cAMP-response element-binding protein. J. Biol. Chem. 2000, 275, 10761–10766. [Google Scholar] [CrossRef] [Green Version]
- Lan, Y.L.; Zhou, J.J.; Liu, J.; Huo, X.K.; Wang, Y.L.; Liang, J.H.; Zhao, J.C.; Sun, C.P.; Yu, Z.L.; Fang, L.L.; et al. Uncaria rhynchophylla ameliorates Parkinson's Disease by inhibiting HSP90 expression: Insights from quantitative proteomics. Cell. Physiol. Biochem. 2018, 47, 1453–1464. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Sun, J.; Zhu, S.; Xu, T.; Lu, J.; Han, H.; Zhou, C.; Yan, J. The role of rhynchophylline in alleviating early brain injury following subarachnoid hemorrhage in rats. Brain Res. 2016, 1631, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Julien, O.; Wells, J.A. Caspases and their substrates. Cell Death Differ. 2017, 24, 1380–1389. [Google Scholar] [CrossRef] [PubMed]
- Beurel, E.; Mines, M.A.; Song, L.; Jope, R.S. Glycogen synthase kinase-3 levels and phosphorylation undergo large fluctuations in mouse brain during development. Bipolar Disord. 2012, 14, 822–830. [Google Scholar] [CrossRef] [Green Version]
- Leroy, K.; Brion, J.P. Developmental expression and localization of glycogen synthase kinase-3beta in rat brain. J. Chem. Neuroanat. 1999, 16, 279–293. [Google Scholar] [CrossRef]
- Woodgett, J.R. Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO J. 1990, 9, 2431–2438. [Google Scholar] [CrossRef] [PubMed]
- Beaulieu, J.M.; Gainetdinov, R.R.; Caron, M.G. Akt/GSK3 signaling in the action of psychotropic drugs. Annu. Rev. Pharmacol. Toxicol. 2009, 49, 327–347. [Google Scholar] [CrossRef] [Green Version]
- Beaulieu, J.M.; Sotnikova, T.D.; Yao, W.D.; Kockeritz, L.; Woodgett, J.R.; Gainetdinov, R.R.; Caron, M.G. Lithium antagonizes dopamine-dependent behaviors mediated by an AKT/glycogen synthase kinase 3 signaling cascade. Proc. Natl. Acad. Sci. USA 2004, 101, 5099–5104. [Google Scholar] [CrossRef] [Green Version]
- Jain, A.K.; Jaiswal, A.K. GSK-3beta acts upstream of Fyn kinase in regulation of nuclear export and degradation of NF-E2 related factor 2. J. Biol. Chem. 2007, 282, 16502–16510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wild, A.C.; Moinova, H.R.; Mulcahy, R.T. Regulation of gamma-glutamylcysteine synthetase subunit gene expression by the transcription factor Nrf2. J. Biol. Chem. 1999, 274, 33627–33636. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.; Huang, H.C.; Pickett, C.B. Transcriptional regulation of the antioxidant response element. Activation by Nrf2 and repression by MafK. J. Biol. Chem. 2000, 275, 15466–15473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, R.; Wan, Y.; Sun, X.; Zhang, X.; Gao, W.; Wu, W. Nicotinic mitigation of neuroinflammation and oxidative stress after chronic sleep deprivation. Front. Immunol. 2019, 10, 2546. [Google Scholar] [CrossRef] [PubMed]
- Ahnaou, A.; Drinkenburg, W.H. Disruption of glycogen synthase kinase-3-beta activity leads to abnormalities in physiological measures in mice. Behav. Brain Res. 2011, 221, 246–252. [Google Scholar] [CrossRef]
- Benedetti, F.; Dallaspezia, S.; Lorenzi, C.; Pirovano, A.; Radaelli, D.; Locatelli, C.; Poletti, S.; Colombo, C.; Smeraldi, E. Gene-gene interaction of glycogen synthase kinase 3-beta and serotonin transporter on human antidepressant response to sleep deprivation. J. Affect. Disord. 2012, 136, 514–519. [Google Scholar] [CrossRef]
- Benedetti, F.; Serretti, A.; Colombo, C.; Lorenzi, C.; Tubazio, V.; Smeraldi, E. A glycogen synthase kinase 3-beta promoter gene single nucleotide polymorphism is associated with age at onset and response to total sleep deprivation in bipolar depression. Neurosci. Lett. 2004, 368, 123–126. [Google Scholar] [CrossRef]
- Vyazovskiy, V.V.; Cirelli, C.; Pfister-Genskow, M.; Faraguna, U.; Tononi, G. Molecular and electrophysiological evidence for net synaptic potentiation in wake and depression in sleep. Nat. Neurosci. 2008, 11, 200–208. [Google Scholar] [CrossRef]
- Bruning, F.; Noya, S.B.; Bange, T.; Koutsouli, S.; Rudolph, J.D.; Tyagarajan, S.K.; Cox, J.; Mann, M.; Brown, S.A.; Robles, M.S. Sleep-wake cycles drive daily dynamics of synaptic phosphorylation. Science 2019, 366. [Google Scholar] [CrossRef] [PubMed]
- Khlghatyan, J.; Evstratova, A.; Bozoyan, L.; Chamberland, S.; Chatterjee, D.; Marakhovskaia, A.; Soares Silva, T.; Toth, K.; Mongrain, V.; Beaulieu, J.M. Fxr1 regulates sleep and synaptic homeostasis. EMBO J. 2020, 39, e103864. [Google Scholar] [CrossRef] [PubMed]
- Yatham, L.N.; Kennedy, S.H.; Parikh, S.V.; Schaffer, A.; Bond, D.J.; Frey, B.N.; Sharma, V.; Goldstein, B.I.; Rej, S.; Beaulieu, S.; et al. Canadian Network for Mood and Anxiety Treatments (CANMAT) and International Society for Bipolar Disorders (ISBD) 2018 guidelines for the management of patients with bipolar disorder. Bipolar Disord. 2018, 20, 97–170. [Google Scholar] [CrossRef]
- Geoffroy, P.A.; Samalin, L.; Llorca, P.M.; Curis, E.; Bellivier, F. Influence of lithium on sleep and chronotypes in remitted patients with bipolar disorder. J. Affect. Disord. 2016, 204, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Friston, K.J.; Sharpley, A.L.; Solomon, R.A.; Cowen, P.J. Lithium increases slow wave sleep: Possible mediation by brain 5-HT2 receptors? Psychopharmacology 1989, 98, 139–140. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.A.; Perez, E.; Amici, R.; Luppi, M.; Baracchi, F.; Cerri, M.; Dentico, D.; Zamboni, G. Lithium affects REM sleep occurrence, autonomic activity and brain second messengers in the rat. Behav. Brain Res. 2008, 187, 254–261. [Google Scholar] [CrossRef]
- Rubinsztein, D.C.; Gestwicki, J.E.; Murphy, L.O.; Klionsky, D.J. Potential therapeutic applications of autophagy. Nat. Rev. Drug Discov. 2007, 6, 304–312. [Google Scholar] [CrossRef]
- Tudor, J.C.; Davis, E.J.; Peixoto, L.; Wimmer, M.E.; van Tilborg, E.; Park, A.J.; Poplawski, S.G.; Chung, C.W.; Havekes, R.; Huang, J.; et al. Sleep deprivation impairs memory by attenuating mTORC1-dependent protein synthesis. Sci. Signal. 2016, 9, ra41. [Google Scholar] [CrossRef] [Green Version]
- Shabab, T.; Khanabdali, R.; Moghadamtousi, S.Z.; Kadir, H.A.; Mohan, G. Neuroinflammation pathways: A general review. Int. J. Neurosci. 2017, 127, 624–633. [Google Scholar] [CrossRef] [PubMed]
- Kielian, T. Overview of toll-like receptors in the CNS. Curr. Top. Microbiol. Immunol. 2009, 336, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Cespuglio, R.; Amrouni, D.; Meiller, A.; Buguet, A.; Gautier-Sauvigne, S. Nitric oxide in the regulation of the sleep-wake states. Sleep Med. Rev. 2012, 16, 265–279. [Google Scholar] [CrossRef]
- Jewett, K.A.; Krueger, J.M. Humoral sleep regulation; interleukin-1 and tumor necrosis factor. Vitam. Horm. 2012, 89, 241–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hars, B. Endogenous nitric oxide in the rat pons promotes sleep. Brain Res. 1999, 816, 209–219. [Google Scholar] [CrossRef]
- Fang, J.; Wang, Y.; Krueger, J.M. Effects of interleukin-1 beta on sleep are mediated by the type I receptor. Am. J. Physiol. 1998, 274, R655–R660. [Google Scholar] [CrossRef] [PubMed]
- Datta, S.; Patterson, E.H.; Siwek, D.F. Endogenous and exogenous nitric oxide in the pedunculopontine tegmentum induces sleep. Synapse 1997, 27, 69–78. [Google Scholar] [CrossRef]
- Opp, M.R.; Obal, F., Jr.; Krueger, J.M. Interleukin 1 alters rat sleep: Temporal and dose-related effects. Am. J. Physiol. 1991, 260, R52–R58. [Google Scholar] [CrossRef]
- Opp, M.R.; Krueger, J.M. Interleukin 1-receptor antagonist blocks interleukin 1-induced sleep and fever. Am. J. Physiol. 1991, 260, R453–R457. [Google Scholar] [CrossRef] [PubMed]
- Dickstein, J.B.; Moldofsky, H.; Lue, F.A.; Hay, J.B. Intracerebroventricular injection of TNF-alpha promotes sleep and is recovered in cervical lymph. Am. J. Physiol. 1999, 276, R1018–R1022. [Google Scholar] [CrossRef]
- Kapas, L.; Shibata, M.; Kimura, M.; Krueger, J.M. Inhibition of nitric oxide synthesis suppresses sleep in rabbits. Am. J. Physiol. 1994, 266, R151–R157. [Google Scholar] [CrossRef]
- Opp, M.R.; Krueger, J.M. Interleukin-1 is involved in responses to sleep deprivation in the rabbit. Brain Res. 1994, 639, 57–65. [Google Scholar] [CrossRef]
- Opp, M.R.; Krueger, J.M. Anti-interleukin-1 beta reduces sleep and sleep rebound after sleep deprivation in rats. Am. J. Physiol. 1994, 266, R688–R695. [Google Scholar] [CrossRef]
- Kapas, L.; Fang, J.; Krueger, J.M. Inhibition of nitric oxide synthesis inhibits rat sleep. Brain Res. 1994, 664, 189–196. [Google Scholar] [CrossRef]
- Dzoljic, M.R.; de Vries, R.; van Leeuwen, R. Sleep and nitric oxide: Effects of 7-nitro indazole, inhibitor of brain nitric oxide synthase. Brain Res. 1996, 718, 145–150. [Google Scholar] [CrossRef]
- Takahashi, S.; Kapas, L.; Seyer, J.M.; Wang, Y.; Krueger, J.M. Inhibition of tumor necrosis factor attenuates physiological sleep in rabbits. Neuroreport 1996, 7, 642–646. [Google Scholar] [CrossRef]
- Takahashi, S.; Tooley, D.D.; Kapas, L.; Fang, J.; Seyer, J.M.; Krueger, J.M. Inhibition of tumor necrosis factor in the brain suppresses rabbit sleep. Pflug. Arch. 1995, 431, 155–160. [Google Scholar] [CrossRef]
- Takahashi, S.; Fang, J.; Kapas, L.; Wang, Y.; Krueger, J.M. Inhibition of brain interleukin-1 attenuates sleep rebound after sleep deprivation in rabbits. Am. J. Physiol. 1997, 273, R677–R682. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.C.; Kapas, L. Day- and night time injection of a nitric oxide synthase inhibitor elicits opposite sleep responses in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005, 289, R521–R531. [Google Scholar] [CrossRef] [PubMed]
- Monti, J.M.; Jantos, H. Microinjection of the nitric oxide synthase inhibitor L-NAME into the lateral basal forebrain alters the sleep/wake cycle of the rat. Prog. Neuropsychopharmacol. Biol. Psychiatry 2004, 28, 239–247. [Google Scholar] [CrossRef]
- Kubota, T.; Kushikata, T.; Fang, J.; Krueger, J.M. Nuclear factor-kappaB inhibitor peptide inhibits spontaneous and interleukin-1beta-induced sleep. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000, 279, R404–R413. [Google Scholar] [CrossRef]
- Zielinski, M.R.; Kim, Y.; Karpova, S.A.; McCarley, R.W.; Strecker, R.E.; Gerashchenko, D. Chronic sleep restriction elevates brain interleukin-1 beta and tumor necrosis factor-alpha and attenuates brain-derived neurotrophic factor expression. Neurosci. Lett. 2014, 580, 27–31. [Google Scholar] [CrossRef] [Green Version]
- Kalinchuk, A.V.; McCarley, R.W.; Porkka-Heiskanen, T.; Basheer, R. Sleep deprivation triggers inducible nitric oxide-dependent nitric oxide production in wake-active basal forebrain neurons. J. Neurosci. 2010, 30, 13254–13264. [Google Scholar] [CrossRef]
- Mackiewicz, M.; Sollars, P.J.; Ogilvie, M.D.; Pack, A.I. Modulation of IL-1 beta gene expression in the rat CNS during sleep deprivation. Neuroreport 1996, 7, 529–533. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Gardi, J.; Kushikata, T.; Fang, J.; Krueger, J.M. Nuclear factor-kappaB-like activity increases in murine cerebral cortex after sleep deprivation. Am. J. Physiol. 1999, 276, R1812–R1818. [Google Scholar] [CrossRef]
- Ribeiro, A.C.; Gilligan, J.G.; Kapas, L. Systemic injection of a nitric oxide synthase inhibitor suppresses sleep responses to sleep deprivation in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000, 278, R1048–R1056. [Google Scholar] [CrossRef]
- Shoham, S.; Davenne, D.; Cady, A.B.; Dinarello, C.A.; Krueger, J.M. Recombinant tumor necrosis factor and interleukin 1 enhance slow-wave sleep. Am. J. Physiol. 1987, 253, R142–R149. [Google Scholar] [CrossRef] [PubMed]
- Surmeier, D.J.; Bargas, J.; Hemmings, H.C., Jr.; Nairn, A.C.; Greengard, P. Modulation of calcium currents by a D1 dopaminergic protein kinase/phosphatase cascade in rat neostriatal neurons. Neuron 1995, 14, 385–397. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.Y.; Morielli, A.D.; Peralta, E.G. Tyrosine kinase-dependent suppression of a potassium channel by the G protein-coupled m1 muscarinic acetylcholine receptor. Cell 1993, 75, 1145–1156. [Google Scholar] [CrossRef]
- Baghdoyan, H.A.; Rodrigo-Angulo, M.L.; McCarley, R.W.; Hobson, J.A. Site-specific enhancement and suppression of desynchronized sleep signs following cholinergic stimulation of three brainstem regions. Brain Res. 1984, 306, 39–52. [Google Scholar] [CrossRef]
- Niwa, Y.; Kanda, G.N.; Yamada, R.G.; Shi, S.; Sunagawa, G.A.; Ukai-Tadenuma, M.; Fujishima, H.; Matsumoto, N.; Masumoto, K.H.; Nagano, M.; et al. Muscarinic acetylcholine receptors Chrm1 and Chrm3 are essential for REM sleep. Cell Rep. 2018, 24, 2231–2247. [Google Scholar] [CrossRef] [Green Version]
- Gillin, J.C.; Sutton, L.; Ruiz, C.; Golshan, S.; Hirsch, S.; Warmann, C.; Shiromani, P. Dose dependent inhibition of REM sleep in normal volunteers by biperiden, a muscarinic antagonist. Biol. Psychiatry 1991, 30, 151–156. [Google Scholar] [CrossRef]
- Kurimoto, E.; Nakashima, M.; Kimura, H.; Suzuki, M. TAK-071, a muscarinic M1 receptor positive allosteric modulator, attenuates scopolamine-induced quantitative electroencephalogram power spectral changes in cynomolgus monkeys. PLoS ONE 2019, 14, e0207969. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Zhang, Y.; Wang, L.; Li, N.; Barkai, E.; Zhang, X.; Lin, L.; Xu, J. The firing of theta state-related septal cholinergic neurons disrupt hippocampal ripple oscillations via muscarinic receptors. J. Neurosci. 2020, 40, 3591–3603. [Google Scholar] [CrossRef] [PubMed]
- Shirey, J.K.; Brady, A.E.; Jones, P.J.; Davis, A.A.; Bridges, T.M.; Kennedy, J.P.; Jadhav, S.B.; Menon, U.N.; Xiang, Z.; Watson, M.L.; et al. A selective allosteric potentiator of the M1 muscarinic acetylcholine receptor increases activity of medial prefrontal cortical neurons and restores impairments in reversal learning. J. Neurosci. 2009, 29, 14271–14286. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.H.; Kauer, J.A. Properties of carbachol-induced oscillatory activity in rat hippocampus. J. Neurophysiol. 1997, 78, 2631–2640. [Google Scholar] [CrossRef]
- Cea-del Rio, C.A.; Lawrence, J.J.; Tricoire, L.; Erdelyi, F.; Szabo, G.; McBain, C.J. M3 muscarinic acetylcholine receptor expression confers differential cholinergic modulation to neurochemically distinct hippocampal basket cell subtypes. J. Neurosci. 2010, 30, 6011–6024. [Google Scholar] [CrossRef] [PubMed]
- Fisahn, A.; Yamada, M.; Duttaroy, A.; Gan, J.W.; Deng, C.X.; McBain, C.J.; Wess, J. Muscarinic induction of hippocampal gamma oscillations requires coupling of the M1 receptor to two mixed cation currents. Neuron 2002, 33, 615–624. [Google Scholar] [CrossRef] [Green Version]
- Langmead, C.J.; Austin, N.E.; Branch, C.L.; Brown, J.T.; Buchanan, K.A.; Davies, C.H.; Forbes, I.T.; Fry, V.A.; Hagan, J.J.; Herdon, H.J.; et al. Characterization of a CNS penetrant, selective M1 muscarinic receptor agonist, 77-LH-28-1. Br. J. Pharmacol. 2008, 154, 1104–1115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ursin, R. Serotonin and sleep. Sleep Med. Rev. 2002, 6, 55–69. [Google Scholar] [CrossRef] [Green Version]
- Ito, H.; Yanase, M.; Yamashita, A.; Kitabatake, C.; Hamada, A.; Suhara, Y.; Narita, M.; Ikegami, D.; Sakai, H.; Yamazaki, M.; et al. Analysis of sleep disorders under pain using an optogenetic tool: Possible involvement of the activation of dorsal raphe nucleus-serotonergic neurons. Mol. Brain 2013, 6, 59. [Google Scholar] [CrossRef] [Green Version]
- Cape, E.G.; Jones, B.E. Differential modulation of high-frequency gamma-electroencephalogram activity and sleep-wake state by noradrenaline and serotonin microinjections into the region of cholinergic basalis neurons. J. Neurosci. 1998, 18, 2653–2666. [Google Scholar] [CrossRef] [PubMed]
- Horner, R.L.; Sanford, L.D.; Annis, D.; Pack, A.I.; Morrison, A.R. Serotonin at the laterodorsal tegmental nucleus suppresses rapid-eye-movement sleep in freely behaving rats. J. Neurosci. 1997, 17, 7541–7552. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, S.; Yamanaka, A. Optogenetic activation of serotonergic terminals facilitates GABAergic inhibitory input to orexin/hypocretin neurons. Sci. Rep. 2016, 6, 36039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saito, Y.C.; Maejima, T.; Nishitani, M.; Hasegawa, E.; Yanagawa, Y.; Mieda, M.; Sakurai, T. Monoamines inhibit GABAergic neurons in ventrolateral preoptic area that make direct synaptic connections to hypothalamic arousal neurons. J. Neurosci. 2018, 38, 6366–6378. [Google Scholar] [CrossRef] [PubMed]
- Linley, S.B.; Vertes, R.P. Serotonergic systems in sleep and waking. In Handbook of Behavioral Neuroscience; Dringenberg, H.C., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 30, pp. 101–123. [Google Scholar]
- Bjorvatn, B.; Fagerland, S.; Eid, T.; Ursin, R. Sleep/waking effects of a selective 5-HT1A receptor agonist given systemically as well as perfused in the dorsal raphe nucleus in rats. Brain Res. 1997, 770, 81–88. [Google Scholar] [CrossRef]
- Monti, J.M.; Jantos, H.; Monti, D. Increased REM sleep after intra-dorsal raphe nucleus injection of flesinoxan or 8-OHDPAT: Prevention with WAY 100635. Eur. Neuropsychopharmacol. 2002, 12, 47–55. [Google Scholar] [CrossRef]
- Portas, C.M.; Thakkar, M.; Rainnie, D.; McCarley, R.W. Microdialysis perfusion of 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) in the dorsal raphe nucleus decreases serotonin release and increases rapid eye movement sleep in the freely moving cat. J. Neurosci. 1996, 16, 2820–2828. [Google Scholar] [CrossRef]
- Vertes, R.P.; Kinney, G.G.; Kocsis, B.; Fortin, W.J. Pharmacological suppression of the median raphe nucleus with serotonin1A agonists, 8-OH-DPAT and buspirone, produces hippocampal theta rhythm in the rat. Neuroscience 1994, 60, 441–451. [Google Scholar] [CrossRef]
- Monti, J.M.; Jantos, H. Effects of activation and blockade of 5-HT2A/2C receptors in the dorsal raphe nucleus on sleep and waking in the rat. Prog. Neuropsychopharmacol. Biol. Psychiatry 2006, 30, 1189–1195. [Google Scholar] [CrossRef]
- Monti, J.M.; Leopoldo, M.; Jantos, H. The serotonin 5-HT7 receptor agonist LP-44 microinjected into the dorsal raphe nucleus suppresses REM sleep in the rat. Behav. Brain Res. 2008, 191, 184–189. [Google Scholar] [CrossRef]
- Monti, J.M.; Jantos, H.; Lagos, P. Activation of serotonin 5-HT(1B) receptor in the dorsal raphe nucleus affects REM sleep in the rat. Behav. Brain Res. 2010, 206, 8–16. [Google Scholar] [CrossRef]
- Monti, J.M.; Jantos, H. Effects of the serotonin 5-HT2A/2C receptor agonist DOI and of the selective 5-HT2A or 5-HT2C receptor antagonists EMD 281014 and SB-243213, respectively, on sleep and waking in the rat. Eur. J. Pharmacol. 2006, 553, 163–170. [Google Scholar] [CrossRef]
- Popa, D.; Lena, C.; Fabre, V.; Prenat, C.; Gingrich, J.; Escourrou, P.; Hamon, M.; Adrien, J. Contribution of 5-HT2 receptor subtypes to sleep-wakefulness and respiratory control, and functional adaptations in knock-out mice lacking 5-HT2A receptors. J. Neurosci. 2005, 25, 11231–11238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dahan, L.; Astier, B.; Vautrelle, N.; Urbain, N.; Kocsis, B.; Chouvet, G. Prominent burst firing of dopaminergic neurons in the ventral tegmental area during paradoxical sleep. Neuropsychopharmacology 2007, 32, 1232–1241. [Google Scholar] [CrossRef]
- Eban-Rothschild, A.; Rothschild, G.; Giardino, W.J.; Jones, J.R.; de Lecea, L. VTA dopaminergic neurons regulate ethologically relevant sleep-wake behaviors. Nat. Neurosci. 2016, 19, 1356–1366. [Google Scholar] [CrossRef]
- Lancel, M. Role of GABAA receptors in the regulation of sleep: Initial sleep responses to peripherally administered modulators and agonists. Sleep 1999, 22, 33–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winsky-Sommerer, R. Role of GABAA receptors in the physiology and pharmacology of sleep. Eur. J. Neurosci. 2009, 29, 1779–1794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hannou, L.; Roy, P.G.; Ballester Roig, M.N.; Mongrain, V. Transcriptional control of synaptic components by the clock machinery. Eur. J. Neurosci. 2020, 51, 241–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biello, S.M.; Bonsall, D.R.; Atkinson, L.A.; Molyneux, P.C.; Harrington, M.E.; Lall, G.S. Alterations in glutamatergic signaling contribute to the decline of circadian photoentrainment in aged mice. Neurobiol. Aging 2018, 66, 75–84. [Google Scholar] [CrossRef]
- Wang, L.M.; Schroeder, A.; Loh, D.; Smith, D.; Lin, K.; Han, J.H.; Michel, S.; Hummer, D.L.; Ehlen, J.C.; Albers, H.E.; et al. Role for the NR2B subunit of the N-methyl-D-aspartate receptor in mediating light input to the circadian system. Eur. J. Neurosci. 2008, 27, 1771–1779. [Google Scholar] [CrossRef] [Green Version]
- Bendova, Z.; Sladek, M.; Svobodova, I. The expression of NR2B subunit of NMDA receptor in the suprachiasmatic nucleus of Wistar rats and its role in glutamate-induced CREB and ERK1/2 phosphorylation. Neurochem. Int. 2012, 61, 43–47. [Google Scholar] [CrossRef]
- Bendova, Z.; Sumova, A.; Mikkelsen, J.D. Circadian and developmental regulation of N-methyl-d-aspartate-receptor 1 mRNA splice variants and N-methyl-d-aspartate-receptor 3 subunit expression within the rat suprachiasmatic nucleus. Neuroscience 2009, 159, 599–609. [Google Scholar] [CrossRef] [PubMed]
- Coria-Lucero, C.D.; Golini, R.S.; Ponce, I.T.; Deyurka, N.; Anzulovich, A.C.; Delgado, S.M.; Navigatore-Fonzo, L.S. Rhythmic Bdnf and TrkB expression patterns in the prefrontal cortex are lost in aged rats. Brain Res. 2016, 1653, 51–58. [Google Scholar] [CrossRef]
- Cai, Y.; Ding, H.; Li, N.; Chai, Y.; Zhang, Y.; Chan, P. Oscillation development for neurotransmitter-related genes in the mouse striatum. Neuroreport 2010, 21, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Bi, Q.; Cui, H.; Lv, C.; Wang, M. Suppression of autophagy through JAK2/STAT3 contributes to the therapeutic action of rhynchophylline on asthma. BMC Complement. Med. Ther. 2021, 21, 21. [Google Scholar] [CrossRef]
- Boudreau, P.; Yeh, W.H.; Dumont, G.A.; Boivin, D.B. Circadian variation of heart rate variability across sleep stages. Sleep 2013, 36, 1919–1928. [Google Scholar] [CrossRef] [Green Version]
- Trinder, J.; Waloszek, J.; Woods, M.J.; Jordan, A.S. Sleep and cardiovascular regulation. Pflug. Arch. 2012, 463, 161–168. [Google Scholar] [CrossRef]
- Song, M.F.; Guan, Y.H.; Li, H.T.; Wei, S.G.; Zhang, L.X.; Zhang, Z.L.; Ma, X.J. The effects of genetic variation and environmental factors on rhynchophylline and isorhynchophylline in Uncaria macrophylla Wall. from different populations in China. PLoS ONE 2018, 13, e0199259. [Google Scholar] [CrossRef] [Green Version]
- Williamson, E.M. Synergy and other interactions in phytomedicines. Phytomedicine 2001, 8, 401–409. [Google Scholar] [CrossRef] [PubMed]
Rhy Application | Timing of Measurement | Rhy Effect | Model | Reference |
---|---|---|---|---|
INCUBATIONS | ||||
20 s | Immediate | Attenuates epilepsy-induced ↑ in NMDAR current in EC slices | Rat brain slices | [19] |
80 s | Immediate | Accelerates activation and inactivation of VGKC Accelerates activation and inactivation of Kv1.2 | N2A cells HEK293 | [64] |
3–8 min | Immediate | ↓ mAChR1- and 5-HT2-mediated currents (effect disappears after 1 min) | Xenopus oocytes | [65] |
Attenuates epilepsy-induced ↑ of EC neuron discharge frequency | Rats | [19] | ||
↓ open time and ↑ close time of L-VGCCs | Rat cortical neurons | [66] | ||
↓ Ca2+ influx via L-VGCCs | Rat cardiomyocytes | [67] | ||
Non-competitive inhibition of NMDAR current | Xenopus oocytes | [68] | ||
15–30 min | Immediate | ↓ EfnA1-dependent EphA4 phosphorylation and EphA4 clusters | Rat cortical neurons | [18] |
Attenuates ischemia-induced ↓ in population spike amplitude | Rat hipp. slices | [65] | ||
↓ Ca2+ intracellular increase via L-VGCC, promotes vasodilation | Human artery smooth muscle cells | [69] | ||
1 h | Immediate | Attenuates ischemia-induced ↑ in ROS, MDA, LDH, mPTP, AIF, Ca2+ and caspase 3 and 9 mRNA and protein Attenuates ischemia-induced ↓ in mitochondrial membrane potential, SOD, GPx, Cytc | Rat cardiomyocytes | [70] |
↑ GAD65/67 and GABAAR subunits expression | Rat hypothalamic neurons | [22] | ||
30 min | 2 h post Rhy | Attenuates Aβ-induced ↑ in EphA4 phosphorylation and LTP impairment | Rat hipp. slices | [18] |
2–6 h | Immediate | Attenuates LPS-induced ↑ in Cox2, iNos, Ccl2 mRNAs | Rat microglia | [71] |
↑ Grin1 mRNA (no difference in Grin2b) | Rat hipp. neurons | [72] | ||
12 h | Immediate | Improves endothelial relaxation and ↑ p-Src, p-AKT and NO (in hypertensive rat arteries) and ↑ p-eNOS (in WT arteries) | Rat intrarenal arteries | [73] |
24 h | Immediate | Attenuates LPS-induced ↑ in p-ERK, p-38, p-IkBα, NFκBp65 Attenuates LPS-induced ↓ in IkBα Attenuates LPS-induced ↑ in culture medium MCP1, PGE2, NO, IL1β, TNFα | Rat microglia | [71] |
1 h | 24 h post Isorhy | * Attenuates MPP-induced ↑ in p-GSK3β Tyr297, p-FYN and ROS * ↑ nuclear NRF2 and ARE transcriptional activity | Human SH-SY5Y neuroblastoma cells | [74] |
2 h | 24 h post Rhy | Attenuates MPP-induced ↓ in p-GSK3β Ser9, p-AKT and MEF2D Attenuates MPP-induced ↑ in Bax/Bcl-2 ratio | Rat granule neurons | [75] |
48 h | Immediate | ↑ Grin1 mRNA and GluN1, and ↓ Grin2b mRNA and GluN2B | Rat hipp. neurons | [72] |
Attenuates LPS-induced ↑ in NO, iNOS, TNFα, IL-1β, p-p38, p-ERK Attenuates LPS-induced ↓ in IkBα | N9 mouse microglia | [76] | ||
↓ GluN1 and ↓ ketamine-induced ↑ in GluA2/3 | PC12 cells | [77] | ||
72 h | Immediate | ↑ proliferation, GluN1, GluN2B, GluN3A ↓ BDNF, OXTR, and ATP Alters proliferation/differentiation related genes | Bone mesenchymal human cells | [78] |
24 h | 48 h post Rhy | Attenuates MPP-induced ↑ ROS, LDH, Caspase-3 activity and apoptosis; Attenuates MPP-induced ↓ Bcl2/Bax ratio and p-AKT | PC12 cells | [79] |
SINGLE ADMINISTRATIONS | ||||
IC | 100–600 s post Rhy | Attenuates Aβ-induced ↑ in the frequency of spontaneous discharge in CA1 | Rats | [80] |
IV | 30 min post Rhy | Attenuates ischemia-induced ↓ in 5HIAA and DOPAC in striatum and hipp. Attenuates ischemia-induced ↑ of NE in striatum and hipp. | Rats | [81] |
IP | 50 min post Rhy | ↓ DA in cortex, hypothalamus, and brainstem ↓ 5-HT in amygdala ↑ 5-HT in hypothalamus, and ↓ 5-HT release in hypothalamic slices ↑ 5-HT release in cortex, amygdala, and brainstem slices ↑ DA release in cortex, hypothalamus, amygdala, and brainstem slices ↓ righting reflex and spontaneous locomotor activity | Rats | [61] |
Oral | 0–6 h post Rhy | ↓ locomotor activity and sleep latency, ↑ total sleep time ↓ number of sleep/wake cycles, ↑ total sleep time and REM sleep | Mice and Rats | [22] |
IP | 48 h post Rhy | Attenuates stress-induced ↑ p-EphA4, p-FYN, p-Cdk5, p-Ephexin in PFC, CA3, DG Attenuates stress-induced ↓ BDNF, p-TrkB, PSD95, spines in PFC, CA3, DG | Mice | [17] |
IP | 52 h post Rhy | Attenuates NTG-induced ↑ in EEG theta and delta activity, oxidative stress (GSH, blood CGRP), p-ERK1/2, p-JNK, p-p38, p-IκBα, and nuclear NF-κB p65 (all in trigeminal nucleus caudalis) | Rats | [82] |
Hipp. inj | 2 w post Rhy | Attenuates Aβ-induced ↑ cell death, GluN2B, and NMDA Ca2+ influx in CA1 | Rats | [83] |
MULTIPLE ADMINISTRATIONS | ||||
SC for 3 days | 1–3 h after last injection | Attenuates LPS-induced ↓ in stroke volume and cardiac output Attenuates LPS-induced ↑ in IL-1β, TNFα and p-IkBα in heart, macrophages and serum | Mice | [84] |
IP for 3 days | 3 h after last injection | * Attenuates KA-induced epileptic seizures ** Alters levels of Bdnf, Fos, Nfkbia, Map2k3, Il1b in cerebral cortex and hipp. | Rats | [85] |
Attenuates KA-induced epileptic seizures | [86] | |||
Attenuates KA-induced epileptic seizures and KA- induced ↑ in hippocampal p-JNK ** Attenuates KA-induced ↓ in cortical IL-6 | [87] | |||
IP for 3 days | 12 h after last injection | Attenuates meth-induced ↑ in 5-HT, DA, TH, Glut, GluN2B, and locomotion | Zebrafishes | [88] |
Attenuates meth-induced ↑ in GluA1 and CPP | [89] | |||
Attenuates meth-induced ↑ in p-CREB and c-fos positive cells in CA1 and striatum | Rats | [90] | ||
Attenuates amph-induced ↑ in CPP, glutamic acid, DA, and NE Attenuates amph-induced ↓ in GABA, endorphin, and ACh | [91] | |||
Attenuates ketamine-induced ↑ in CPP, Nr4a2 and Bdnf mRNAs, NURR1, BDNF, p-CREB (all hipp.) | [21,92] | |||
Attenuates amph-induced ↑ in CPP and Grin2b mRNA, and GluN2B protein in mPFC and CA1 | [20] | |||
Attenuates meth-induced ↑ in CPP and GluN2B in brain tissue | Mice | [93] | ||
IP for 3 days | 24 h after last injection | Attenuates KA-induced ↑ in IL-1β and BDNF positive cells in cortex and hipp. | Rats | [85] |
Attenuates KA-induced ↑ NO scavenging activity in blood | [86] | |||
IP for 5 days | 24 h after last injection | ↓ brain infarction and neurological deficits in a stroke model In cerebral cortex: Accentuates ischemia-induced ↑ in p-AKT and p-mTOR Attenuates ischemia-induced ↑ in TLR2,4, MyD88, caspase 3, and nuclear NF-κB Attenuates stroke-induced ↓ in p-BAD, BDNF, Bdnf and claudin-5 | [94] | |
ICV infusion for 9 days | 33–34 h after ICV | Attenuates epilepsy-induced ↑ EC discharge frequency, neuronal death and GluN2B and Nav1.6 | Rats | [19] |
1 week gavage | 1 week after last gavage | Attenuates cytotoxicity-induced ↓ in TH-positive cells in substantia nigra | Mice | [79] |
2 weeks gavage | Immediate | ** Attenuates KA-induced neuronal death and KA-induced ↑ in spike amplitude | Rats hipp. slices | [95] |
3 weeks oral | Not specified | Attenuates DOI-induced ↑ TNFα, IL-6, and IL-1B (in serum and striatum); Attenuates DOI-induced ↑ p-NF-κB p65, p-IkBα, TLR2, caspase1, MyD88, DA, D2R (in striatum) Attenuates DOI-induced ↓ in p-TrkB, BDNF (in striatum), and cell viability | Rats | [96,97] |
3 weeks gavage | 24 h after last gavage | * Attenuates Aβ-induced ↓ in p-AKT, p-GSK3β (in brain), Bcl2/Bax in hipp., and memory * Attenuates Aβ-induced ↑ in caspases 3 and 9 in hipp. | Rats | [98] |
3–4 weeks gavage | Immediate | Attenuates p-EphA4 and rescues LTP in hipp. slices in APP mice | Mice | [18] |
3 weeks gavage | 5 days after last gavage | * Attenuates chronic mild stress-induced ↓ p-AKT, p-GSK3β, BDNF, NGF in cortex and hipp., and sucrose preference * Attenuates chronic mild stress-induced ↑ in TNFα, IL-6, nuclear NF-κB in cortex and hipp., and locomotion | Mice | [99] |
1 day gavage/week for 4 weeks | 24 h after last gavage | Attenuates asthma-induced ↑ in eosinophil recruitment, IL-13, IL-4, IL-5 in serum Attenuates asthma-induced ↑ TGFβ, Smad4, p-Smad2, p-Smad3, p-ERK1/2 and p-38 in lung tissue | Mice | [100] |
6 weeks in food | Immediate | * Attenuates cardiac hypertrophy-induced ↑ in TGFβ1, cTGF, Collagen1,3, p-ERK, p-38, p-JNK, and attenuates the induced ↓ in SOD2 * ↑ NRF2 and accentuates the induced ↑ in SOD3 | Mice | [101] |
Effects under Baseline and/or Pathological Conditions | Sex(es) Studied | Reference | |
---|---|---|---|
VGCC | Baseline conditions | Males | [67,103] |
Baseline conditions | Males and females | [104] | |
Baseline conditions | Not indicated | [69] | |
Pathological conditions | Not indicated | [66] | |
VGKC | Baseline conditions | Male and female cell lines | [64] |
NMDAR | Baseline conditions | Not indicated | [68,72,78] |
Pathological conditions | Males | [19,88] | |
Pathological conditions; no effect under baseline | Males | [20,83] | |
Pathological conditions | Not indicated | [93] | |
EPHA4 | Pathological conditions; no effect under baseline | Males and females | [18] |
Pathological conditions; no effect under baseline | Males | [17] | |
BDNF/TRKB | Baseline conditions | Not indicated | [78] |
Pathological conditions | Males | [85,92,94] | |
Pathological conditions; no effect under baseline | Males | [17,99] * | |
Pathological conditions | Not indicated | [21] | |
ERK/MAPK | Pathological conditions | Male cell line | [76] |
Pathological conditions | Not indicated | [71] | |
Pathological conditions | Female | [100] | |
Pathological conditions | Males | [82,86,87] | |
Pathological conditions; no effect under baseline | Males | [101] * | |
CREB | Pathological conditions | Males | [92] |
Pathological conditions | Not indicated | [21,90] | |
PI3K/AKT | Pathological conditions | Males | [73] |
Pathological conditions | Male cell line | [79] | |
Pathological conditions | Not indicated | [70] | |
Pathological conditions; no effect under baseline | Not indicated | [75] | |
Pathological conditions; only one effect under baseline | Males | [101] * | |
Pathological conditions | Males | [94] | |
Pathological conditions; no effect under baseline | Males | [98,99] * | |
NF-κB | Pathological conditions | Male cell line | [76] |
Pathological conditions | Not indicated | [71] | |
Pathological conditions | Males | [82,85,86,94,97] | |
Pathological conditions; no effect under baseline | Males | [84] | |
Other NTs | Baseline conditions | Not indicated | [65] |
Baseline conditions | Males and females | [61] | |
Pathological conditions | Males | [88,96] | |
Pathological conditions; no effect under baseline | Not indicated | [91] | |
GABAAR | Baseline conditions | Male neurons | [22] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ballester Roig, M.N.; Leduc, T.; Areal, C.C.; Mongrain, V. Cellular Effects of Rhynchophylline and Relevance to Sleep Regulation. Clocks & Sleep 2021, 3, 312-341. https://doi.org/10.3390/clockssleep3020020
Ballester Roig MN, Leduc T, Areal CC, Mongrain V. Cellular Effects of Rhynchophylline and Relevance to Sleep Regulation. Clocks & Sleep. 2021; 3(2):312-341. https://doi.org/10.3390/clockssleep3020020
Chicago/Turabian StyleBallester Roig, Maria Neus, Tanya Leduc, Cassandra C. Areal, and Valérie Mongrain. 2021. "Cellular Effects of Rhynchophylline and Relevance to Sleep Regulation" Clocks & Sleep 3, no. 2: 312-341. https://doi.org/10.3390/clockssleep3020020
APA StyleBallester Roig, M. N., Leduc, T., Areal, C. C., & Mongrain, V. (2021). Cellular Effects of Rhynchophylline and Relevance to Sleep Regulation. Clocks & Sleep, 3(2), 312-341. https://doi.org/10.3390/clockssleep3020020