An Example of Microwave Holography Investigation of an Old Orthodox Russian Icon Dated to 19th Century
Abstract
:1. Introduction
2. Experimental Installation
3. Reconstruction Algorithm for MW Holograms
4. External Description of the Icon
5. Registration and Reconstruction of Icon’s Microwave Holograms
- -
- Input the image I
- -
- Invert it according to Rc(x) = 255 – Ic(x), where c is the color channel (RGB). Ic(x) is the intensity of a color channel of pixel x of I. Rc(x) is the same intensity of inverted image R
- -
- Select n (for example n = 100) pixels whose minimum intensities in all color (RGB) channels are highest in the image, and then among the pixels choose the single pixel whose sum of RGB values is the highest. The RGB values of this pixel are used for determining the parameter A that represents the pixel value among the pixel with the largest RGB value sum, which contains the pixel values of the three color channels.
- -
- Estimate t(x) using , where Ω(x) is a local block centered at x, and the weight factor θ equals 0.8.
- -
- Compute J(x) using .
- -
- Invert J to obtain the enhanced image E.
6. Results of the Icon Opening
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Schreiner, M.; Frühmann, B.; Jembrih-Simbürger, D.; Linke, R. X-rays in Art and Archaeology—An Overview, International centre for diffraction data Adv. X-Ray Anal. 2004, 47, 3–11. [Google Scholar]
- Berardi, U.; Iannace, G.; Ianniello, C. Acoustic Intervention in a Cultural Heritage: The Chapel of the Royal Palace in Caserta, Italy. Buildings 2015, 6, 1. [Google Scholar] [CrossRef]
- Poliszuk, A.; Ybarra, G. Analysis of cultural heritage materials by infrared spectroscopy. In Infrared Spectroscopy: Theory, Developments and Applications; Daniel Cozzolino, D., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2014; pp. 519–536. [Google Scholar]
- Zhang, H.; Sfarra, S.; Saluja, K.; Peeters, J.; Fleuret, J.; Duan, Y.; Fernandes, H.C.; Avdelidis, N.; Ibarra-Castanedo, C.; Maldague, X. Non-destructive Investigation of Paintings on Canvas by Continuous Wave Terahertz Imaging and Flash Thermography. J. Nondestruct. Eval. 2017, 36, 34. [Google Scholar] [CrossRef]
- Caldeira, B.; Oliveira, R.J.; Teixidó, T.; Borges, J.F.; Henriques, R.; Carneiro, A.; Peña, J.A. Studying the Construction of Floor Mosaics in the Roman Villa of Pisões (Portugal) Using Noninvasive Methods: High-Resolution 3D GPR and Photogrammetry. Remote Sens. 2019, 11, 1882. [Google Scholar] [CrossRef]
- Capineri, L.; Falorni, P.; Borgioli, G.; Bulletti, A.; Valentini, S.; Ivashov, S.; Zhuravlev, A.; Razevig, V.; Vasiliev, I.; Paradiso, M.; et al. Application of the RASCAN holographic radar to cultural heritage inspections. Archaeol. Prospect. 2009, 16, 218–230. [Google Scholar] [CrossRef]
- Ivashov, S.I.; Capineri, L.; Bechtel, T.D.; Razevig, V.V.; Inagaki, M.; Gueorguiev, N.L.; Kizilay, A. Design and Applications of Multi-Frequency Holographic Subsurface Radar: Review and Case Histories. Remote Sens. 2021, 13, 3487. [Google Scholar] [CrossRef]
- Chizh, M.; Zhuravlev, A.; Razevig, V.; Ivashov, S.; Falorni, P.; Capineri, L. Defects investigation in thermal insulation coatings with microwave imaging based on a 22 GHz holographic radar. NDT E Int. 2019, 109, 102191. [Google Scholar] [CrossRef]
- Manataki, M.; Sarris, A.; Donati, J.; Cuenca-García, C. GPR: Theory and Practice in Archaeological Prospection. In Best Practices of GeoInformatic Technologies for the Mapping of Archaeolandscapes; Sarris, A., Ed.; Archaeopress Publishing Ltd.: Oxford, UK, 2015; pp. 13–24. [Google Scholar] [CrossRef]
- Orlando, L.; Soldovieri, F. Two different approaches for georadar data processing: A case study in archaeological prospecting. J. Appl. Geophys. 2008, 64, 1–13. [Google Scholar] [CrossRef]
- Rabbel, W.; Erkul, E.; Stümpel, H.; Wunderlich, T.; Pašteka, R.; Papco, J.; Niewöhner, P.; Bariş, Ş.; Çakin, O.; Pekşen, E. Discovery of a Byzantine Church in Iznik/Nicaea, Turkey: An Educational Case History of Geophysical Prospecting with Combined Methods in Urban Areas. Archaeol. Prospect. 2014, 22, 1–20. [Google Scholar] [CrossRef]
- Conyers, L.B. Ground-penetrating radar for archaeology. In Geophysical Methods for Archaeology No. 4; Conyer, L.B., Kvamme, K.L., Eds.; AltaMira Press: Lanham, MD, USA, 2013; ISBN 978-0-7591-2349-6. [Google Scholar]
- Schneidhofer, P.; Tonning, C.; Cannell, R.J.S.; Nau, E.; Hinterleitner, A.; Verhoeven, G.J.; Gustavsen, L.; Paasche, K.; Neubauer, W.; Gansum, T. The Influence of Environmental Factors on the Quality of GPR Data: The Borre Monitoring Project. Remote Sens. 2022, 14, 3289. [Google Scholar] [CrossRef]
- Halzen, F.; Klein, S.R. Invited Review Article: IceCube: An instrument for neutrino astronomy. Rev. Sci. Instrum. 2010, 81, 081101. [Google Scholar] [CrossRef] [PubMed]
- Daniels, D.J. Surface-Penetrating Radar, Institution of Electrical Engineers Radar Series; ERA Technology: London, UK, 1996; ISBN 0-85296-862. [Google Scholar]
- Mondol, N.H. Seismic Exploration. In Petroleum Geoscience; John Wiley & Sons: Hoboken, NJ, USA, 2010; Chapter 17; pp. 375–402. [Google Scholar] [CrossRef]
- Nabighian, M.N.; Ander, M.E.; Grauch, V.J.S.; Hansen, R.O.; LaFehr, T.R.; Li, Y.; Pearson, W.C.; Peirce, J.W.; Phillips, J.; Ruder, M.E. Historical development of the gravity method in exploration. Geophysics 2005, 70, 63ND–89ND. [Google Scholar] [CrossRef]
- Ivashov, S.; Sablin, V.; Vasilyev, I. Wide-span systems of mine detection. IEEE Aerosp. Electron. Syst. Mag. 1999, 14, 6–8. [Google Scholar] [CrossRef]
- Pochanin, G.; Capineri, L.; Bechtel, T.; Ruban, V.; Falorni, P.; Crawford, F.; Ogurtsova, T.; Bossi, L. Radar Systems for Landmine Detection: Invited Paper. In Proceedings of the 2020 IEEE Ukrainian Microwave Week (UkrMW), Kharkiv, Ukraine, 21–25 September 2020; pp. 1118–1122. [Google Scholar] [CrossRef]
- Brancaccio, A.; Solimene, R.; Prisco, G.; Leone, G.; Pierri, R. Intra-wall diagnostics via a microwave tomographic approach. J. Geophys. Eng. 2011, 8, S47–S53. [Google Scholar] [CrossRef]
- Pérez-Gracia, V.; di Capua, D.; González-Drigo, R.; Caselles, O.; Pujades, L.; Salinas, V. GPR resolution in Cultural Heritage applications, in Ground Penetrating Radar (GPR). In Proceedings of the 2010 13th International Conference on Ground Pen-etrating Radar, Lecce, Italy, 21–25 June 2010; pp. 1–5. [Google Scholar] [CrossRef]
- Bossi, L.; Falorni, P.; Windsor, C.; Zandonai, F.; Bizzarini, F.; Delfino, M.; Giusberti, L.; Bechtel, T.; Chizh, M.; Ivashov, S.; et al. The imaging of subsurface crocodile remains in a limestone slab using holographic radar. In Proceedings of the GPR 2020—18th International Conference on Ground Penetrating Radar, Golden, CO, USA, 14–19 June 2020; pp. 6–9. [Google Scholar] [CrossRef]
- Razevig, V.V.; Ivashov, S.I.; Vasiliev, I.A.; Zhuravlev, A.V.; Bechtel, T.; Capineri, L. Advantages and Restrictions of Holographic Subsurface Radars. Experimental evaluation. In Proceedings of the XIII International Conference on Ground Penetrating Radar, Lecce, Italy, 21–25 June 2010; pp. 657–662. [Google Scholar] [CrossRef]
- Sheen, D.; McMakin, D.; Hall, T. Three-dimensional millimeter-wave imaging for concealed weapon detection. IEEE Trans. Microw. Theory Tech. 2001, 49, 1581–1592. [Google Scholar] [CrossRef]
- Razevig, V.; Ivashov, S.; Vasiliev, I.; Zhuravlev, A. Comparison of Different Methods for Reconstruction of Microwave Holograms Recorded by the Subsurface Radar. In Proceeding of the 14th International Conference on Ground Penetrating Radar, Shanghai, China, 4–8 June 2012; pp. 335–339. [Google Scholar] [CrossRef]
- Liu, Q.H.; Nguyen, N. An accurate algorithm for nonuniform fast Fourier transforms (NUFFT’s). IEEE Microw. Guid. Wave Lett. 1998, 8, 18–20. [Google Scholar] [CrossRef]
- Available online: http://www.grabar.ru/about_us/index.php?lang=en (accessed on 16 July 2022).
- Razevig, V.; Ivashov, S.; Simonov, N.; Zhuravlev, A.; Chizh, M. Microwave Imaging in a Dielectric Half-Space Medium Bounded by a Metal Surface. In Proceedings of the Progress in Electromagnetics Research Symposium (PIERS-Toyama), Toyama, Japan, 1–4 August 2018; pp. 1925–1931. [Google Scholar] [CrossRef]
- Dong, X.; Pang, Y.; Wen, J. Fast efficient algorithm for enhancement of low lighting video. In Proceedings of the IEEE International Conference on Multimedia and Expo, Washington, DC, USA, 11–15 July 2011; pp. 1–6. [Google Scholar] [CrossRef]
- Available online: http://art-expertise.ru/en?ysclid=l53mdmsgc9215128300 (accessed on 16 July 2022).
- Available online: https://eltech-med.com/en/catalog?prod=4 (accessed on 16 July 2022).
- Capineri, L.; Falorni, P.; Becthel, T.; Ivashov, S.; Razevig, V.; Zhuravlev, A. Water detection in thermal insulating materials by high resolution imaging with holographic radar. Meas. Sci. Technol. 2016, 28, 014008. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivashov, S.I.; Razevig, V.V.; Sergeev, D.L.; Bugaev, A.S.; Zhou, F.; Prokhanova, E.I.; Shcherbakova, A.V.; Dobrynin, S.N.; Vasilenkov, M. An Example of Microwave Holography Investigation of an Old Orthodox Russian Icon Dated to 19th Century. Heritage 2022, 5, 2804-2817. https://doi.org/10.3390/heritage5030145
Ivashov SI, Razevig VV, Sergeev DL, Bugaev AS, Zhou F, Prokhanova EI, Shcherbakova AV, Dobrynin SN, Vasilenkov M. An Example of Microwave Holography Investigation of an Old Orthodox Russian Icon Dated to 19th Century. Heritage. 2022; 5(3):2804-2817. https://doi.org/10.3390/heritage5030145
Chicago/Turabian StyleIvashov, Sergey I., Vladimir V. Razevig, Dmitriy L. Sergeev, Alexander S. Bugaev, Feng Zhou, Elena I. Prokhanova, Anastasia V. Shcherbakova, Sergey N. Dobrynin, and Maxim Vasilenkov. 2022. "An Example of Microwave Holography Investigation of an Old Orthodox Russian Icon Dated to 19th Century" Heritage 5, no. 3: 2804-2817. https://doi.org/10.3390/heritage5030145
APA StyleIvashov, S. I., Razevig, V. V., Sergeev, D. L., Bugaev, A. S., Zhou, F., Prokhanova, E. I., Shcherbakova, A. V., Dobrynin, S. N., & Vasilenkov, M. (2022). An Example of Microwave Holography Investigation of an Old Orthodox Russian Icon Dated to 19th Century. Heritage, 5(3), 2804-2817. https://doi.org/10.3390/heritage5030145