Post-Annealing Effect on the Physicochemical Properties of Sn-Te-O Thin Films
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion



4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.; Wang, Z.; Zou, B.; Brod, M.K.; Zhu, J.; Jia, T.; Tang, G.; Snyder, G.J.; Zhang, Y. Band Engineering SnTe via Trivalent Substitutions for Enhanced Thermoelectric Performance. Chem. Mater. 2021, 33, 9624–9637. [Google Scholar] [CrossRef]
- Robinson, F.; Newbrook, D.W.; Curran, P.; de Groot, C.H.K.; Hardie, D.; Hector, A.L.; Huang, R.; Reid, G. Low Temperature CVD of Thermoelectric SnTe Thin Films from the Single Source Precursor, [nBu3Sn(TenBu)]. Dalton Trans. 2021, 50, 998–1006. [Google Scholar] [CrossRef]
- Fu, T.; Xin, J.; Zhu, T.; Shen, J.; Fang, T.; Zhao, X. Approaching the Minimum Lattice Thermal Conductivity of P-Type SnTe Thermolectric Materials by Sb and Mg Alloying. Sci. Bull. 2019, 64, 1024–1030. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Hu, H.; Yang, J.; Xin, J.; Li, S.; Viola, G.; Yan, H. High Thermoelectric Performance in SnTe Nanocomposites with All-Scale Hierarchical Structures. ACS Appl. Mater. Interfaces 2020, 12, 23102–23109. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Gao, B.; Lin, S.; Li, J.; Chen, Z.; Xiong, F.; Li, W.; Chen, Y.; Pei, Y. Manipulation of Band Structure and Interstitial Defects for Improving Thermoelectric SnTe. Adv. Funct. Mater. 2018, 28, 1803586. [Google Scholar] [CrossRef]
- Shenoy, U.S.; Bhat, D.K. Selective Co-Doping Improves the Thermoelectric Performance of SnTe: An Outcome of Electronic Structure Engineering. J. Alloys Compd. 2021, 892, 162221. [Google Scholar] [CrossRef]
- Mahdy, I.A.; Mahmoud, E.A.; Mahdy, M.A. Tin Telluride Quantum Dot Thin Films: Size Dependent Structural, Optical and Electrical Properties. Mater. Sci. Semicond. Process. 2021, 121, 105398. [Google Scholar] [CrossRef]
- Han, G.; Zhang, R.; Popuri, S.R.; Greer, H.F.; Reece, M.J.; Bos, J.G.; Zhou, W.; Knox, A.R.; Gregory, D.H. Large-Scale Surfactant-Free Synthesis of P-Type SnTe Nanoparticles for Thermoelectric Applications. Materials 2017, 10, 233. [Google Scholar] [CrossRef]
- Giri, A.; Kumar, M.; Kim, J.; Pal, M.; Banerjee, W.; Nikam, R.D.; Kwak, J.; Kong, M.; Kim, S.H.; Thiyagarajan, K.; et al. Surface Diffusion and Epitaxial Self-Planarization for Wafer-Scale Single-Grain Metal Chalcogenide Thin Films. Adv. Mater. 2021, 33, 2102252. [Google Scholar] [CrossRef]
- Li, W.; Zheng, L.; Ge, B.; Lin, S.; Zhang, X.; Chen, Z.; Chang, Y.; Pei, Y. Promoting SnTe as an Eco-Friendly Solution for p-PbTe Thermoelectric via Band Convergence and Interstitial Defects. Adv. Mater. 2017, 29, 1605887. [Google Scholar] [CrossRef]
- Xu, S.; Zhu, W.; Zhang, L.; Zhang, Z.; Deng, Y. Enhanced Thermoelectric Performance of SnTe Film with Optimized Carrier Transport Induced by Facile Post-Annealing Process. Mater. Lett. 2018, 221, 12–14. [Google Scholar] [CrossRef]
- Yin, D.; Dun, C.; Gao, X.; Liu, Y.; Zhang, X.; Carroll, D.L.; Swihart, M.T. Controllable Colloidal Synthesis of Tin (II) Chalcogenide Nanocrystals and Their Solution-Processed Flexible Thermoelectric Thin Films. Small 2018, 14, 1801949. [Google Scholar] [CrossRef]
- Weng, Z.; Ma, S.; Zhu, H.; Ye, Z.; Shu, T.; Zhou, J.; Wu, W.; Wu, H. CdTe Thin Film Solar Cells with a SnTe Buffer Layer in Back Contact. Sol. Energy Mater. Sol. Cells 2018, 179, 276–282. [Google Scholar] [CrossRef]
- de Kergommeaux, A.; Faure-Vincent, J.; Pron, A.; de Bettignies, R.; Malaman, B.; Reiss, P. Surface Oxidation of Tin Chalcogenide Nanocrystals Revealed by 119Sn-Mössbauer Spectroscopy. J. Am. Chem. Soc. 2012, 134, 11659–11666. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Alivisatos, A.P. Colloidal Nanocrystal Synthesis and the Organic-Inorganic Interface. Nature 2005, 437, 664–670. [Google Scholar] [CrossRef] [PubMed]
- Meng, Z.; Stolz, R.M.; Mendecki, L.; Mirica, K.A. Electrically-Transduced Chemical Sensors Based on Two-Dimensional Nanomaterials. Chem. Rev. 2019, 119, 478–598. [Google Scholar] [CrossRef] [PubMed]
- Ahmet, I.Y.; Hill, M.S.; Raithby, P.R.; Johnson, A.L. Tin Guanidinato Complexes: Oxidative Control of Sn, SnS, SnSe and SnTe Thin Film Deposition. Dalton Trans. 2018, 47, 5031–5048. [Google Scholar] [CrossRef]
- Tanwar, P.; Panwar, A.K.; Singh, S.; Srivatava, A.K. Microstructural and Optical Properties Investigation of Variable Thickness of Tin Telluride Thin Films. Thin Solid Films 2020, 693, 137708. [Google Scholar] [CrossRef]
- Lee, Y.K.; Park, E.S.; Yoo, C.; Kim, W.; Jeon, J.W.; Ha, M.; Hwang, C.S. Atomic Layer Deposition of SnTe Thin Film Using Sn(N(CH3)2)4 and Te(Si(CH3)3)2 with Ammonia Coinjection. Cryst. Growth Des. 2020, 20, 4649–4656. [Google Scholar] [CrossRef]
- Zou, K.; Albright, S.D.; Dagdeviren, O.E.; Morales-Acosta, M.D.; Simon, G.H.; Zhou, C.; Mandal, S.; Ismail-Beigi, S.; Schwarz, U.D.; Altman, E.I.; et al. Revealing Surface-State Transport in Ultrathin Topological Crystalline Insulator SnTe Films. APL Mater. 2019, 7, 051106. [Google Scholar] [CrossRef]
- Şişman, İ.; Öz, H. Preparation of SnTe Thin Films on Au(111) by Electrodeposition Route. Electrochim. Acta 2011, 56, 4889–4894. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Cai, K.F.; Yao, X. Facile Synthesis and Characterization of SnTe Films. Appl. Surf. Sci. 2011, 258, 919–922. [Google Scholar] [CrossRef]
- Klett, R.; Schönle, J.; Becker, A.; Dyck, D.; Borisov, K.; Rott, K.; Ramermann, D.; Büker, B.; Haskenhoff, J.; Krieft, J.; et al. Proximity-Induced Superconductivity and Quantum Interference in Topological Crystalline Insulator SnTe Thin-Film Devices. Nano Lett. 2018, 18, 1264–1268. [Google Scholar] [CrossRef]
- Lelis, M.; Tuckute, S.; Varnagiris, S.; Marius, U.; Giedrius, L.; Bockute, K. Tailoring of TiO2 film microstructure by pulsed-DC and RF magnetron co-sputtering. Surf. Coat. Technol. 2019, 377, 124906. [Google Scholar] [CrossRef]
- Cattaruzza, E.; Battaglin, G.; Canton, P.; de Julian Fernandez, C.; Ferroni, M.; Gonella, F.; Maurizio, C.; Riello, P.; Sada, C.; Sangregorio, C.; et al. Radiofrequency magnetron co-sputtering deposition synthesis of Co-based nanocomposite glasses for optical and magnetic applications. Appl. Surf. Sci. 2004, 226, 62–67. [Google Scholar] [CrossRef]
- Borowski, P.; Mysliwiec, J. Recent advances in magnetron sputtering: From fundamentals to industrial applications. Coatings 2025, 15, 922. [Google Scholar] [CrossRef]
- Lee, S.G.; Ahn, J.R.; Kim, Y.; Moon, S.H.; Lee, K.W.; Kim, I.S.; Park, Y.K. Properties of MgB2 thin films made by radio frequency magnetron co-sputtering. Supercond. Sci. Technol. 2003, 16, 1550. [Google Scholar] [CrossRef]
- Chen, S.C.; Wang, C.H.; Sun, H.; Wen, C.K.; Lu, C.F.; Tsai, C.L.; Fu, Y.K.; Chuang, T.H. Microstructures, electrical and magnetic properties of (Ga, Co)-ZnO films by radio frequency magnetron co-sputtering. Surf. Coat. Technol. 2016, 303, 203–208. [Google Scholar] [CrossRef]
- Ponce-Mosso, M.; Pérez-González, M.; García-Tinoco, P.E.; Crotte-Ledesma, H.; Morales-Luna, M.; Tomás, S.A. Enhanced Photocatalytic Activity of Amorphous MoO3 Thin Films Deposited by rf Reactive Magnetron Sputtering. Catal. Today 2020, 349, 150–158. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, Y.; Lotnyk, A.; Shi, H.; Chen, C. High Thermoelectric Performance in ZnSb-SnTe Pseudo-Binary Materials. Scr. Mater. 2021, 194, 113670. [Google Scholar] [CrossRef]
- Saghir, M.; Walker, M.; McConville, C.F.; Balakrishnan, G. SnTe Microcrystals: Surface Cleaning of a Topological Crystalline Insulator. Appl. Phys. Lett. 2016, 108, 061602. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, W.; Su, D.; Wen, J.; Liu, L.; Wang, X. Flexible SnTe/Carbon Nanofiber Membrane as a Free-Standing Anode for High-Performance Lithium-Ion and Sodium-Ion Batteries. J. Colloid Interface Sci. 2022, 605, 231–240. [Google Scholar] [CrossRef]
- Cox, J.D.; Wagman, D.D.; Medvedev, V.A. CODATA Key Values for Thermodynamics; Hemisphere Publishing Corp.: New York, NY, USA, 1989. [Google Scholar]
- Bettini, M.; Richter, H.J. Oxidation in air and thermal desorption on PbTe, SnTe, and Pb0.8Sn0.2Te surfaces. Surf. Sci. 1979, 80, 334–343. [Google Scholar] [CrossRef]
- Berchenko, N.; Trzyna, M.; Wojnarowska-Nowak, R.; Szczerbakow, A.; Badyla, A.; Cebulski, J.; Story, T. Surface oxidation of SnTe topological crystalline insulator. Appl. Surf. Sci. 2018, 452, 134–140. [Google Scholar] [CrossRef]
- Wortman, M.; Bednarz, B.; Nezafat, N.B.; Viertel, K.; Kuschel, O.; Schmalhorst, J.; Ennen, I.; Garner, M.; Frese, N.; Jakob, G.; et al. Oxidation state depth profiling by self-consistent fitting of all emission peaks in the X-ray photoelectron spectrum of SnTe. Appl. Surf. Sci. 2025, 713, 164356. [Google Scholar] [CrossRef]
- Choi, J.; Park, J.; Kang, J.; Kehayias, C.E.; Oh, J.W.; Kang, Y.C. Annealing Temperature Effect on the Surface Properties of the MoSe Thin Films. Phys. Status Solidi A 2023, 220, 2300477. [Google Scholar] [CrossRef]
- Mun, J.; Han, S.; Yoon, H.S.; Kang, J.; Jonas, O.; Park, J.; Kang, Y.C. Etching and Compositional Ratio Effet on the Surface Properties of Bismuth Telluride Thin Films. Surfaces 2024, 7, 181–195. [Google Scholar] [CrossRef]
- Lee, J.; Kim, D.; Park, J.; Kang, J.; Kehayias, C.E.; Johnson, A.T.C.; Kang, Y.C. Investigation on the Surface Properties of Annealed Copper Selenide Thin Films with Various Compositional Ratios. Phys. Status Solidi A 2025, 222, 2400618. [Google Scholar] [CrossRef]
- Jeong, C.; Mun, J.; Park, J.; Kang, J.; Kehayias, C.E.; Johnson, A.T.C.; Kang, Y.C. Surface Properties of Copper Oxytelluride Thin Films with Different Composition Ratios Fabricated by RF Magnetron Co-Sputtering. Physica B Condens. Matter 2025, 701, 416963. [Google Scholar] [CrossRef]
- Choi, S.; Kang, J.; Park, J.; Kang, Y.C. Tin Nitride Thin Films Fabricated by Reactive Radio Frequency Magnetron Sputtering at Various Nitrogen Gas Ratios. Thin Solid Films 2014, 571, 84–89. [Google Scholar] [CrossRef]
- Choi, S.; Park, J.; Kang, J.; Johnson, A.T.C.; Kang, Y.C. Surface Characterizaiton of PZT Thin Films Obtained at Various O2 Gas Ratios. Vacuum 2016, 128, 234–239. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Payne, B.P.; Lau, L.W.M.; Gerson, A.; Smart, R.S.C. X-ray Photoelectron Spectroscopy Reference Values for Transition Metal Oxides and Hydroxides: Mixed Oxide Systems. Appl. Surf. Sci. 2011, 257, 2717–2730. [Google Scholar] [CrossRef]
- Cordfunke, E.H.P.; Ouweltjes, W.; Prins, G. Standard Enthalpies of Formation of Tellurium Compounds I. Tellurium Dioxide. J. Chem. Thermodyn. 1987, 19, 369–375. [Google Scholar] [CrossRef]
- Nguyen, T.T.N.; Sasaki, N.; Tsutsumi, T.; Ishikawa, K.; Hori, M. Formation of Spherical Sn Particles by Reducing SnO2 film in Floating Wire-Assisted H2/Ar Plasma at Atmospheric Pressure. Sci. Rep. 2020, 10, 17770. [Google Scholar]
- Dziawa, P.; Kowalski, B.J.; Dybko, K.; Buczko, R.; Szczerbakow, A.; Szot, M.; Łusakowska, E.; Balasubramanian, T.; Wojek, B.M.; Berntsen, M.H.; et al. Topological crystalline insulator states in Pb1-xSnxSe. Nat. Mater. 2013, 11, 1023–1027. [Google Scholar] [CrossRef]
- Zhang, G.; Qin, G.; Zhang, F. Effects of Internal Relaxation of Biaxial Strain on Structural and Electronic Properties of In0.5Al0. 5N Thin Film. Coatings 2022, 12, 598. [Google Scholar] [CrossRef]
- Abadias, G.; Chason, E.; Keckes, J.; Sebastiani, M.; Thompson, G.B.; Barthel, E.; Doll, G.L.; Murray, C.E.; Stoessel, C.H.; Martinu, L. Stress in thin films and coatings: Current status, challenges, and prospects. J. Vac. Sci. Technol. A 2018, 36, 020801. [Google Scholar] [CrossRef]
- Xu, C.; Xu, G.; Liu, Y.; Zhao, X.; Wang, G. Preparation and Characterization of SnO2 Nanorods by Thermal Decomposition of SnC2O4 Precursor. Scr. Mater. 2002, 46, 789–794. [Google Scholar] [CrossRef]
- Lakshminarayana, G.; Baki, S.O.; Lira, A.; Sayyed, M.I.; Kityk, I.V.; Halimah, M.K.; Mahdi, M.A. X-ray Photoelectron Spectroscopy (XPS) and Radiation Shielding Parameters Investigations for Zinc Molybdenum Borotellurite Glasses Containing Different Network Modifiers. J. Mater. Sci. 2017, 52, 7394–7414. [Google Scholar] [CrossRef]
- Yoon, H.S.; Lee, J.; Park, J.; Oh, J.W.; Kang, Y.C. Physicochemical Properties of SnTe Thin Films Dependent on Compositional Ratios. Phys. Status Solidi A 2022, 219, 2200059. [Google Scholar] [CrossRef]
- Quackenbush, N.F.; Allen, J.P.; Scanlon, D.O.; Sallis, S.; Hewlett, J.A.; Nandur, A.S.; Chen, B.; Smith, K.E.; Weiland, C.; Fischer, D.A.; et al. Origin of the Biopolar Doping Behavior of SnO from X-ray Spectroscopy and Density Functional Theory. Chem. Mater. 2013, 25, 3114–3123. [Google Scholar] [CrossRef]
- Hanyš, P.; Janeček, P.; Matolı’n, V.; Korotcenkov, G.; Nehasil, V. XPS and TPD study of Rh/SnO2 System-Reversible Process of Substrate Oxidation and Reduction. Surf. Sci. 2006, 600, 4233–4238. [Google Scholar] [CrossRef]
- Neudachina, V.S.; Shatalova, T.B.; Shtanov, V.I.; Yashina, L.V.; Zyubina, T.S.; Tamm, M.E.; Kobeleva, S.P. XPS Study of SnTe(100) Oxidation by Molecular Oxygen. Surf. Sci. 2005, 584, 77–82. [Google Scholar] [CrossRef]
- Sen, S.; Muthe, K.P.; Joshi, N.; Gadkari, S.C.; Gupta, S.K.; Roy, J.M.; Deshpande, S.K.; Yakhmi, J.V. Room Temperature Operating Ammonia Sensor Based on Tellerium Thin Films. Sens. Actuators B Chem. 2004, 98, 154–159. [Google Scholar] [CrossRef]
- Maslakov, K.I.; Teterin, Y.A.; Popel, A.J.; Teterin, A.Y.; Ivanov, K.E.; Kalmykov, S.N.; Petrov, V.G.; Petrov, P.K.; Farnan, I. XPS Study of Ion Irradiated and Unirradiated CeO2 Bulk and Thin Film Samples. Appl. Surf. Sci. 2018, 448, 154–162. [Google Scholar] [CrossRef]
- Campbell, K.A.; Anderson, C.M. Phase-Change Memory Devices with Stacked Ge-Chalcogenide/Sn-Chalcogenide Layers. Microelectron. J. 2007, 38, 52–59. [Google Scholar] [CrossRef]
- Owens, D.K.; Wendt, R.C. Estimation of the Surface Free Energy of Polymers. J. Appl. Polym. Sci. 1969, 13, 1741. [Google Scholar] [CrossRef]
- Montes Ruiz-Cabello, F.J.; Bermúdez-Romero, S.; Ibáñez-Ibáñez, P.F.; Cabrerizo-Vílchez, M.A.; Rodríguez-Valverde, M.A. Freezing Delay of Sessile Drops: Probing the Impact of Contact Angle, Surface Roughness and Thermal Conductivity. Appl. Surf. Sci. 2021, 537, 147964. [Google Scholar] [CrossRef]
- Bhushan, B.; Nosonovsky, M. The Rose Petal Effect and the Modes of Superhydrophobicity. Philos. Trans. R. Soc. A 2010, 368, 4713–4728. [Google Scholar] [CrossRef]
- Hu, L.; Zhang, L.; Wang, D.; Lin, X.; Chen, Y. Fabrication of Biomimetic Superhydrophobic Surface Based on Nanosecond Laser-Treated Titanium Alloy Surface and Organic Polysilazane Composite Coating. Colloid Surf. A 2018, 555, 515–524. [Google Scholar] [CrossRef]
- Lv, H.; Wu, C.; Tang, J.; Du, H.; Qin, F.; Peng, H.; Yan, M. Two-Dimensional SnO/SnO2 Heterojunctions for Electromagnetic Wave Absorption. Chem. Eng. J. 2021, 411, 128445. [Google Scholar] [CrossRef]
- Yuan, Z.; Zhao, Q.; Xie, C.; Liang, J.; Duan, X.; Duan, Z.; Li, S.; Jiang, Y.; Tai, H. Gold-Loaded Tellurium Nanobelts Gas Sensor for PPT-Level NO2 Detection at Room Temperature. Sens. Actuators B Chem. 2022, 355, 131300. [Google Scholar] [CrossRef]
- Dillon, J.A.; Farnsworth, H.E. Work Function and Sorption Properties of Silicon Crystals. J. Appl. Phys. 1958, 28, 1195. [Google Scholar] [CrossRef]
- Berg, U.; Chassé, T.; Brümmer, O. Investigation of the XPS Valence Band Structure from Sn Chalcogenides. Phys. Status Solidi B 1981, 108, 507–510. [Google Scholar] [CrossRef]






| Sample | ST0 | ST10 | ST20 | ST40 | ST70 | ST80 | ST100 | |
|---|---|---|---|---|---|---|---|---|
| RF sputtering power [W] | Sn | 30 | 46 | 35 | 29 | 17 | 14 | NA |
| Te | NA | 8 | 12 | 16 | 20 | 20 | 20 | |
| Co-sputtering time [s] | 1152 | 510 | 532 | 510 | 600 | 615 | 900 | |
| Relative Atomic Percentage [%] | ||||||||
|---|---|---|---|---|---|---|---|---|
| Annealing Temperature [K] | Constituent Element | Sample | ||||||
| ST0 | ST10 | ST20 | ST40 | ST70 | ST80 | ST100 | ||
| 298 | Sn | 41.4 | 43.3 | 39.6 | 24.2 | 11.7 | 11.9 | 0.0 |
| Te | 0.0 | 4.0 | 9.6 | 18.6 | 33.9 | 35.5 | 60.6 | |
| O | 13.7 | 9.3 | 8.3 | 11.4 | 6.2 | 4.2 | 1.4 | |
| Si | 44.9 | 43.5 | 42.5 | 45.8 | 48.2 | 48.3 | 38.0 | |
| 473 | Sn | 37.7 | 45.1 | 37.6 | 24.7 | 9.0 | 11.7 | 0.0 |
| Te | 0.0 | 2.4 | 8.9 | 17.2 | 26.8 | 38.5 | 56.4 | |
| O | 12.1 | 18.1 | 10.9 | 13.4 | 9.0 | 6.8 | 2.7 | |
| Si | 50.2 | 34.4 | 42.6 | 44.7 | 55.2 | 43.0 | 40.9 | |
| 673 | Sn | 18.1 | 19.8 | 24.1 | 18.8 | 5.7 | 5.0 | 0.0 |
| Te | 0.0 | 1.4 | 4.7 | 13.6 | 0.6 | 4.1 | 0.8 | |
| O | 28.9 | 28.7 | 36.5 | 16.6 | 14.5 | 11.9 | 3.0 | |
| Si | 53.0 | 50.0 | 34.7 | 51.0 | 79.3 | 79.0 | 96.3 | |
| 873 | Sn | 18.1 | 20.0 | 19.5 | 13.3 | 5.0 | 4.2 | 0.0 |
| Te | 0.0 | NA | 0.1 | 0.2 | 0.2 | 0.2 | NA | |
| O | 40.1 | 46.1 | 45.0 | 32.7 | 13.2 | 10.8 | 1.7 | |
| Si | 41.8 | 33.9 | 35.5 | 53.9 | 81.6 | 84.8 | 98.3 | |
| Relative Atomic Percentage [%] | |||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Sample | Sn | Sn% | Te | Te% | O | O% | |||||||||||
| Sn0 | Sn2+ | Sn4+ | Te2− | Te0 | Te4+ | Te6+ | O-Sn2+ | O-Sn4+ | O-Te6+ | O=C | |||||||
| ST0 | 298 | 21 | 54 | 25 | 39 | 64 | 31 | NA | 5 | 61 | |||||||
| 473 | 5 | 52 | 43 | 40 | 48 | 45 | NA | 7 | 60 | ||||||||
| 673 | NA | 24 | 76 | 34 | 36 | 58 | NA | 6 | 66 | ||||||||
| 873 | NA | 21 | 79 | 34 | 35 | 59 | NA | 6 | 66 | ||||||||
| O-Sn2+/Te4+ | O-Sn4+ | O-Te6+ | O=C | ||||||||||||||
| ST10 | 298 | 35 | 44 | 21 | 43 | 100 | NA | NA | NA | 7 | 34 | 54 | NA | 12 | 50 | ||
| 473 | 13 | 60 | 27 | 38 | 100 | NA | NA | NA | 1 | 62 | 29 | NA | 9 | 61 | |||
| 673 | NA | 47 | 53 | 35 | NA | NA | NA | NA | 0 | 63 | 29 | 6 | 2 | 65 | |||
| 873 | NA | 13 | 87 | 31 | NA | NA | 50 | 50 | 5 | 51 | 39 | 10 | NA | 64 | |||
| ST20 | 298 | 32 | 54 | 14 | 50 | 100 | NA | NA | NA | 10 | 13 | 65 | NA | 22 | 40 | ||
| 473 | 10 | 46 | 44 | 37 | 100 | NA | NA | NA | 2 | 51 | 38 | NA | 11 | 61 | |||
| 673 | NA | 43 | 57 | 35 | NA | NA | NA | NA | NA | 52 | 37 | 7 | 4 | 65 | |||
| 873 | NA | 23 | 77 | 31 | NA | NA | 50 | 50 | 6 | 35 | 55 | 10 | NA | 63 | |||
| ST40 | 298 | 28 | 57 | 15 | 33 | 100 | NA | NA | NA | 15 | 42 | 46 | NA | 12 | 52 | ||
| 473 | 17 | 38 | 45 | 37 | 100 | NA | NA | NA | 6 | 47 | 40 | NA | 13 | 57 | |||
| 673 | NA | 38 | 62 | 31 | NA | NA | 55 | 45 | 6 | 49 | 46 | 3 | 2 | 63 | |||
| 873 | NA | 25 | 75 | 28 | NA | NA | 29 | 71 | 7 | 22 | 66 | 9 | 3 | 65 | |||
| ST70 | 298 | 27 | 57 | 16 | 19 | 41 | 59 | NA | NA | 39 | 45 | 50 | NA | 5 | 42 | ||
| 473 | NA | 33 | 67 | 21 | 18 | 32 | 45 | 5 | 22 | 53 | 31 | 12 | 4 | 57 | |||
| 673 | NA | 31 | 79 | 26 | NA | NA | 55 | 45 | 11 | 41 | 47 | 10 | 2 | 63 | |||
| 873 | NA | 25 | 75 | 31 | NA | 16 | 52 | 32 | 6 | 40 | 52 | 8 | NA | 63 | |||
| ST80 | 298 | 25 | 58 | 17 | 12 | 36 | 62 | 2 | NA | 42 | 17 | 68 | NA | 15 | 46 | ||
| 473 | NA | 42 | 58 | 26 | 31 | 31 | 31 | 7 | 13 | 45 | 39 | 11 | 5 | 61 | |||
| 673 | NA | 25 | 75 | 12 | NA | NA | 59 | 41 | 27 | 54 | 42 | 4 | NA | 61 | |||
| 873 | NA | 13 | 87 | 31 | NA | NA | 83 | 17 | 6 | 32 | 57 | 9 | 2 | 63 | |||
| O-Te4+ | O-C | O-Si | O=C | HO-Si | H2O | ||||||||||||
| ST100 | 298 | NA | 88 | 12 | NA | 65 | NA | 91 | NA | 9 | NA | NA | 35 | ||||
| 473 | NA | 39 | 55 | 6 | 49 | 88 | 4 | NA | 8 | NA | NA | 51 | |||||
| 673 | NA | NA | 67 | 33 | 6 | NA | 5 | 64 | NA | 31 | NA | 94 | |||||
| 873 | NA | NA | NA | NA | NA | NA | NA | 35 | NA | 59 | 6 | 100 | |||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, H.-S.; Lee, J.; Park, J.; Kang, Y.-C. Post-Annealing Effect on the Physicochemical Properties of Sn-Te-O Thin Films. Surfaces 2025, 8, 83. https://doi.org/10.3390/surfaces8040083
Yoon H-S, Lee J, Park J, Kang Y-C. Post-Annealing Effect on the Physicochemical Properties of Sn-Te-O Thin Films. Surfaces. 2025; 8(4):83. https://doi.org/10.3390/surfaces8040083
Chicago/Turabian StyleYoon, Hee-Seung, Jihyeon Lee, Juyun Park, and Yong-Cheol Kang. 2025. "Post-Annealing Effect on the Physicochemical Properties of Sn-Te-O Thin Films" Surfaces 8, no. 4: 83. https://doi.org/10.3390/surfaces8040083
APA StyleYoon, H.-S., Lee, J., Park, J., & Kang, Y.-C. (2025). Post-Annealing Effect on the Physicochemical Properties of Sn-Te-O Thin Films. Surfaces, 8(4), 83. https://doi.org/10.3390/surfaces8040083

