Next Issue
Volume 6, June
Previous Issue
Volume 5, December
 
 

Forecasting, Volume 6, Issue 1 (March 2024) – 13 articles

Cover Story (view full-size image): Forecasting is important for decision making. At present, forecast training is mainly provided through online content-based or face-to-face instructor-led courses. As an alternative, intelligent tutoring systems (ITSs) can provide one-on-one online computer-based learning support that is adaptable to the knowledge, strengths, and needs of each individual student. In this work, we develop a constraint-based tutor to support learning of classical time series decomposition and name it FITS (forecasting intelligent tutoring system). Through a combination of a literature review, an analysis of think-aloud protocols, and expert opinion, we propose best practice for designing such systems. Results of a small sample pilot study show FITS can be used to improve learning and develop a deeper understanding of knowledge acquisition in forecasting. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
15 pages, 1038 KiB  
Article
Effective Natural Language Processing Algorithms for Early Alerts of Gout Flares from Chief Complaints
by Lucas Lopes Oliveira, Xiaorui Jiang, Aryalakshmi Nellippillipathil Babu, Poonam Karajagi and Alireza Daneshkhah
Forecasting 2024, 6(1), 224-238; https://doi.org/10.3390/forecast6010013 - 10 Mar 2024
Cited by 1 | Viewed by 1843
Abstract
Early identification of acute gout is crucial, enabling healthcare professionals to implement targeted interventions for rapid pain relief and preventing disease progression, ensuring improved long-term joint function. In this study, we comprehensively explored the potential early detection of gout flares (GFs) based on [...] Read more.
Early identification of acute gout is crucial, enabling healthcare professionals to implement targeted interventions for rapid pain relief and preventing disease progression, ensuring improved long-term joint function. In this study, we comprehensively explored the potential early detection of gout flares (GFs) based on nurses’ chief complaint notes in the Emergency Department (ED). Addressing the challenge of identifying GFs prospectively during an ED visit, where documentation is typically minimal, our research focused on employing alternative Natural Language Processing (NLP) techniques to enhance detection accuracy. We investigated GF detection algorithms using both sparse representations by traditional NLP methods and dense encodings by medical domain-specific Large Language Models (LLMs), distinguishing between generative and discriminative models. Three methods were used to alleviate the issue of severe data imbalances, including oversampling, class weights, and focal loss. Extensive empirical studies were performed on the Gout Emergency Department Chief Complaint Corpora. Sparse text representations like tf-idf proved to produce strong performances, achieving F1 scores higher than 0.75. The best deep learning models were RoBERTa-large-PM-M3-Voc and BioGPT, which had the best F1 scores for each dataset, with a 0.8 on the 2019 dataset and a 0.85 F1 score on the 2020 dataset, respectively. We concluded that although discriminative LLMs performed better for this classification task when compared to generative LLMs, a combination of using generative models as feature extractors and employing a support vector machine for classification yielded promising results comparable to those obtained with discriminative models. Full article
(This article belongs to the Special Issue Feature Papers of Forecasting 2024)
Show Figures

Figure 1

20 pages, 1418 KiB  
Article
Developing Personalised Learning Support for the Business Forecasting Curriculum: The Forecasting Intelligent Tutoring System
by Devon Barrow, Antonija Mitrovic, Jay Holland, Mohammad Ali and Nikolaos Kourentzes
Forecasting 2024, 6(1), 204-223; https://doi.org/10.3390/forecast6010012 - 7 Mar 2024
Cited by 1 | Viewed by 1698
Abstract
In forecasting research, the focus has largely been on decision support systems for enhancing performance, with fewer studies in learning support systems. As a remedy, Intelligent Tutoring Systems (ITSs) offer an innovative solution in that they provide one-on-one online computer-based learning support affording [...] Read more.
In forecasting research, the focus has largely been on decision support systems for enhancing performance, with fewer studies in learning support systems. As a remedy, Intelligent Tutoring Systems (ITSs) offer an innovative solution in that they provide one-on-one online computer-based learning support affording student modelling, adaptive pedagogical response, and performance tracking. This study provides a detailed description of the design and development of the first Forecasting Intelligent Tutoring System, aptly coined FITS, designed to assist students in developing an understanding of time series forecasting using classical time series decomposition. The system’s impact on learning is assessed through a pilot evaluation study, and its usefulness in understanding how students learn is illustrated through the exploration and statistical analysis of a small sample of student models. Practical reflections on the system’s development are also provided to better understand how such systems can facilitate and improve forecasting performance through training. Full article
(This article belongs to the Special Issue Feature Papers of Forecasting 2024)
Show Figures

Figure 1

17 pages, 3633 KiB  
Article
A Composite Tool for Forecasting El Niño: The Case of the 2023–2024 Event
by Costas Varotsos, Nicholas V. Sarlis, Yuri Mazei, Damir Saldaev and Maria Efstathiou
Forecasting 2024, 6(1), 187-203; https://doi.org/10.3390/forecast6010011 - 7 Mar 2024
Cited by 6 | Viewed by 2236
Abstract
Remotely sensed data play a crucial role in monitoring the El Niño/La Niña Southern Oscillation (ENSO), which is an oceanic-atmospheric phenomenon occurring quasi-periodically with several impacts worldwide, such as specific biological and global climate responses. Since 1980, Earth has witnessed three strong ENSO [...] Read more.
Remotely sensed data play a crucial role in monitoring the El Niño/La Niña Southern Oscillation (ENSO), which is an oceanic-atmospheric phenomenon occurring quasi-periodically with several impacts worldwide, such as specific biological and global climate responses. Since 1980, Earth has witnessed three strong ENSO events (1982–1983, 1997–1998, 2015–2016). In September 2022, La Niña entered its third year and was unlikely to continue through 2024. Instead, since 2022, forecasts have pointed to a transition from La Niña to a Neutral phase in the summer or late 2023. The onset of El Niño occurred around April 2023, and it is anticipated by sophisticated models to be a strong event through the Northern Hemisphere winter (December 2023–February 2024). The aim of this study is to demonstrate the ability of the combination of two new methods to improve the accuracy of the above claim because El Niño apart from climate anomalies, significantly impacts Earth’s ecosystems and human societies, regulating the spread of diseases by insects (e.g., malaria and dengue fever), and influencing nutrients, phytoplankton biomass, and primary productivity. This is done by exploring first the previous major El Niño events in the period January 1876–July 2023. Our calculations show that the ongoing 2023–2024 El Niño will not be the strongest. Full article
(This article belongs to the Special Issue Feature Papers of Forecasting 2024)
Show Figures

Figure 1

17 pages, 2912 KiB  
Article
Applying Machine Learning and Statistical Forecasting Methods for Enhancing Pharmaceutical Sales Predictions
by Konstantinos P. Fourkiotis and Athanasios Tsadiras
Forecasting 2024, 6(1), 170-186; https://doi.org/10.3390/forecast6010010 - 16 Feb 2024
Viewed by 4283
Abstract
In today’s evolving global world, the pharmaceutical sector faces an emerging challenge, which is the rapid surge of the global population and the consequent growth in drug production demands. Recognizing this, our study explores the urgent need to strengthen pharmaceutical production capacities, ensuring [...] Read more.
In today’s evolving global world, the pharmaceutical sector faces an emerging challenge, which is the rapid surge of the global population and the consequent growth in drug production demands. Recognizing this, our study explores the urgent need to strengthen pharmaceutical production capacities, ensuring drugs are allocated and stored strategically to meet diverse regional and demographic needs. Summarizing our key findings, our research focuses on the promising area of drug demand forecasting using artificial intelligence (AI) and machine learning (ML) techniques to enhance predictions in the pharmaceutical field. Supplied with a rich dataset from Kaggle spanning 600,000 sales records from a singular pharmacy, our study embarks on a thorough exploration of univariate time series analysis. Here, we pair conventional analytical tools such as ARIMA with advanced methodologies like LSTM neural networks, all with a singular vision: refining the precision of our sales. Venturing deeper, our data underwent categorisation and were segmented into eight clusters premised on the ATC Anatomical Therapeutic Chemical (ATC) Classification System framework. This segmentation unravels the evident influence of seasonality on drug sales. The analysis not only highlights the effectiveness of machine learning models but also illuminates the remarkable success of XGBoost. This algorithm outperformed traditional models, achieving the lowest MAPE values: 17.89% for M01AB (anti-inflammatory and antirheumatic products, non-steroids, acetic acid derivatives, and related substances), 16.92% for M01AE (anti-inflammatory and antirheumatic products, non-steroids, and propionic acid derivatives), 17.98% for N02BA (analgesics, antipyretics, and anilides), and 16.05% for N02BE (analgesics, antipyretics, pyrazolones, and anilides). XGBoost further demonstrated exceptional precision with the lowest MSE scores: 28.8 for M01AB, 1518.56 for N02BE, and 350.84 for N05C (hypnotics and sedatives). Additionally, the Seasonal Naïve model recorded an MSE of 49.19 for M01AE, while the Single Exponential Smoothing model showed an MSE of 7.19 for N05B. These findings underscore the strengths derived from employing a diverse range of approaches within the forecasting series. In summary, our research accentuates the significance of leveraging machine learning techniques to derive valuable insights for pharmaceutical companies. By applying the power of these methods, companies can optimize their production, storage, distribution, and marketing practices. Full article
(This article belongs to the Section Forecasting in Economics and Management)
Show Figures

Figure 1

18 pages, 3064 KiB  
Article
State-Dependent Model Based on Singular Spectrum Analysis Vector for Modeling Structural Breaks: Forecasting Indonesian Export
by Yoga Sasmita, Heri Kuswanto and Dedy Dwi Prastyo
Forecasting 2024, 6(1), 152-169; https://doi.org/10.3390/forecast6010009 - 12 Feb 2024
Viewed by 1663
Abstract
Standard time-series modeling requires the stability of model parameters over time. The instability of model parameters is often caused by structural breaks, leading to the formation of nonlinear models. A state-dependent model (SDM) is a more general and flexible scheme in nonlinear modeling. [...] Read more.
Standard time-series modeling requires the stability of model parameters over time. The instability of model parameters is often caused by structural breaks, leading to the formation of nonlinear models. A state-dependent model (SDM) is a more general and flexible scheme in nonlinear modeling. On the other hand, time-series data often exhibit multiple frequency components, such as trends, seasonality, cycles, and noise. These frequency components can be optimized in forecasting using Singular Spectrum Analysis (SSA). Furthermore, the two most widely used approaches in SSA are Linear Recurrent Formula (SSAR) and Vector (SSAV). SSAV has better accuracy and robustness than SSAR, especially in handling structural breaks. Therefore, this research proposes modeling the SSAV coefficient with an SDM approach to take structural breaks called SDM-SSAV. SDM recursively updates the SSAV coefficient to adapt over time and between states using an Extended Kalman Filter (EKF). Empirical results with Indonesian Export data and simulation studies show that the accuracy of SDM-SSAV outperforms SSAR, SSAV, SDM-SSAR, hybrid ARIMA-LSTM, and VARI. Full article
(This article belongs to the Special Issue Forecasting Financial Time Series during Turbulent Times)
Show Figures

Figure 1

14 pages, 1093 KiB  
Article
Bootstrapping Long-Run Covariance of Stationary Functional Time Series
by Han Lin Shang
Forecasting 2024, 6(1), 138-151; https://doi.org/10.3390/forecast6010008 - 5 Feb 2024
Viewed by 1647
Abstract
A key summary statistic in a stationary functional time series is the long-run covariance function that measures serial dependence. It can be consistently estimated via a kernel sandwich estimator, which is the core of dynamic functional principal component regression for forecasting functional time [...] Read more.
A key summary statistic in a stationary functional time series is the long-run covariance function that measures serial dependence. It can be consistently estimated via a kernel sandwich estimator, which is the core of dynamic functional principal component regression for forecasting functional time series. To measure the uncertainty of the long-run covariance estimation, we consider sieve and functional autoregressive (FAR) bootstrap methods to generate pseudo-functional time series and study variability associated with the long-run covariance. The sieve bootstrap method is nonparametric (i.e., model-free), while the FAR bootstrap method is semi-parametric. The sieve bootstrap method relies on functional principal component analysis to decompose a functional time series into a set of estimated functional principal components and their associated scores. The scores can be bootstrapped via a vector autoregressive representation. The bootstrapped functional time series are obtained by multiplying the bootstrapped scores by the estimated functional principal components. The FAR bootstrap method relies on the FAR of order 1 to model the conditional mean of a functional time series, while residual functions can be bootstrapped via independent and identically distributed resampling. Through a series of Monte Carlo simulations, we evaluate and compare the finite-sample accuracy between the sieve and FAR bootstrap methods for quantifying the estimation uncertainty of the long-run covariance of a stationary functional time series. Full article
(This article belongs to the Special Issue Application of Functional Data Analysis in Forecasting)
Show Figures

Figure 1

23 pages, 537 KiB  
Article
Forecasting the Occurrence of Electricity Price Spikes: A Statistical-Economic Investigation Study
by Manuel Zamudio López, Hamidreza Zareipour and Mike Quashie
Forecasting 2024, 6(1), 115-137; https://doi.org/10.3390/forecast6010007 - 1 Feb 2024
Cited by 3 | Viewed by 2020
Abstract
This research proposes an investigative experiment employing binary classification for short-term electricity price spike forecasting. Numerical definitions for price spikes are derived from economic and statistical thresholds. The predictive task employs two tree-based machine learning classifiers and a deterministic point forecaster; a statistical [...] Read more.
This research proposes an investigative experiment employing binary classification for short-term electricity price spike forecasting. Numerical definitions for price spikes are derived from economic and statistical thresholds. The predictive task employs two tree-based machine learning classifiers and a deterministic point forecaster; a statistical regression model. Hyperparameters for the tree-based classifiers are optimized for statistical performance based on recall, precision, and F1-score. The deterministic forecaster is adapted from the literature on electricity price forecasting for the classification task. Additionally, one tree-based model prioritizes interpretability, generating decision rules that are subsequently utilized to produce price spike forecasts. For all models, we evaluate the final statistical and economic predictive performance. The interpretable model is analyzed for the trade-off between performance and interpretability. Numerical results highlight the significance of complementing statistical performance with economic assessment in electricity price spike forecasting. All experiments utilize data from Alberta’s electricity market. Full article
(This article belongs to the Collection Energy Forecasting)
Show Figures

Figure 1

17 pages, 3814 KiB  
Article
Data-Driven Models to Forecast the Impact of Temperature Anomalies on Rice Production in Southeast Asia
by Sabrina De Nardi, Claudio Carnevale, Sara Raccagni and Lucia Sangiorgi
Forecasting 2024, 6(1), 100-114; https://doi.org/10.3390/forecast6010006 - 31 Jan 2024
Cited by 1 | Viewed by 1587
Abstract
Models are a core element in performing local estimation of the climate change input. In this work, a novel approach to perform a fast downscaling of global temperature anomalies on a regional level is presented. The approach is based on a set of [...] Read more.
Models are a core element in performing local estimation of the climate change input. In this work, a novel approach to perform a fast downscaling of global temperature anomalies on a regional level is presented. The approach is based on a set of data-driven models linking global temperature anomalies and regional and global emissions to regional temperature anomalies. In particular, due to the limited number of available data, a linear autoregressive structure with exogenous input (ARX) has been considered. To demonstrate their relevance to the existing literature and context, the proposed ARX models have been employed to evaluate the impact of temperature anomalies on rice production in a socially, economically, and climatologically fragile area like Southeast Asia. The results show a significant impact on this region, with estimations strongly in accordance with information presented in the literature from different sources and scientific fields. The work represents a first step towards the development of a fast, data-driven, holistic approach to the climate change impact evaluation problem. The proposed ARX data-driven models reveal a novel and feasible way to downscale global temperature anomalies to regional levels, showing their importance in comprehending global temperature anomalies, emissions, and regional climatic conditions. Full article
(This article belongs to the Section Forecasting in Computer Science)
Show Figures

Figure 1

19 pages, 2110 KiB  
Article
Can Denoising Enhance Prediction Accuracy of Learning Models? A Case of Wavelet Decomposition Approach
by C. Tamilselvi, Md Yeasin, Ranjit Kumar Paul and Amrit Kumar Paul
Forecasting 2024, 6(1), 81-99; https://doi.org/10.3390/forecast6010005 - 16 Jan 2024
Cited by 2 | Viewed by 2305
Abstract
Denoising is an integral part of the data pre-processing pipeline that often works in conjunction with model development for enhancing the quality of data, improving model accuracy, preventing overfitting, and contributing to the overall robustness of predictive models. Algorithms based on a combination [...] Read more.
Denoising is an integral part of the data pre-processing pipeline that often works in conjunction with model development for enhancing the quality of data, improving model accuracy, preventing overfitting, and contributing to the overall robustness of predictive models. Algorithms based on a combination of wavelet with deep learning, machine learning, and stochastic model have been proposed. The denoised series are fitted with various benchmark models, including long short-term memory (LSTM), support vector regression (SVR), artificial neural network (ANN), and autoregressive integrated moving average (ARIMA) models. The effectiveness of a wavelet-based denoising approach was investigated on monthly wholesale price data for three major spices (turmeric, coriander, and cumin) for various markets in India. The predictive performance of these models is assessed using root mean square error (RMSE), mean absolute percentage error (MAPE), and mean absolute error (MAE). The wavelet LSTM model with Haar filter at level 6 emerged as a robust choice for accurate price predictions across all spices. It was found that the wavelet LSTM model had a significant gain in accuracy than the LSTM model by more than 30% across all accuracy metrics. The results clearly highlighted the efficacy of a wavelet-based denoising approach in enhancing the accuracy of price forecasting. Full article
Show Figures

Figure 1

26 pages, 3861 KiB  
Article
Predictive Analytics of Air Temperature in Alaskan Permafrost Terrain Leveraging Two-Level Signal Decomposition and Deep Learning
by Aymane Ahajjam, Jaakko Putkonen, Emmanuel Chukwuemeka, Robert Chance and Timothy J. Pasch
Forecasting 2024, 6(1), 55-80; https://doi.org/10.3390/forecast6010004 - 9 Jan 2024
Viewed by 1754
Abstract
Local weather forecasts in the Arctic outside of settlements are challenging due to the dearth of ground-level observation stations and high computational costs. During winter, these forecasts are critical to help prepare for potentially hazardous weather conditions, while in spring, these forecasts may [...] Read more.
Local weather forecasts in the Arctic outside of settlements are challenging due to the dearth of ground-level observation stations and high computational costs. During winter, these forecasts are critical to help prepare for potentially hazardous weather conditions, while in spring, these forecasts may be used to determine flood risk during annual snow melt. To this end, a hybrid VMD-WT-InceptionTime model is proposed for multi-horizon multivariate forecasting of remote-region temperatures in Alaska over short-term horizons (the next seven days). First, the Spearman correlation coefficient is employed to analyze the relationship between each input variable and the forecast target temperature. The most output-correlated input sequences are decomposed using variational mode decomposition (VMD) and, ultimately, wavelet transform (WT) to extract time-frequency patterns intrinsic in the raw inputs. The resulting sequences are fed into a deep InceptionTime model for short-term forecasting. This hybrid technique has been developed and evaluated using 35+ years of data from three locations in Alaska. Different experiments and performance benchmarks are conducted using deep learning models (e.g., Time Series Transformers, LSTM, MiniRocket), and statistical and conventional machine learning baselines (e.g., GBDT, SVR, ARIMA). All forecasting performances are assessed using four metrics: the root mean squared error, the mean absolute percentage error, the coefficient of determination, and the mean directional accuracy. Superior forecasting performance is achieved consistently using the proposed hybrid technique. Full article
(This article belongs to the Section Weather and Forecasting)
Show Figures

Figure 1

19 pages, 1019 KiB  
Article
Bootstrapping State-Space Models: Distribution-Free Estimation in View of Prediction and Forecasting
by José Francisco Lima, Fernanda Catarina Pereira, Arminda Manuela Gonçalves and Marco Costa
Forecasting 2024, 6(1), 36-54; https://doi.org/10.3390/forecast6010003 - 27 Dec 2023
Cited by 1 | Viewed by 1755
Abstract
Linear models, seasonal autoregressive integrated moving average (SARIMA) models, and state-space models have been widely adopted to model and forecast economic data. While modeling using linear models and SARIMA models is well established in the literature, modeling using state-space models has been extended [...] Read more.
Linear models, seasonal autoregressive integrated moving average (SARIMA) models, and state-space models have been widely adopted to model and forecast economic data. While modeling using linear models and SARIMA models is well established in the literature, modeling using state-space models has been extended with the proposal of alternative estimation methods to the maximum likelihood. However, maximum likelihood estimation assumes, as a rule, that the errors are normal. This paper suggests implementing the bootstrap methodology, utilizing the model’s innovation representation, to derive distribution-free estimates—both point and interval—of the parameters in the time-varying state-space model. Additionally, it aims to estimate the standard errors of these parameters through the bootstrap methodology. The simulation study demonstrated that the distribution-free estimation, coupled with the bootstrap methodology, yields point forecasts with a lower mean-squared error, particularly for small time series or when dealing with smaller values of the autoregressive parameter in the state equation of state-space models. In this context, distribution-free estimation with the bootstrap methodology serves as an alternative to maximum likelihood estimation, eliminating the need for distributional assumptions. The application of this methodology to real data showed that it performed well when compared to the usual maximum likelihood estimation and even produced prediction intervals with a similar amplitude for the same level of confidence without any distributional assumptions about the errors. Full article
(This article belongs to the Special Issue Feature Papers of Forecasting 2023)
Show Figures

Figure 1

18 pages, 3543 KiB  
Article
Improvement on Forecasting of Propagation of the COVID-19 Pandemic through Combining Oscillations in ARIMA Models
by Eunju Hwang
Forecasting 2024, 6(1), 18-35; https://doi.org/10.3390/forecast6010002 - 26 Dec 2023
Cited by 1 | Viewed by 1625
Abstract
Daily data on COVID-19 infections and deaths tend to possess weekly oscillations. The purpose of this work is to forecast COVID-19 data with partially cyclical fluctuations. A partially periodic oscillating ARIMA model is suggested to enhance the predictive performance. The model, optimized for [...] Read more.
Daily data on COVID-19 infections and deaths tend to possess weekly oscillations. The purpose of this work is to forecast COVID-19 data with partially cyclical fluctuations. A partially periodic oscillating ARIMA model is suggested to enhance the predictive performance. The model, optimized for improved prediction, characterizes and forecasts COVID-19 time series data marked by weekly oscillations. Parameter estimation and out-of-sample forecasting are carried out with data on daily COVID-19 infections and deaths between January 2021 and October 2022 in the USA, Germany, and Brazil, in which the COVID-19 data exhibit the strongest weekly cycle behaviors. Prediction accuracy measures, such as RMSE, MAE, and HMAE, are evaluated, and 95% prediction intervals are constructed. It was found that predictions of daily COVID-19 data can be improved considerably: a maximum of 55–65% in RMSE, 58–70% in MAE, and 46–60% in HMAE, compared to the existing models. This study provides a useful predictive model for the COVID-19 pandemic, and can help institutions manage their healthcare systems with more accurate statistical information. Full article
(This article belongs to the Section Environmental Forecasting)
Show Figures

Figure 1

17 pages, 3466 KiB  
Article
Advancements in Downscaling Global Climate Model Temperature Data in Southeast Asia: A Machine Learning Approach
by Teerachai Amnuaylojaroen
Forecasting 2024, 6(1), 1-17; https://doi.org/10.3390/forecast6010001 - 20 Dec 2023
Cited by 4 | Viewed by 2282
Abstract
Southeast Asia (SEA), known for its diverse climate and broad coastal regions, is particularly vulnerable to the effects of climate change. The purpose of this study is to enhance the spatial resolution of temperature projections over Southeast Asia (SEA) by employing three machine [...] Read more.
Southeast Asia (SEA), known for its diverse climate and broad coastal regions, is particularly vulnerable to the effects of climate change. The purpose of this study is to enhance the spatial resolution of temperature projections over Southeast Asia (SEA) by employing three machine learning methods: Random Forest (RF), Gradient Boosting Machine (GBM), and Decision Tree (DT). Preliminary analyses of raw General Circulation Model (GCM) data between the years 1990 and 2014 have shown an underestimation of temperatures, which is mostly due to the insufficient amount of precision in its spatial resolution. Our findings show that the RF method has a significant concordance with high-resolution observational data, as evidenced by a low mean squared error (MSE) value of 2.78 and a high Pearson correlation coefficient of 0.94. The GBM method, while effective, had a broader range of predictions, indicated by a mean squared error (MSE) score of 5.90. The Decision Tree (DT) method performed the best, with the lowest mean squared error (MSE) value of 2.43, which closely matched the actual data. The first General Circulation Model (GCM) data, on the other hand, exhibited significant forecast errors, as evidenced by a mean squared error (MSE) value of 7.84. The promise of machine learning methods, notably the Random Forest (RF) and Decision Tree (DT) algorithms, in improving temperature predictions for the Southeast Asian region is highlighted in the present study. Full article
(This article belongs to the Section Weather and Forecasting)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop