Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (723)

Search Parameters:
Keywords = neurotransmitter receptors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1349 KiB  
Article
The Effect of Intracellular Calcium Buffer Bapta on Epileptiform Activity of Hippocampal Neurons
by V. P. Zinchenko, I. Yu. Teplov, F. V. Tyurin, A. E. Malibayeva, B. K. Kairat and S. T. Tuleukhanov
Int. J. Mol. Sci. 2025, 26(15), 7596; https://doi.org/10.3390/ijms26157596 - 6 Aug 2025
Abstract
The rhythm of epileptiform activity occurs in various brain injuries (ischemia, stroke, concussion, mechanical damage, AD, PD). The epileptiform rhythm is accompanied by periodic Ca2+ pulses, which are necessary for the neurotransmitter release, the repair of damaged connections between neurons, and the [...] Read more.
The rhythm of epileptiform activity occurs in various brain injuries (ischemia, stroke, concussion, mechanical damage, AD, PD). The epileptiform rhythm is accompanied by periodic Ca2+ pulses, which are necessary for the neurotransmitter release, the repair of damaged connections between neurons, and the growth of new projections. The duration and amplitude of these pulses depend on intracellular calcium-binding proteins. The effect of the synthetic fast calcium buffer BAPTA on the epileptiform activity of neurons induced by the GABA(A)-receptor inhibitor, bicuculline, was investigated in a 14-DIV rat hippocampal culture. In the epileptiform activity mode, neurons periodically synchronously generate action potential (AP) bursts in the form of paroxysmal depolarization shift (PDS) clusters and their corresponding high-amplitude Ca2+ pulses. Changes in the paroxysmal activity and Ca2+ pulses were recorded continuously for 10–11 min as BAPTA accumulated. It was shown that during BAPTA accumulation, transformation of neuronal patch activity occurs. Moreover, GABAergic and glutamatergic neurons respond differently to the presence of calcium buffer. Experiments were performed on two populations of neurons: a population of GABAergic neurons that responded selectively to ATPA, a calcium-permeable GluK1 kainate receptor agonist, and a population of glutamatergic neurons with a large amplitude of cluster depolarization (greater than −20 mV). These neurons made up the majority of neurons. In the population of GABAergic neurons, during BAPTA accumulation, the amplitude of PDS clusters decreases, which leads to a switch from the PDS mode to the classical burst mode with an increase in the electrical activity of the neuron. In glutamatergic neurons, the duration of PDS clusters decreased during BAPTA accumulation. However, the amplitude changed little. The data obtained showed that endogenous calcium-binding proteins play a significant role in switching the epileptiform rhythm to the recovery rhythm and perform a neuroprotective function by reducing the duration of impulses in excitatory neurons and the amplitude of impulses in inhibitory neurons. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

22 pages, 1000 KiB  
Review
Is the Activation of the Postsynaptic Ligand Gated Glycine- or GABAA Receptors Essential for the Receptor Clustering at Inhibitory Synapses?
by Eva Kiss, Joachim Kirsch, Jochen Kuhse and Stefan Kins
Biomedicines 2025, 13(8), 1905; https://doi.org/10.3390/biomedicines13081905 - 5 Aug 2025
Abstract
One major challenge in cellular neuroscience is to elucidate how the accurate alignment of presynaptic release sites with postsynaptic densely clustered ligand-gated ion channels at chemical synapses is achieved upon synapse assembly. The clustering of neurotransmitter receptors at postsynaptic sites is a key [...] Read more.
One major challenge in cellular neuroscience is to elucidate how the accurate alignment of presynaptic release sites with postsynaptic densely clustered ligand-gated ion channels at chemical synapses is achieved upon synapse assembly. The clustering of neurotransmitter receptors at postsynaptic sites is a key moment of synaptogenesis and determinant for effective synaptic transmission. The number of the ionotropic neurotransmitter receptors at these postsynaptic sites of both excitatory and inhibitory synapses is variable and is regulated by different mechanisms, thus allowing the modulation of synaptic strength, which is essential to tune neuronal network activity. Several well-regulated processes seem to be involved, including lateral diffusion within the plasma membrane and local anchoring as well as receptor endocytosis and recycling. The molecular mechanisms implicated are numerous and were reviewed recently in great detail. The role of pre-synaptically released neurotransmitters within the complex regulatory apparatus organizing the postsynaptic site underneath presynaptic terminals is not completely understood, even less for inhibitory synapses. In this mini review article, we focus on this aspect of synapse formation, summarizing and contrasting findings on the functional role of the neurotransmitters glycine and γ-aminobutyric acid (GABA) for initiation of postsynaptic receptor clustering and regulation of Cl channel receptor numbers at inhibitory synapses gathered over the last two decades. Full article
(This article belongs to the Special Issue Synaptic Function and Modulation in Health and Disease)
Show Figures

Figure 1

20 pages, 1480 KiB  
Review
Molecular Pathways Potentially Involved in Hallucinatory Experiences During Sleep Paralysis: The Emerging Role of β-Arrestin-2
by Lena M. Rudy and Michał M. Godlewski
Int. J. Mol. Sci. 2025, 26(15), 7233; https://doi.org/10.3390/ijms26157233 - 26 Jul 2025
Viewed by 474
Abstract
Sleep paralysis (SP), an REM parasomnia, can be characterized as one of the symptoms of narcolepsy. The SP phenomenon involves regaining meta-consciousness by the dreamer during REM, when the physiological atonia of skeletal muscles is accompanied by visual and auditory hallucinations that are [...] Read more.
Sleep paralysis (SP), an REM parasomnia, can be characterized as one of the symptoms of narcolepsy. The SP phenomenon involves regaining meta-consciousness by the dreamer during REM, when the physiological atonia of skeletal muscles is accompanied by visual and auditory hallucinations that are perceived as vivid and distressing nightmares. Sensory impressions include personification of an unknown presence, strong chest pressure sensation, and intense fear resulting from subjective interaction with the unfolding nightmare. While the mechanism underlying skeletal muscle atonia is known, the physiology of hallucinations remains unclear. Their complex etiology involves interactions among various membrane receptor systems and neurotransmitters, which leads to altered neuronal functionality and disruptions in sensory perception. According to current knowledge, serotonergic activation of 5-hydroxytryptamine-receptor-2A (5-HT2A)-associated pathways plays a critical role in promoting hallucinogenesis during SP. Furthermore, they share similarities with psychedelic-substance-induced ones (i.e., LSD, psilocybin, and 2,5-dimethoxy-4-iodoamphetamine). These compounds also target the 5-HT2A receptor; however, their molecular mechanism varies from serotonin-induced ones. The current review discusses the intracellular signaling pathways responsible for promoting hallucinations in SP, highlighting the critical role of β-arrestin-2. We propose that the β-arrestin-2 signaling pathway does not directly induce hallucinations but creates a state of network susceptibility that facilitates their abrupt emergence in sensory areas. Understanding the molecular basis of serotonergic hallucinations and gaining better insight into 5-HT2A-receptor-dependent pathways may prove crucial in the treatment of multifactorial neuropsychiatric disorders associated with the dysfunctional activity of serotonin receptors. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

33 pages, 1463 KiB  
Review
Molecular Mechanisms of the Endocannabinoid System with a Focus on Reproductive Physiology and the Cannabinoid Impact on Fertility
by Patrycja Kalak, Piotr Kupczyk, Antoni Szumny, Tomasz Gębarowski, Marcin Jasiak, Artur Niedźwiedź, Wojciech Niżański and Michał Dzięcioł
Int. J. Mol. Sci. 2025, 26(15), 7095; https://doi.org/10.3390/ijms26157095 - 23 Jul 2025
Viewed by 350
Abstract
The endocannabinoid system (ECS) is a complex neuromodulatory network involved in maintaining physiological balance through interactions with various neurotransmitter and hormonal pathways. Its key components—cannabinoid receptors (CBRs)—are activated by endogenous ligands and exogenous cannabinoids such as those found in the Cannabis sativa plant. [...] Read more.
The endocannabinoid system (ECS) is a complex neuromodulatory network involved in maintaining physiological balance through interactions with various neurotransmitter and hormonal pathways. Its key components—cannabinoid receptors (CBRs)—are activated by endogenous ligands and exogenous cannabinoids such as those found in the Cannabis sativa plant. Although cannabinoids like cannabidiol (CBD) have garnered interest for their potential therapeutic effects, evidence regarding their safety, particularly for reproductive health, remains limited. This review summarizes the structure and molecular mechanisms of the ECS, its role in reproductive physiology—including its interactions with the hypothalamic–pituitary–gonadal axis (HPG axis), gametogenesis, implantation, and lactation—and the possible consequences of cannabinoid exposure for fertility. In addition, we focus on the involvement of the ECS and cannabinoids in breast cancer, highlighting emerging evidence on their dual role in tumor progression and therapy. These insights emphasize the need for further research to better define the therapeutic potential and risks associated with cannabinoid use in reproductive health and breast cancer. Full article
Show Figures

Figure 1

46 pages, 3474 KiB  
Review
Alzheimer’s Disease Etiology Hypotheses and Therapeutic Strategies: A Perspective
by Naomi Scarano, Francesca Musumeci, Beatrice Casini, Chiara Brullo, Pasqualina D’Ursi, Paola Fossa, Silvia Schenone and Elena Cichero
Int. J. Mol. Sci. 2025, 26(14), 6980; https://doi.org/10.3390/ijms26146980 - 20 Jul 2025
Viewed by 900
Abstract
Alzheimer’s disease (AD) is a progressive, complex, multifactorial, neurodegenerative disease and accounts for most cases of dementia. The currently approved therapy includes cholinesterase inhibitors, NMDA-receptor antagonists and monoclonal antibodies. However, these medications were gradually discovered to be ineffective in removing the root of [...] Read more.
Alzheimer’s disease (AD) is a progressive, complex, multifactorial, neurodegenerative disease and accounts for most cases of dementia. The currently approved therapy includes cholinesterase inhibitors, NMDA-receptor antagonists and monoclonal antibodies. However, these medications were gradually discovered to be ineffective in removing the root of AD pathogenesis, having only symptomatic effects. Thus, the priority remains prevention and clarifying AD etiology. A better understanding of the neuroprotective mechanisms undertaken by specific genes is crucial to guide the design of novel therapeutic agents via selective ligands and precision medicine. In this review, we present a perspective of the physiological phase of the AD spectrum, of risk factors in AD with a focus on therapeutic approaches in three categories: neurotransmitters/ion modulations, peptide deposit control and aspecific treatments, followed by a discussion of treatment limitations. An overview of innovative strategies and non-pharmaceutical ancillary support is given. Full article
(This article belongs to the Special Issue Molecular Insight into Alzheimer’s Disease)
Show Figures

Figure 1

21 pages, 6401 KiB  
Article
The Dissociation of Latrophilin Fragments by Perfluorooctanoic Acid (PFOA) Inhibits LTXN4C-Induced Neurotransmitter Release
by Evelina Petitto, Jennifer K. Blackburn, M. Atiqur Rahman and Yuri A. Ushkaryov
Toxins 2025, 17(7), 359; https://doi.org/10.3390/toxins17070359 - 20 Jul 2025
Viewed by 460
Abstract
α-Latrotoxin stimulates neurotransmitter release by binding to a presynaptic receptor and then forming ion-permeable membrane pores and/or stimulating the receptor, latrophilin-1, or Adhesion G-protein-coupled receptor type L1 (ADGRL1). To avoid pore formation, we use the mutant α-latrotoxin (LTXN4C), which does not [...] Read more.
α-Latrotoxin stimulates neurotransmitter release by binding to a presynaptic receptor and then forming ion-permeable membrane pores and/or stimulating the receptor, latrophilin-1, or Adhesion G-protein-coupled receptor type L1 (ADGRL1). To avoid pore formation, we use the mutant α-latrotoxin (LTXN4C), which does not form pores and only acts through ADGRL1. ADGRL1 is cleaved into an N-terminal fragment (NTF) and a C-terminal fragment (CTF), which behave as independent cell-surface proteins, reassociating upon binding LTXN4C. We investigated the role of the NTF-CTF association in LTXN4C action, using perfluorooctanoic acid (PFOA). We demonstrate that at low concentrations (≤100 μM) PFOA does not adversely affect ADGRL1-expressing neuroblastoma cells or inhibit LTXN4C binding. However, it causes the dissociation of the NTF-CTF complexes, independent redistribution of the fragments on the cell surface, and their separate internalization. PFOA also promotes the dissociation of NTF-CTF complexes induced by LTXN4C binding. When applied to mouse neuromuscular junctions, PFOA inhibits LTXN4C-induced neurotransmitter release in a concentration-dependent manner. Our results indicate that ADGRL1 can mediate LTXN4C signaling only while its fragments remain associated. These findings explain some aspects of receptor-dependent toxin action and contribute to a mechanistic understanding of ADGRL1 functions in neurons. Full article
Show Figures

Graphical abstract

22 pages, 1041 KiB  
Review
A Systematic Review of Neurobiological Mechanisms of Passiflora: Beyond GABA Modulation
by Vitor Marcelo Soares Campos, Angela Theresa Zuffo Yabrude, Renata Delarue Toniolo Lima, Fernanda Wagner and Henrique Nunes Pereira Oliva
BioChem 2025, 5(3), 21; https://doi.org/10.3390/biochem5030021 - 18 Jul 2025
Viewed by 608
Abstract
Background/Objectives: Passiflora (passionflower), traditionally used for anxiety and insomnia, is primarily known for GABAergic modulation. However, evidence suggests broader neuropharmacological actions. This review aimed to systematically explore non-GABAergic mechanisms of Passiflora. Methods: We performed a systematic review following PRISMA Guidelines [...] Read more.
Background/Objectives: Passiflora (passionflower), traditionally used for anxiety and insomnia, is primarily known for GABAergic modulation. However, evidence suggests broader neuropharmacological actions. This review aimed to systematically explore non-GABAergic mechanisms of Passiflora. Methods: We performed a systematic review following PRISMA Guidelines (PROSPERO: CRD420251028681). PubMed/Medline, PsycINFO, Embase, Web of Science, and Scopus were searched for original research on non-GABA neurobiological mechanisms of Passiflora species (P. incarnata, P. edulis, P. caerulea, P. actinia, P. foetida). Studies were screened and assessed for eligibility, and data on design, Passiflora preparation, mechanisms, and main findings were extracted. Results: Thirteen studies revealed diverse non-GABAergic actions. Passiflora modulates opioidergic and nicotinic cholinergic systems (relevant to analgesia), monoaminergic pathways (affecting dopamine, norepinephrine, serotonin), and the glutamatergic system (offering neuroprotection via NMDA receptor inhibition). It also exhibits significant anti-inflammatory and antioxidant effects (reducing cytokines, activating Nrf2) and modulates the HPA axis (reducing stress hormones). Other mechanisms include gut microbiota modulation and metabolic effects. Conclusions: Passiflora’s therapeutic potential extends beyond GABA, involving multiple neurotransmitter systems and neuroprotective, anti-inflammatory, antioxidant, and HPA axis-regulating activities. This multi-target profile likely contributes to its clinical efficacy in conditions like anxiety, pain, and stress, potentially with a favorable side-effect profile. Further research, including mechanistic studies and clinical trials with relevant biomarkers, is needed to fully elucidate its complex pharmacology. Full article
Show Figures

Graphical abstract

29 pages, 4862 KiB  
Article
Repurposed Antipsychotics as Potential Anticancer Agents: Clozapine Efficacy and Dopaminergic Pathways in Neuroblastoma and Glioblastoma
by Catarina Moura, Maria João Gouveia and Nuno Vale
Life 2025, 15(7), 1097; https://doi.org/10.3390/life15071097 - 12 Jul 2025
Viewed by 467
Abstract
Neuro-oncology focuses on the diagnosis and treatment of brain tumors, which, despite their rarity, are associated with high mortality due to their invasiveness and limited treatment options. Emerging evidence suggests that dopamine (DA), a neurotransmitter crucial for cognitive and emotional processes, and its [...] Read more.
Neuro-oncology focuses on the diagnosis and treatment of brain tumors, which, despite their rarity, are associated with high mortality due to their invasiveness and limited treatment options. Emerging evidence suggests that dopamine (DA), a neurotransmitter crucial for cognitive and emotional processes, and its receptors may influence tumor growth and the tumor microenvironment. This study aimed to evaluate the potential anticancer effects of repurposed antipsychotic dopamine-targeting drugs (Clozapine, CLZ; Pimozide, PIM; Olanzapine, OLZ; and Risperidone, RIS) and antiemetic drugs (Domperidone, DOM; Droperidol, DRO) on neuroblastoma (SH-SY5Y) and glioblastoma (A172) cell lines, and to assess whether their efficacy is modulated by oxidative stress and DA synthesis. The drugs were first tested individually, followed by co-treatment with tyrosine (Tyr), a dopamine precursor, and hydrogen peroxide (H2O2), an inducer of oxidative stress. Additionally, drug activity was evaluated in the simultaneous presence of H2O2 and Tyr. CLZ exhibited the highest cytotoxicity in both cell lines, suggesting strong anticancer potential and also synergism among the different combinations, particularly in SH-SY5Y. Liquid chromatography of the extracellular medium showed greater Tyr consumption in SH-SY5Y compared to A172 cells, indicating a higher dependence on extracellular Tyr to mitigate drug- and/or stress-induced cytotoxicity. In summary, several of the repurposed antipsychotics demonstrated cytotoxic effects on central nervous system tumor cells, with CLZ showing the most promising activity, even under oxidative stress conditions. These findings support further investigation into dopamine-targeting drugs as potential therapeutic agents in neuro-oncology. Full article
(This article belongs to the Section Pharmaceutical Science)
Show Figures

Figure 1

16 pages, 823 KiB  
Review
GABAergic Influences on Medulloblastoma
by Viviane Aline Buffon, Jurandir M. Ribas Filho, Osvaldo Malafaia, Isadora D. Tassinari, Rafael Roesler and Gustavo R. Isolan
Brain Sci. 2025, 15(7), 746; https://doi.org/10.3390/brainsci15070746 - 11 Jul 2025
Viewed by 393
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in children and typically arises in the cerebellum, likely due to disruptions in neuronal precursor development. The primary inhibitory neurotransmitter in the central nervous system (CNS), γ-aminobutyric acid (GABA), exerts its effects through GABA [...] Read more.
Medulloblastoma (MB) is the most common malignant brain tumor in children and typically arises in the cerebellum, likely due to disruptions in neuronal precursor development. The primary inhibitory neurotransmitter in the central nervous system (CNS), γ-aminobutyric acid (GABA), exerts its effects through GABAA, GABAB, and GABAC receptors. GABA receptor activity regulates the development and function of cerebellar neurons, including glutamatergic cerebellar granule cells (CGCs). Beyond the nervous system, GABA is also a common metabolite in non-neuronal cell types. An increasing body of evidence indicates that GABA can influence cell proliferation, differentiation, and migration in several types of adult solid tumors, including brain cancers. GABA and GABAA receptor agonists can impair the viability and survival of MB cells, primarily acting on GABAA receptors containing the α5 subunit. A marked expression of the gene encoding the α5 subunit is found across all MB tumor molecular subgroups, particularly Group 3 MB, which has a poor prognosis. Importantly, high levels of the γ-aminobutyric acid type A receptor subunit α5 (GABRA5) gene are associated with shorter patient overall survival in Group 3 and Group 4 MB. In contrast, high γ-aminobutyric acid type A receptor subunit β1 (GABRB1) gene expression is related to longer survival in all MB subgroups. The GABAergic system may, therefore, regulate MB cell function and tumor progression and influence patient prognosis, and is worthy of further investigation as a biomarker and therapeutic target in MB. Full article
(This article belongs to the Special Issue Editorial Board Collection Series: Advances in Neuro-Oncology)
Show Figures

Figure 1

17 pages, 932 KiB  
Review
Retinal Neurochemistry
by Dominic Man-Kit Lam and George Ayoub
Brain Sci. 2025, 15(7), 727; https://doi.org/10.3390/brainsci15070727 - 8 Jul 2025
Viewed by 320
Abstract
The vertebrate retina is a complex neural tissue composed of a repeating array of distinct cell types that communicate through specialized synaptic connections. The neurochemistry underlying these connections reveals the synaptic chemistry, including the neurotransmitters involved and their corresponding receptors. The basic pattern [...] Read more.
The vertebrate retina is a complex neural tissue composed of a repeating array of distinct cell types that communicate through specialized synaptic connections. The neurochemistry underlying these connections reveals the synaptic chemistry, including the neurotransmitters involved and their corresponding receptors. The basic pattern of communication is that the pathway from photoreceptors to bipolar cells to ganglion cells typically uses glutamate as the signaling transmitter, with three ionotropic and one metabotropic receptor types. In contrast, much of the lateral feedback, performed by horizontal cells and amacrine cells, uses the inhibitory neurotransmitter GABA, while other amacrine cells use glycine or dopamine. This review examines all of these neurotransmitter systems for each retinal cell type, along with how these systems process the visual signals transmitted to the lateral geniculate nucleus and the visual cortex. Full article
(This article belongs to the Special Issue Retinal Neurochemistry and Development)
Show Figures

Figure 1

20 pages, 4908 KiB  
Article
Genes That Associated with Action of ACTH-like Peptides with Neuroprotective Potential in Rat Brain Regions with Different Degrees of Ischemic Damage
by Ivan B. Filippenkov, Yana Yu. Shpetko, Daria A. Ales, Vasily V. Stavchansky, Alina E. Denisova, Vadim V. Yuzhakov, Natalia K. Fomina, Leonid V. Gubsky, Lyudmila A. Andreeva, Nikolay F. Myasoedov, Svetlana A. Limborska and Lyudmila V. Dergunova
Int. J. Mol. Sci. 2025, 26(13), 6256; https://doi.org/10.3390/ijms26136256 - 28 Jun 2025
Viewed by 445
Abstract
In the treatment of ischemic stroke, an innovative approach is the use of neuroprotective compounds. Natural peptides, including adrenocorticotropic hormone (ACTH), can serve as the basis for such drugs. Previously, a significant effect of non-hormonal ACTH(4-7)PGP (Semax) and ACTH(6-9)PGP peptides on the functions [...] Read more.
In the treatment of ischemic stroke, an innovative approach is the use of neuroprotective compounds. Natural peptides, including adrenocorticotropic hormone (ACTH), can serve as the basis for such drugs. Previously, a significant effect of non-hormonal ACTH(4-7)PGP (Semax) and ACTH(6-9)PGP peptides on the functions of the nervous system was shown. Also, while using RNA-Seq, we firstly revealed differentially expressed genes (DEGs) that associated with peptides in the penumbra-associated region of the frontal cortex (FC) of rats at 24 h after transient middle cerebral artery occlusion (tMCAO) model. Peptides significantly reduced profile disturbances caused by ischemia for almost two-thousand DEGs in FC related to the neurotransmitter and inflammatory response. Here, we studied how peptides affected the expression of genes in the striatum with an ischemic focus, predominantly. The same animals from which we previously acquired FC were used to collect striatum samples. Peptides generated fewer DEGs in the striatum than in the FC. Both peptides tended to normalize the profile of disturbances caused by ischemia for hundreds of DEGs, whereas 152 genes showed an even more affected profile in the striatum under ACTH(6-9)PGP action. These DEGs were associated with inflammation, predominantly. About hundred genes were overlapped between both peptides in both tissues and were associated with neuroactive ligand-receptor interaction, predominantly. Thus, genes that are associated with the ACTH-like peptide action in rat brain regions with varying levels of ischemia injury were identified. Moreover, differential spatial regulation of the ischemia process in the rat brain at the transcriptome levels was discovered under peptides with different ACTH structures. We suppose that our results may be useful for selecting more effective neuroprotective drug structures in accordance with their specific tissue/damage therapeutic impact. Full article
(This article belongs to the Special Issue Nutraceuticals for the Maintenance of Brain Health)
Show Figures

Figure 1

30 pages, 1700 KiB  
Review
The Inflammatory Nexus: Unraveling Shared Pathways and Promising Treatments in Alzheimer’s Disease and Schizophrenia
by Aurelio Pio Russo, Ylenia Pastorello, Lóránd Dénes, Klara Brînzaniuc, Jerzy Krupinski and Mark Slevin
Int. J. Mol. Sci. 2025, 26(13), 6237; https://doi.org/10.3390/ijms26136237 - 27 Jun 2025
Viewed by 636
Abstract
Alzheimer’s disease (AD) and schizophrenia are traditionally considered distinct clinical entities, yet growing evidence highlights substantial overlap in their molecular and neuroinflammatory pathogenesis. This review explores current insights into the shared and divergent mechanisms underlying these disorders, with emphasis on neuroinflammation, autophagy dysfunction, [...] Read more.
Alzheimer’s disease (AD) and schizophrenia are traditionally considered distinct clinical entities, yet growing evidence highlights substantial overlap in their molecular and neuroinflammatory pathogenesis. This review explores current insights into the shared and divergent mechanisms underlying these disorders, with emphasis on neuroinflammation, autophagy dysfunction, blood–brain barrier (BBB) disruption, and cognitive impairment. We examine key signaling pathways, particularly spleen tyrosine kinase (SYK), the mechanistic (or mammalian) target of rapamycin (mTOR), and the S100 calcium-binding protein B (S100B)/receptor for advanced glycation end-products (RAGE) axis, that link glial activation, excitatory/inhibitory neurotransmitter imbalances, and impaired proteostasis across both disorders. Specific biomarkers such as S100B, matrix metalloproteinase 9 (MMP9), and soluble RAGE show promise for stratifying disease subtypes and predicting treatment response. Moreover, psychiatric symptoms frequently precede cognitive decline in both AD and schizophrenia, suggesting that mood and behavioral disturbances may serve as early diagnostic indicators. The roles of autophagic failure, cellular senescence, and impaired glymphatic clearance are also explored as contributors to chronic inflammation and neurodegeneration. Current treatments, including cholinesterase inhibitors and antipsychotics, primarily offer symptomatic relief, while emerging therapeutic approaches target upstream molecular drivers, such as mTOR inhibition and RAGE antagonism. Finally, we discuss the future potential of personalized medicine guided by genetic, neuroimaging, and biomarker profiles to optimize diagnosis and treatment strategies in both AD and schizophrenia. A greater understanding of the pathophysiological convergence between these disorders may pave the way for cross-diagnostic interventions and improved clinical outcomes. Full article
Show Figures

Figure 1

40 pages, 2634 KiB  
Review
Plateau Environment, Gut Microbiota, and Depression: A Possible Concealed Connection?
by Yajun Qiao, Ruiying Cheng, Xiaohui Li, Huimin Zheng, Juan Guo, Lixin Wei, Tingting Gao and Hongtao Bi
Curr. Issues Mol. Biol. 2025, 47(7), 487; https://doi.org/10.3390/cimb47070487 - 25 Jun 2025
Viewed by 901
Abstract
Plateau environments present unique mental health challenges owing to stressors including hypoxia, low temperatures, and intense ultraviolet (UV) radiation. These factors induce structural and functional alterations in the gut microbiota, disrupting gut-brain axis homeostasis and contributing to the higher prevalence of depression in [...] Read more.
Plateau environments present unique mental health challenges owing to stressors including hypoxia, low temperatures, and intense ultraviolet (UV) radiation. These factors induce structural and functional alterations in the gut microbiota, disrupting gut-brain axis homeostasis and contributing to the higher prevalence of depression in plateau regions relative to flatland areas. For example, studies report that 28.6% of Tibetan adults and 29.2% of children/adolescents on the Qinghai-Tibet Plateau experience depression, with increasing evidence linking this trend to alterations in the gut microbiota. Dysbiosis contributes to depression through three interconnected mechanisms: (1) Neurotransmitter imbalance: Reduced bacterial diversity impairs serotonin synthesis, disrupting emotional regulation. (2) Immune dysregulation: Compromised gut barrier function allows bacterial metabolites to trigger systemic inflammation via toll-like receptor signaling pathways. (3) Metabolic dysfunction: Decreased short-chain fatty acid levels weaken neuroprotection and exacerbate hypothalamic-pituitary-adrenal axis stress responses. Current interventions—including dietary fiber, probiotics, and fecal microbiota transplantation—aim to restore microbiota balance and increase short-chain fatty acids, alleviating depressive symptoms. However, key knowledge gaps remain in understanding the underlying mechanisms and generating population-specific data. In conclusion, existing evidence indicates an association between plateau environments, the gut microbiota, and depression, but causal relationships and underlying mechanisms require further empirical investigation. Integrating multiomics technologies to systematically explore interactions among high-altitude environments, the microbiota and the brain will facilitate the development of precision therapies such as personalized nutrition and tailored probiotics to protect mental health in high-altitude populations. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

13 pages, 340 KiB  
Review
Zingerone as a Neuroprotective Agent Against Cognitive Disorders: A Systematic Review of Preclinical Studies
by Tosin A. Olasehinde and Oyinlola O. Olaokun
Int. J. Mol. Sci. 2025, 26(13), 6111; https://doi.org/10.3390/ijms26136111 - 25 Jun 2025
Viewed by 444
Abstract
Cognitive problems are associated with impaired learning ability and memory dysfunction. Neuroinflammation has been identified as an important factor in the progression of anxiety and depressive disorders. Zingerone is a phenolic alkanone derived from ginger (Zingiber officinale Roscoe), which is known for its [...] Read more.
Cognitive problems are associated with impaired learning ability and memory dysfunction. Neuroinflammation has been identified as an important factor in the progression of anxiety and depressive disorders. Zingerone is a phenolic alkanone derived from ginger (Zingiber officinale Roscoe), which is known for its antioxidant and anti-inflammatory properties. A number of studies have investigated the effect of zingerone on neuroinflammation and cognitive impairment. However, this evidence has not been systematically reviewed. This study sought to systematically review the effect of zingerone on neuroinflammation and neurobehavioural changes associated with memory and learning impairment and anxiety-like and depressive-like behaviours. A systematic review was conducted using pre-defined search criteria on Google Scholar, Scopus and Web of Science. The records obtained were screened based on inclusion criteria, and data was extracted from the included studies. Out of the 482 studies that were identified, only 9 studies met the inclusion criteria. Neuroinflammatory markers such as interleukin 1β (IL-1β), interleukin 6 (IL-6), tumour necrosis factor-alpha (TNF-α) and ionized calcium binding adaptor molecule (IBA-1), as well as behavioural parameters including Morris water maze, Y-Maze, recognition test, passive avoidance test, elevated plus maze, sucrose preference test and forced swimming test were measured. Zingerone exhibited anti-neuroinflammatory effects by improving IL-1β, IL-6 and TNF-α levels. However, zingerone did not show any significant changes on activated microglia. The anti-neuroinflammatory mechanisms of zingerone were linked to the inhibition of nuclear factor kappa B (NF-kB) activation and the NOD-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome, as well as the reduction in neuronal nitric oxide synthase (nNOS). The anxiolytic and anti-depressive effects of zingerone were also associated with an improvement in cortical cholinergic transmission, the mitigation of oxidative stress and the upregulation of neurotransmitters such as serotonin and dopamine. This review provides scientific evidence on the cognitive enhancing and neuroprotective mechanisms of zingerone, which may be beneficial for future experimental investigations. Full article
Show Figures

Figure 1

29 pages, 1484 KiB  
Review
Adenylyl Cyclases as Therapeutic Targets in Neuroregeneration
by Julia Tomczak, Agnieszka Kapsa and Tomasz Boczek
Int. J. Mol. Sci. 2025, 26(13), 6081; https://doi.org/10.3390/ijms26136081 - 25 Jun 2025
Viewed by 844
Abstract
Adenylyl cyclases (ACs) are key regulators of cyclic adenosine monophosphate (cAMP) signaling—a pathway critical for neuroregeneration, synaptic plasticity, and neuronal survival. In both the central and peripheral nervous systems, injury-induced activation of ACs promotes axonal outgrowth and functional recovery through the stimulation of [...] Read more.
Adenylyl cyclases (ACs) are key regulators of cyclic adenosine monophosphate (cAMP) signaling—a pathway critical for neuroregeneration, synaptic plasticity, and neuronal survival. In both the central and peripheral nervous systems, injury-induced activation of ACs promotes axonal outgrowth and functional recovery through the stimulation of protein kinase A (PKA), exchange proteins directly activated by cAMP (Epac), and cAMP-response element-binding protein (CREB). Among the various AC isoforms, calcium-sensitive AC1, AC8, and AC5, as well as bicarbonate-responsive soluble AC (sAC), have emerged as crucial mediators of neuroplasticity and axon regeneration. These isoforms coordinate diverse cellular responses—including gene transcription, cytoskeletal remodeling, and neurotransmitter release—to metabolic, synaptic, and injury-related signals. Dysregulation of AC activity has been implicated in the pathophysiology of neurodegenerative diseases such as Parkinson’s disease, Alzheimer’s disease, and amyotrophic lateral sclerosis, as well as in chronic pain syndromes. Pharmacological modulation of cAMP levels through AC activation, phosphodiesterase (PDE) inhibition, or pituitary adenylyl cyclase-activating polypeptide (PACAP) receptor signaling has shown therapeutic promise in preclinical models by enhancing neurogenesis, remyelination, and synaptic repair. Conversely, targeted inhibition of specific AC isoforms, particularly AC1, has demonstrated efficacy in reducing maladaptive plasticity and neuropathic pain. This review highlights the diverse roles of ACs in neuronal function and injury response and discusses emerging strategies for their therapeutic targeting. Full article
(This article belongs to the Special Issue Latest Review Papers in Molecular Neurobiology 2025)
Show Figures

Figure 1

Back to TopTop