
Citation: Ahajjam, A.; Putkonen, J.;

Chukwuemeka, E.; Chance, R.; Pasch,

T.J. Predictive Analytics of Air

Temperature in Alaskan Permafrost

Terrain Leveraging Two-Level Signal

Decomposition and Deep Learning.

Forecasting 2024, 6, 55–80. https://

doi.org/10.3390/forecast6010004

Academic Editors: Alessandro Ceppi

and Jun A. Zhang

Received: 3 October 2023

Revised: 28 December 2023

Accepted: 6 January 2024

Published: 9 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

forecasting

Article

Predictive Analytics of Air Temperature in Alaskan Permafrost
Terrain Leveraging Two-Level Signal Decomposition
and Deep Learning
Aymane Ahajjam 1 , Jaakko Putkonen 2 , Emmanuel Chukwuemeka 3 , Robert Chance 2

and Timothy J. Pasch 4,*

1 School of Electrical Engineering and Computer Science, University of North Dakota,
Grand Forks, ND 58202, USA; mohamed.ahajjam@und.edu

2 Harold Hamm School of Geology and Geological Engineering, University of North Dakota,
Grand Forks, ND 58202, USA; jaakko.putkonen@und.edu (J.P.); robert.chance@und.edu (R.C.)

3 Research Institute for Autonomous System, University of North Dakota, Grand Forks, ND 58202, USA;
emmanuel.chukwuemeka@und.edu

4 Department of Communication, University of North Dakota, Grand Forks, ND 58202, USA
* Correspondence: timothy.pasch@und.edu

Abstract: Local weather forecasts in the Arctic outside of settlements are challenging due to the dearth
of ground-level observation stations and high computational costs. During winter, these forecasts
are critical to help prepare for potentially hazardous weather conditions, while in spring, these
forecasts may be used to determine flood risk during annual snow melt. To this end, a hybrid VMD-
WT-InceptionTime model is proposed for multi-horizon multivariate forecasting of remote-region
temperatures in Alaska over short-term horizons (the next seven days). First, the Spearman correlation
coefficient is employed to analyze the relationship between each input variable and the forecast target
temperature. The most output-correlated input sequences are decomposed using variational mode
decomposition (VMD) and, ultimately, wavelet transform (WT) to extract time-frequency patterns
intrinsic in the raw inputs. The resulting sequences are fed into a deep InceptionTime model for short-
term forecasting. This hybrid technique has been developed and evaluated using 35+ years of data
from three locations in Alaska. Different experiments and performance benchmarks are conducted
using deep learning models (e.g., Time Series Transformers, LSTM, MiniRocket), and statistical and
conventional machine learning baselines (e.g., GBDT, SVR, ARIMA). All forecasting performances
are assessed using four metrics: the root mean squared error, the mean absolute percentage error, the
coefficient of determination, and the mean directional accuracy. Superior forecasting performance is
achieved consistently using the proposed hybrid technique.

Keywords: temperature forecasting; multi-horizon forecasting; time series forecasting; predictive
analytics; variational mode decomposition; wavelet decomposition; deep learning

1. Introduction

Infrastructure and natural environments in polar areas underlain by permafrost at
temperatures near 0 ◦C are vulnerable to short- and long-term disturbances. Specifically,
the climate-driven changes to the permafrost landscape of the US Arctic provide numerous
terrain-related challenges [1]. For example, the thawing of the permanently frozen ice-
bearing regolith can result in the rapid collapse of the soil surface, degradation of roads
and railroad embankments, and turn previously solid ground into muddy, waterlogged
terrain, unnavigable by vehicle or on foot in summer months.

Permanently frozen ground, or permafrost, covers extended regions of the Earth. In
a vertical section, the permafrost, by definition, begins at the bottom of the seasonally
freezing and thawing surficial layer, called the active layer, and extends further down. The
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total thickness of permafrost varies from site to site, from a fraction of a meter in southern
parts of the Arctic to over 1000 m in Siberia. For periods of years to tens of years, the
permafrost temperatures typically change minimally unless disrupted by surficial changes
in forest fires, snow depth, or climate. Most of the annual infrastructure damage and
human-perceived problems in permafrost areas, come from the phase change of the water
to ice and ice to water within the active layer and/or the melting of the permafrost.

Various drivers are behind thermal changes in permafrost. Long-term (e.g., years
and tens of years) changes in boundary conditions can lead to changes in the permafrost
thermal regime. For short-term (e.g., weekly, monthly, annual) variations of permafrost
and especially the active layer thermal regime, the weather is the most important driver.
Therefore, accurate measurement of air temperature can provide insights into thermal
effects occurring underground. Such monitoring is especially important in regions of the
Arctic where the permafrost temperatures are already close to 0 ◦C.

However, in Alaska and elsewhere in the Arctic, accurate local weather forecasts are
often available only for cities and larger settlements. In addition, the temperature in these
regions can be volatile and fluctuating, rapidly plunging from near 0 ◦C to −30 ◦C or lower.
Moreover, traditional weather forecasting in remote Arctic regions is challenging due to
the sparse network of ground stations providing real-time observations. The operational
climate models that are regularly used for forecasting are physics-based fluid dynamics
models aided by historical statistics, and they are guided by observed real-time near surface
and atmospheric observations. Due to the lack of surface observations, however, the models
are forced to interpolate across vast spaces of terrain. Therefore the forecast at any given
point located far from the ground stations is, at best, an interpolated estimate.

Various methods have been proposed in the literature to forecast air temperature.
Two main categories can be distinguished: physical models and statistical models. The first
category includes numerical weather prediction models [2,3]. Although such models rely on
physics-based modeling, they constitute large-scale models as they have a relatively large
resolution (i.e., their grid spacing is greater than the local scale), require high computational
costs, and might not be as accurate under certain meteorological and terrain conditions.
Several studies have shown that incorporating post-processing techniques with these
models can reduce their forecasting errors [4,5]. Diverse correction methods from statistical
models, such as model output statistics [6] and local dynamical analog [7], to machine
learning models, such as support vector regressions (SVRs), convolutional neural networks
(CNNs), and gated recurrent units (GRU) [5,8], have all been proposed to improve the
performance of numerical weather models. Nevertheless, these techniques generally
require a large computational capacity as they rely on massive numerical simulations and
post-processing approaches to achieve finer-scale end-user forecasts [9].

In the second category, data-driven techniques have been leveraged in the literature
to achieve end-to-end forecasting in primarily non-arctic environments. Such methods
include simple statistical time series models, such as the auto-regressive integrated moving
average (ARIMA) and its variants [10,11], and conventional machine learning techniques,
such as SVR, Random Forest (RF), and shallow neural networks [12–14]. For instance, the
authors of [10] developed a seasonal ARIMA model through the use of the Box and Jenkins
method to predict long-term air temperature in the city of Tetuán, Morocco. Model learning
was conducted using the monthly average air temperature data spanning from 1980 to 2022.
In [15], the authors investigated the effect of a combination of weather variables using a
shallow neural network to predict the maximum temperature during the winter season
of Tehran, Iran. This study employed monthly weather data spanning from 1951 to 2010.
In [16], the authors investigated conventional machine learning techniques for short-term
single-horizon air temperature forecasts in Crary City in North Dakota, USA. Specifically,
SVR, Regression Tree, Quantile Regression Tree, ARIMA, RF, and Gradient Boosting Regres-
sion, were trained and tested on a chronologically split time series temperature dataset of
daily and weekly averages spanning from 2000 to 2021. Model performance was assessed
using the root mean square error (RMSE), the correlation coefficient, Thiels’ U-statistics,
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and the mean absolute error (MAE), with RF providing the highest performance. These
shallow machine learning techniques, however, have demonstrated limited performance.

In recent years, deep learning techniques have attracted increased attention in a wide
range of fields and within this research area as well. Their success can be attributed to the in-
crease in computational power, the availability of large datasets, and the rapid development
of newer and more sophisticated architectures. For instance, the authors of [17], investi-
gated deep learning models for short-term single- and multi-horizon forecasting using data
from JFK Airport, New York. Particularly, a long short-term memory (LSTM) model, a
combination of CNN and LSTM, as well as multi-layer perceptron, were developed for one-
to 10-day ahead forecasting. Model learning was conducted using the past seven days of
wind speed, precipitation, snow depth, and mean, maximum, and minimum temperature
data spanning from 2009 to 2019. Model performance was assessed using RMSE and the
mean absolute percentage error (MAPE). The results highlighted the superiority of the
CNN-LSTM model. In [18], the authors addressed long-term multi-horizon air temperature
forecasting using an attention-based network with an encoder–decoder architecture. This
model learned the average daily temperature time series of five cities from Spain, India,
New Zealand, and Switzerland spanning over 25 years. Model performance was assessed
using several metrics, including RMSE, MAPE, and the coefficient of determination (R2).
The proposed model provided higher performance than different statistical and machine
learning models. Despite the improved performances achieved by these deep data-driven
models, forecasting air temperature remains a challenging undertaking due to its complex
and fluctuating processes.

There is a combination of regularity and stochasticity that governs the temperature
of the air, which makes air temperature time series generally highly fluctuating and non-
stationary. Yet, the current literature does not consider addressing these inherent issues
within data-driven techniques. Instead, they rely primarily on the ability of the machine
learning model to accurately predict future patterns in the temperature.In addition, numer-
ous studies evaluate their proposed techniques using temperature data acquired from a
single location, overlooking the impact that different geographical and climatic conditions
may have on its accuracy.

As a means of addressing these issues, this paper aims to build better operational
capability to forecast air temperature at the local scale (1 km) based on limited on-site
observations. To enhance the predictions’ accuracy, data-driven techniques can be em-
ployed. Specifically, a combination of data processing techniques and advances in deep
learning techniques can bypass inherent issues with the input data, reveal their hidden
patterns, and improve forecasting accuracy. Moreover, while the proposed technique relies
on past air temperature and specific humidity data due to their availability and their es-
tablished roles as primary indicators of atmospheric dynamics, it offers a pragmatic and
computationally economic approach to forecasting the air temperature in areas with sparse
observational data.

More specifically, this work makes the following main contributions:

• Proposal of VMD-WT-InceptionTime for short-term multi-step air temperature fore-
casting. This hybrid technique is based on consecutive variational mode decomposi-
tion (VMD) and wavelet transform (WT) decompositions aiming to uncover hidden
patterns and to reduce the complexity in past temperature and specific humidity
sequences. These processed features are fed into a deep convolutional neural network
forecasting model (InceptionTime).

• Comparison of the performance gains achieved through combined VMD and WT
decompositions against using no decomposition or single decomposition techniques.
To the best of the authors’ knowledge, the use of VMD and WT has not yet been
investigated for the forecasting task at hand.

• Examination of the effects of VMD decomposition levels on the performance of the
proposed forecasting technique and identification of the optimal level of decomposition.
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• Assessment and validation of the technical experiments using multiple forecasting
metrics and daily historical temperature data from three field sites in Alaska spanning
35+ years.

2. Background
2.1. Signal Decomposition Techniques

It is common practice to use signal decomposition techniques for time series analysis
in order to remove noise and to capture inherent time-frequency information. Among
the most commonly used time series decomposition methods are WT, empirical mode
decomposition (EMD) [19], ensemble empirical mode decomposition (EEMD) [20], and
VMD [21]. All these techniques have been successfully employed for diverse time series
forecasting problems from financial market analysis [22–24], to earthquake and weather
predictions [25,26], to machine health monitoring [27,28].

In general, WT provides a better alternative to Fourier transforms as it exhibits time-
frequency localization characteristics [29]. However, its decomposition is strongly depen-
dent on the choice of the basis wavelet function. EMD is an adaptive method that can
decompose the signal according to the characteristics of the data itself without setting a
basis function in advance [19]. However, it lacks an exact mathematical model and suffers
from issues such as mode mixing and high sensitivity to noise. EEMD was proposed as
an enhanced EMD to address noise and modal aliasing issues [20]. However, it requires
a considerable amount of computation and can result in non-convergence. VMD was
proposed as an alternative technique that can overcome such issues.

2.1.1. Variational Mode Decomposition

VMD is a mathematically framed non-recursive decomposition technique. It can
simultaneously decompose the input time series into a discrete number of stationary and
narrow-band sequences called intrinsic mode decompositions (IMF) [21]. The summation
of all IMFs and the residue produces the original signal.

Let {TS(t)}H
t=1 represent a certain non-stationary sequence of discrete values sampled

over time. The decomposition of this time series using VMD can follow:

TS(t) =
M

∑
m=1

Fm(t) + r(t) (1)

where Fm(t) is the extracted mth IMF sequence, M is the chosen decomposition level, and
r(t) is the residue.

Based on [21], an IMF is an amplitude-modulated and frequency-modulated signal
following:

Fm(t) = Am(t) cos ϕm(t), Am(t) ≥ 0 (2)

where ϕm(t) is the phase and Am(t) is the slowly changing envelope corresponding to the
mth IMF. It also has a non-decreasing instantaneous frequency that varies slowly and is
mostly compact around a center frequency ωm.

Through use of the alternate direction method of multipliers (ADMM) optimization
technique, VMD performs several computations to obtain the M IMFs and their corre-
sponding central frequencies concurrently [30]. In particular, VMD can decompose the
input TS(t) into M Fm and ωm via ADMM using these equations [21]:

F
{

Fn+1
m

}
=

F{TS(ω)} − ∑i ̸=m F
{

Fn+1
i (ω)

}
+ F{λn(ω)}

2
1 + 2α(ω − ωn

m)
2 (3)

ωn+1
m =

∫ ∞
0 ω

∣∣F{
Fn+1

m (ω)
}∣∣2dω∫ ∞

0

∣∣F{
Fn+1

m (ω)
}∣∣2dω

(4)
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where n is the number of iterations, λ is the Lagrangian multiplier, and F
{

Fn+1
m

}
, F{TS(ω)},

F{F(ω)}, and F{λn(ω)} correspond to the Fourier transform of Fn+1
m , TS(t), F(t), and

λn, respectively. The initial value of n, as well as of other parameters, λ1, F
{

F1
m
}

, and ω1
m,

are set to 0.
In comparison with other signal decomposition techniques, VMD differs from others,

specifically with its level of decomposition M parameter. Therefore, it is essential to identify
a suitable M for the given problem as choosing M at random may produce suboptimal
decompositions due to noise and overlap.

2.1.2. Wavelet Decomposition

WT is an alternative technique to Fourier transforms in that it extracts local spectral
and temporal information simultaneously with a window of variable width [31]. In this
way, a local scale-dependent analysis of intricate patterns in the input time series can
be performed.

The discrete WT decomposes an input signal into high- and low-frequency sequences
(i.e., detail and approximation coefficients), which are further decomposed using the latter
sub-series following a number of decomposition levels.

Let {el
n(i)}N

n=1 and {eh
n(i)}N

n=1 denote the low and high sequences extracted from
the input signal {e(t)}T

t=1 in the ith decomposition level of a multilevel wavelet decom-
position. Each sequence is generated using low- and high-pass filters l = {l1, . . . , lM},
h = {h1, . . . , hM} followed by a downsampling technique (i.e., average pooling). Convolv-
ing el(i) with l and h generates intermediate sequences {al

n(i + 1)}N/2
n=1 and {ah

n(i + 1)}N/2
n=1

that can be expressed as:

al
n(i + 1) =

M

∑
m=1

el
n+m−1(i).lm (5)

ah
n(i + 1) =

M

∑
m=1

el
n+m−1(i).hm (6)

where el
n(i) is the nth element of el

n(i), with el
n(0) corresponding to the input of the model.

The term N/2 refers to the 1/2 downsampling of the intermediate sequences. The final
result of the WT comprises I detail sequences and a single approximation sequence. For
the remainder of this paper, the Coiflets 6 wavelet function will be used to decompose the
input time series.

2.2. InceptionTime

InceptionTime is a state-of-the-art time series classification model that was first intro-
duced in 2019 [32] and has been investigated for different research problems [33–35]. The
inception module serves as its main structural component. An inception module consists of
(i) a bottleneck layer (one-dimensional convolutional layer) to reduce the dimensionality of
the inputs, (ii) three one-dimensional convolutional layers with kernel sizes of 10, 20, and
40, which are fed the output of the bottleneck layer, (iii) the input of the inception module
is also passed through a max pooling layer, (iv) the four convolutional layers’ outputs are
concatenated along the depth dimension in the final layer, called a depth concatenation
layer. Each inception module (i.e., convolutional layer) comes by default with 32 filters
simultaneously applied to the input time series. To the best of the authors’ knowledge, this
model has not yet been investigated for the task at hand.

2.3. Dataset Description and Study Locations

The Scenarios Network for Alaska and Arctic Planning (SNAP) dataset is a dynami-
cally downscaled climate dataset containing historical and projected climate data for the
state of Alaska and surrounding regions [36]. The SNAP dataset was created and is main-
tained by the International Arctic Research Center at the University of Alaska, Fairbanks.
The dataset has a 20 km spatial resolution and daily temporal resolution covering the years
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from 1979 to 2015 (see Table 1 for more details). Climate features found in the dataset are
temperature, humidity, and precipitation measured two meters above the ground. The
dataset was produced using the Weather Research and Forecasting model version 3.5.
In this study, we employ all the available features over the period 1979–2015, spanning
35+ years.

Table 1. Details of the SNAP dataset employed in this work.

Parameter Value

Dataset SNAP [36]
Temp. resolution Daily
Spatial resolution 20 km
Time range 2 January 1979–29 October 2015
Number of samples 262 × 262 × 13,450
Features [Units] Air temperature (T2) [K]

Specific humidity (Q2) [kg/kg]
Precipitation (PCPT) [mm]

According to the Government Accountability Office, over 30 Alaskan communities
are imminently threatened by climate change and rising temperatures [37]. Three of these
communities were selected as specific study regions: Nome, Bethel, and Utqiagvik (formerly
known as Barrow). Figure 1a showcases the raw temperature time series plotted against
time from each city with distinction between above- and below-freezing temperatures.
Each of the three communities has additional characteristics that make them valuable
study sites:

(a) (b)

Figure 1. Data from the SNAP dataset [36] from three field sites in Nome, Bethel, and Utqiagvik in
Alaska. (a) Daily temperature time series over time with distinctions between freezing and thawing
temperatures; (b) Map of the three field sites in Alaska.

• Nome is located on the coast of the Bering Sea on the Seward Peninsula at a latitude
of 64.5′ N and is in the discontinuous (50–90% permafrost coverage) permafrost zone
[38]. Nome experiences a mean annual temperature of −2.2 ◦C, yet its position on the
Bering Sea moderates the temperatures since the nearby large water mass provides
thermal insulation from extreme air masses.

• Bethel is located on the Kuskokwim river in western Alaska 95 km inland from the
mouth of the Kuskokwim River on the Bering Sea at a latitude of 60.8′ N. The mean
annual air temperature of Bethel is −0.3 ◦C and it receives less temperature moderating
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influence from the Bering Sea than Nome due to its location nearly 100km inland. The
city is situated in the discontinuous permafrost zone [39] and is surrounded by many
thermokarst lakes.

• Utqiagvik is the most northern study location at 71′ N and is situated on the Arctic
Ocean in the continuous permafrost zone (>90% permafrost coverage) [40] with a
mean annual air temperature of −10.83 ◦C.

Table 2 provides statistics of all the weather features found in this dataset, where the
temperature and specific humidity raw sequences seem to be especially inherently complex
and non-stationary in all three locations. In addition, all three locations exhibit a high
frequency of minor daily temperature changes, with Bethel leading slightly, followed closely
by Nome and Utqiagvik. On the other hand, extreme and rapid temperature variations
do happen but at a significantly lower frequency and vary more between the locations,
with Bethel showing the highest frequency. It is important to note that the primary goal of
this paper is to demonstrate the effectiveness of the proposed hybrid forecasting technique
within the specified experimental framework. While the SNAP dataset was used for proof
of concept purposes, the proposed technique can still be investigated using alternative
datasets or for other forecasting tasks.

Table 2. Descriptive statistics of the climate time series data from 1979 to 2015. The fluctuation
frequency (FF) represents the percentage of instances with air temperature changes between two
consecutive days succeeding or surpassing a certain threshold (minor fluctuations ≤ 1K or rapid
fluctuations ≥ 10K). The stationarity of each time series is assessed using the augmented Dickey–
Fuller (ADF) [41] and Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) [42] tests. Both the raw T2
and the Q2 time series seem to be non-stationary.

Feature Location
Stats ADF KPSS

Mean StD Entropy FF≤1K FF≥10K Test Stat cValue Test Stat cValue

T2 Nome 270.27 12.13 3.43 32.29% 1.29% −0.080 −2.643 0.269 0.216
Bethel 273.09 12.22 3.20 33.44% 2.39% −0.073 −2.643 0.259 0.216
Utqiagvik 262.34 13.75 3.49 32.21% 1.16% −0.054 −2.643 0.251 0.216

Q2 Nome 0.003 0.002 2.929 - - −0.637 −2.643 0.253 0.216
Bethel 0.004 0.002 3.128 - - −0.636 −2.643 0.235 0.216
Utqiagvik 0.002 0.002 2.697 - - −0.694 −2.643 0.248 0.216

PCPT Nome 1.486 3.427 0.609 - - −3.576 −2.643 0.122 0.216
Bethel 1.841 3.309 0.982 - - −3.474 −2.643 0.108 0.216
Utqiagvik 0.599 1.453 0.773 - - −3.680 −2.643 0.112 0.216

3. Technical Implementation

This section focuses on the technical aspects of the study forecasting temperature in ex-
tremely cold regions. The proposed hybrid forecasting technique is described first. Figure 2
showcases its architecture. Then, three experiments are outlined that offer benchmarks
and investigations of the impact of the different inputs, decomposition techniques, and
deep learning models on the forecasting performance. The last subsection summarizes the
benchmark models and how their performance is assessed throughout this study.

3.1. Temperature Forecasting Using the Proposed Technique

Let {T(t)}L
t=1 denote the temperature sequence (of L samples) measured at the

height of two meters. Multi-horizon forecasting of the temperature Tt−S+1|t =
{

T(t −
S + 1), . . . , T(t)

}
, of S − 1 elements and a time index t, can be written as:

T̂t+S|t+1 = f
(
Tt−L+1|t, ϵ

)
(7)
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where T̂t+S|t+1 is the forecast temperature sequence over S-steps (i.e., horizons), f is the
forecasting model, S is the horizon, L is the length of the input sequence, and ϵ is the error.
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Figure 2. Multi-horizon forecasting of the temperature using VMD-WT-InceptionTime.

Daily climate time series are processed to multivariate continuous sequences of L + S
in length, where the first L-elements represent the historical values (i.e., inputs), and the
S-elements are the targeted future values (i.e., targets). This is performed using a sliding
window of a unit stride. We consider different climate and time-related features:

• Temperature at two meters of height Tt−L+1|t: that provides direct historical tempera-
ture data.

• Humidity at two meters of height Qt−L+1|t: to provide direct historical humidity data.
• Precipitation Pt−L+1|t: to provide direct historical precipitation data.
• Day of month: Dt−L+1|t =

{
D(t − L + 1), . . . , D(t)

}
ranging from 1 to 31.



Forecasting 2024, 6 63

• Month of year: Mot−L+1|t =
{

Mo(t − L + 1), . . . , Mo(t)
}

ranging from 1 to 12.
• Year Yt−L+1|t =

{
Y(t − L + 1), . . . , Y(t)

}
ranging from 1979 to 2015.

• Season Set−L+1|t =
{

Se(t − L + 1), . . . , Se(t)
}

ranging from 1 to 4, with 1 referring to
winter, 2 to spring, 3 to summer, and 4 to fall.

Next, a Spearman correlation analysis ensues to select only the most correlated features
to use for model learning. The resulting highly correlated features are then chronologically
split into training and testing sets based on 80/20 ratios. Figure 3 showcases the rolling
process followed to generate the continuous input–output sequences.

30 days 7 days

Input TargetInput Target

30 days 7 days

Input TargetInput Target

Input TargetInput Target

Input TargetInput Target

Input TargetInput Target

Input TargetInput Target

Input TargetInput Target

TargetTarget

Training set (80%)1979, Jan 2008, May 2015, OctTesting set (20%)

Figure 3. Moving window schematic to construct training and testing sets. The testing set period
spans between 21 May 2008 and 29 October 2015.

The VMD-processed temperature and specific humidity sequences in all the training
and testing sets are standardized to have a zero mean and a unit standard deviation.
This preprocessing step enables simplified computations and amplifies the forecasting
model’s convergence speed. Accordingly, the forecast temperature sequences are reverse-
standardized to provide the actual forecasts.

All data preprocessing is conducted using MATLAB 2023a. The parameters of VMD
are set as follows. The penalty parameter is 1000, the number of IMFs is M (in addition to
the residue), the initial center frequency is 0, and the convergence criterion is 5 × 10−6.

3.2. Performance Evaluation

A number of inputs, forecasting models, and other cases are considered in order to
validate the efficacy of the proposed hybrid model in forecasting the air temperature of the
next seven days in Alaska.

3.2.1. Baseline Models

We consider five deep learning models for benchmark reasons: TST, the eXplainable
Convolutional neural network for multivariate time series (XCM), LSTM, GRU, and the
Miniature RandOm Convolutional KErnel Transform (MiniRocket). In addition, we em-
ploy six other statistical and conventional machine learning models as baselines. A brief
description of each of these models follows:

• Historical mean: A simple baseline model relying on the values from the previous
month (i.e., the last 30 elements) to provide short-term forecasts. Other variations of
this model were considered (e.g., same week averaged over the past three months,
same month averaged over the past three years), but the proposed historical model
proved the best one.

• RF: It is an ensemble classifier that uses multiple decision trees to obtain a better
prediction performance. A bootstrap technique is used to train each tree from the set
of training data [43].

• GBDT [44]: It is an iterative ensemble model of multiple decision trees. In each
iteration, GBDT learns the decision trees by fitting the negative gradients (also known
as residual errors). The output of the GBDT is the accumulation of the outputs of all
its component decision trees.

• SVR [45]: It is a popular conventional machine learning model for regression. In this
work, we employ SVR with the sigmoid kernel.
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• ARIMA [46]: It is a well-known statistical model for forecasting. ARIMA is generally
applicable to non-stationary time series data. Its difference transformation can effec-
tively transform non-stationary data into stationary data. In this work, we employ the
Seasonal ARIMA model.

• TST [47]: It is a recent deep neural network that handles long-term dependencies
while tracking relationships in sequential input to learn context and, subsequently,
meaning. This model was initially proposed in 2017 for translation tasks for natural
language processing in [48], but has now become a state-of-the-art model for vari-
ous tasks in that field. Multihead-self-attention is the core component of TST that
makes it suitable for processing time series data. This mechanism identifies multiple
dynamic contextual information (i.e., past values, future values) of every element
in a sequence, with every attention head. In the recent literature, attention-based
deep learning has been effectively employed for uni- and multivariate time series
forecasting problems [49–51].

• XCM [52]: It is a recently developed convolutional neural network that efficiently
captures information related to both the observed variables and the timing of events
directly from the input data, enabling it to have more robust and generalized learning
on smaller and larger datasets.

• LSTM/GRU: LSTM is an RNN that is capable of learning long-term dependencies,
especially in sequence prediction problems. It does this by introducing three gates
known as the input gate, the forget gate, and the output gate that cooperate to control
the information flow [53]. GRU was later introduced as a simpler alternative to LSTM,
having its gating signal reduced to two (i.e., an update gate and a reset gate) and
eliminating the need for distinguishing between memory cells and hidden states [54].

• MiniRocket [55]: It is a recent and computationally efficient alternative to the original
ROCKET model while still achieving high performance on time series classification
tasks. MiniRocket incorporates a series of random convolutional kernels to transform
the input data into a high-dimensional feature space before feeding them to the
classification or regression layer.

3.2.2. Model Hyper-Parameter Tuning

The considered deep learning models have multiple hyper-parameters that affect their
learning process and overall performance. The use of non-optimal values can result in
model under-performance. For this reason, several hyper-parameters of each one of these
models were subject to optimization. In this work, the optimized hyper-parameters for
InceptionTime include the use of a bottleneck layer, the number of filters, the kernel size,
and the dropout rate at the convolution layer. For LSTM and GRU, the selected hyper-
parameters to tune include the number of layers, the use of bias, the use of bidirectional
layers, the dropout rate for the recurrent transformation, and the use of batch normalization.
For TST, the tuned hyper-parameters include the number of features created by the model,
the number of parallel attention heads, the activation function, the dimension of the
feedforward network model, and the number of sub-encoder layers. For XCM, the hyper-
parameters include the number of features, the use of batch normalization, and the window
percentage. Finally, the tuned hyper-parameters of MiniRocket include the number of
features, the kernel size, and the maximum number of kernels. In addition, the dropout
rate at the final fully connected layer and the learning rate for all these models were
also optimized.

As hyper-parameter tuning requires increased time and computational costs, all deep
learning models were tuned for every location, under no decomposition, and with both
temperature and humidity sequences. The tuned hyper-parameters from this case were
used for the remaining cases (i.e., one or two decompositions, training using different
inputs). The optimization trials were conducted using the Optuna framework [56] under
the Tree-structured Parzen Estimator as the sampling algorithm for five epochs (with no
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early stopping) and 200 trials (with no pruning). The hyper-parameters of the proposed
model are listed in Table 3.

Table 3. Optimized hyper-parameters of the proposed model InceptionTime relative to Nome, Bethel,
and Utqiagvik.

Hyper-Parameter Nome Bethel Utqiagvik

Inception modules Module number 6 6 6
Bottleneck layer filters 64 48 16

kernel sizes 1 1 1
stride 1 1 1

Convolution layers number of layers 3 3 3
filters 64,64,64 48,48,48 16,16,16
kernel sizes 39,19,9 19,9,5 79,39,19
stride 1,1,1 1,1,1 1,1,1
padding 19,9,4 9,4,2 39,19,9

Max-pooling layer kernel size 3 3 3
stride 1 1 1
padding 1 1 1

Convolution layer filters 64 48 16
kernel size 1 1 1
stride 1 1 1

Concatenation layer dimension 1 1 1
Batch normalization features 256 192 64

momentum 0.1 0.1 0.1
Dropout p 32.3E-3 19.56E-5 7.6E-3
Activation layer function ReLu ReLu ReLu

Optimizer Adam Adam Adam
Loss function Flattened MSE Flattened MSE Flattened MSE
Outputs 7 7 7
Epochs 30 30 30
Batch size 1024 1024 1024
Learning rate 30 30 30

3.2.3. Evaluation Metrics

The forecasting performance of all the developed models in this work is assessed
using four metrics: RMSE, MAPE, R2, and the mean directional accuracy (DA). RMSE
assesses the mean square deviation of the forecasts. It is the main performance measure
considered in this study as it is more sensitive to larger errors, which is critical in the context
of the problem at hand. MAPE assesses the percentage of the mean absolute deviation
between the forecast and the target. R2 measures the proportion of variance in inputs that
can be explained by the output. DA compares the forecast sequence direction (upward
or downward) to the actual direction of the target sequence. This metric can be helpful
in assessing the forecasting model in forecasting the thawing and freezing temperatures.
The higher the values of RMSE and MAPE, the worse the model’s forecasting performance.
The opposite is the case with the R2 and DA metrics, where higher values refer to better
performance.

These metrics are defined over all forecasting horizons following Equations (8)–(12):

RMSE =

√√√√ 1
N × S

N

∑
i=1

S

∑
h=1

(
yi(h)− fi(h)

)2
(8)

MAPE =
1

N × S

N

∑
i=1

S

∑
h=1

∣∣∣∣∣yi(h)− fi(h)
yi(h)

∣∣∣∣∣× 100 (9)
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R2 = 1 −
∑N

i=1 ∑S
h=1

(
yi(h)− fi(h)

)2

∑N
i=1 ∑S

h=1

(
yi(h)− ȳi(h)

)2 (10)

DA =
1

N × S
×

N

∑
i=1

S

∑
h=1

Pi(h) (11)

Pi(h) =

{
1 if (yi+1(h)− yi(h))× ( fi+1(h)− yi(h)) ≥ 0

0 otherwise
(12)

where yi is the hth actual value of a test set sequence i, fi is the hth forecast value of the
same test set sequence, N is the number of test set sequences, S is the number of horizons
to be forecast (S = 7), and ȳ is the mean of yi.

4. Results
4.1. Input Correlation Analysis

In this section, we investigate the correlation between various inputs and the output
(i.e., forecasting target). Two types of input features were considered: climate features
and time-related features. The first category of features comprises historical data of the
temperature, humidity, and precipitation sequences, while the second holds historical data
of the corresponding day of the month, the month of the year, the year, and the season. The
latter features were extracted from the raw time series.

In addition, 10 different input sequence lengths (i.e., L) were considered to analyze
the impact of the input lengths on the correlation with the output. We considered lengths
ranging from the past five to 60 days with a five-day step.

Figure 4 showcases the results of this study using the Spearman correlation algorithm.
First, it is apparent that only the historical temperature and humidity are significantly
correlated with the forecasting target sequences. For instance, average Spearman coeffi-
cients of 0.872 and 0.848 were identified for the temperature and humidity input sequences
of L = 5 days over all three locations. The other input features are either not correlated
(e.g., year sequences) or slightly correlated with the targets (e.g., season, precipitation,
and day sequences). Thus, it is reasonable to rely solely on the temperature and humidity
sequences to forecast the near-future temperature values. Second, a higher correlation is
seen with shorter input lengths. This is expected as these sequences can provide windows
to the immediate past. With the increasing input lengths, their correlation with the targets
decreases in the case of most features except for the month sequences, which seems to
slightly increase its reverse correlation. Nevertheless, shorter sequences may not provide
enough information to the forecasting model, leading to underperformance, while longer
sequences require larger computational loads. Hence, the choice of using input sequences
of L = 30 elements (i.e., past 30 days) represents a good compromise between both aspects.
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Figure 4. Spearman correlation results between different inputs and the target output for every
location. Different input lengths were considered for each input feature spanning nine weeks.

4.2. Decomposition Analysis

The notion of entropy serves as an indicator of the randomness and predictability
of a system. Higher entropy signifies less order and more randomness. Time series’
regularity and complexity can be quantified by entropy measures such as the approximate
entropy or, more recently, the sample entropy [57]. Although both parameters can reflect
the predictability of a time series, the latter provides improved calculations and higher
statistical accuracy than the former.

Table 4 presents the average sample entropy for the raw and decomposed T2 and Q2
sequences. Initially, the raw T2 sequences seem to reflect a high degree of complexity. Hence,
further preprocessing seems necessary to produce simpler sequences for any subsequent
processing. The decomposition using VMD proves capable of decreasing this complexity,
where lower entropy values can be achieved with higher decomposition levels for both
features. Decomposing every VMD decomposition (and residue) generates detail sequences
(i.e., D1–D3) and an approximation sequence (i.e., A4) with lower complexity than those
of the original IMFs. Hence, sequential decompositions of both the T2 and Q2 sequences
can be useful in decreasing their complexity and ultimately improving the forecasting
performance. These observations can be further seen in Figure 5 that showcases the VMD
and WT decompositions of an input temperature sequence seen in Figure 5a. The raw time
series is decomposed into M = 3 decompositions, producing three IMFs and a residue.
Figures 5b,c show the VMD resulting sequences of M = 3 in their temporal and spectral
representations, respectively. The proposed technique incorporates a second decomposition
using WT (using the Coif6 wavelet function) that further decomposes each resulting VMD
decomposition sequence (i.e., IMFs and residue). Similarly, Figures 5d,e show the WT
resulting sequences of I = 3 (i.e., three detail sequences and an approximation sequence)
in their temporal and spectral representations, respectively. The residual sequences reflect
the overall trend of the temperature time series.
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Table 4. Sample entropy computed using the Chebychev distance of three types of sequences: raw
temperature (T2) and specific humidity (Q2) sequences, VMD decomposed (M = 15) T2 and Q2
sequences, and WT decomposed (I = 3) VMD sequences.

Input Seq.
T2 Q2

Nome Bethel Utqiagvik Nome Bethel Utqiagvik

Raw TS - 3.434 3.202 3.498 2.929 3.128 2.697

VMD(TS) IMF1 0.873 1.009 1.004 0.99 1.109 1.092
IMF2 0.973 0.964 0.987 1.001 0.999 1.005
IMF3 0.652 0.653 0.651 0.667 0.676 0.654
IMF4 0.449 0.443 0.435 0.437 0.42 0.431
IMF5 0.289 0.266 0.278 0.282 0.279 0.3
IMF6 0.203 0.212 0.189 0.205 0.214 0.222
IMF7 0.174 0.173 0.171 0.174 0.18 0.186
IMF8 0.163 0.18 0.169 0.16 0.157 0.171
IMF9 0.168 0.163 0.177 0.179 0.181 0.174
IMF10 0.164 0.164 0.188 0.19 0.171 0.189
IMF11 0.165 0.17 0.186 0.175 0.175 0.175
IMF12 0.16 0.157 0.163 0.17 0.193 0.175
IMF13 0.103 0.112 0.095 0.11 0.116 0.11
IMF14 0.024 0.025 0.02 0.027 0.023 0.021
IMF15 0.053 0.052 0.055 0.018 0.021 0.018
res. 0.283 0.271 0.279 0.267 0.286 0.275

WT(IMFx) D1 0.446 0.4515 0.4575 0.4657 0.4726 0.4701
D2 0.5371 0.5344 0.5446 0.5488 0.5579 0.555
D3 0.5538 0.5569 0.5624 0.5797 0.5778 0.5698
A4 0.5612 0.5648 0.565 0.5797 0.5854 0.5834
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Figure 5. Example of temperature sequences sequentially processed using VMD (M = 3) and WT
(I = 3). (a) Raw temperature sequence; (b) Resulting VMD decomposed sequences from the tempera-
ture sequence; (c) Single-sided amplitude spectrum of the VMD decomposed sequences; (d) Resulting
WT decomposed sequences from a single IMF; (e) Single-sided amplitude spectrum of WT decom-
posed sequences.
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4.3. Performance Benchmark

This section reports performance benchmarks between the proposed hybrid model
and various forecasting models. The first benchmark is devised to demonstrate the validity
of the proposed technique empowered by both VMD and WT in addressing the forecasting
problem, compared with elementary versions of the same technique employing none or a
single decomposition technique. The second benchmark is put forward to contextualize
the proposed technique within a range of conventional and deep learning models.

Table 5 reports the average performances of the proposed technique and its elementary
versions (i.e., with no decomposition and with a single decomposition) for all three field
sites. Tables 6 and 7 provide the average performances of the baseline models’ and other
deep learning models, respectively, for the three locations. The following observations can
be gathered from the reported performances:

Table 5. Overall air temperature forecasting performance averaged on the test set (best results
in bold).

Case Model Nome Bethel Utqiagvik

RMSE MAPE R2 DA RMSE MAPE R2 DA RMSE MAPE R2 DA

No decomposition InceptionTime 5.528 1.541 0.790 63.121 6.574 1.749 0.701 62.306 4.817 1.356 0.866 63.4
Single decomposition WT + InceptionTime 5.286 1.486 0.808 64.192 5.6 1.513 0.783 64.699 4.6 1.307 0.878 63.9

VMD + InceptionTime 0.798 0.214 0.995 90.648 0.809 0.205 0.995 91.261 0.739 0.202 0.996 91.2
Proposed technique VMD + WT + InceptionTime 0.751 0.197 0.996 91.581 0.795 0.198 0.996 91.709 0.673 0.176 0.997 92.2

Table 6. Baseline models’ overall performance averaged on the test set (best results in bold).

Model Nome Bethel Utqiagvik

RMSE MAPE R2 DA RMSE MAPE R2 DA RMSE MAPE R2 DA

Historical Mean 7.334 2.063 0.63 70.347 7.868 2.098 0.571 69.302 6.343 1.826 0.768 73.368
SVR-Sigmoid 12.083 3.79 −0.004 55.39 12.038 3.68 −0.004 54.122 13.25 4.487 −0.014 52.853
ExtraTrees 13.417 4.092 −0.238 55.129 16.88 4.845 −0.973 56.919 17.057 5.168 −0.68 55.017
GBDT 17.212 5.148 −1.037 58.896 16.907 4.855 −0.98 56.994 19.155 5.889 −1.119 58.448
RF 14.993 4.485 −0.546 55.054 16.963 4.876 −0.993 56.882 18.434 5.613 −0.962 57.367
SARIMAX 12.924 4.007 −0.149 54.569 11.928 3.638 0.015 55.651 13.142 4.396 0.003 53.115

Table 7. Performance comparison of the proposed technique against other deep learning models
averaged on the test set (best results in bold).

Model Nome Bethel Utqiagvik

RMSE MAPE R2 DA RMSE MAPE R2 DA RMSE MAPE R2 DA

TST 5.837 1.682 0.766 61.9 6.019 1.691 0.749 62.67 5.054 1.466 0.852 61.9
XCM 5.664 1.625 0.78 61.8 6.266 1.764 0.728 62.51 5 1.462 0.856 62.1
LSTM 6.061 1.757 0.747 60 6.539 1.857 0.704 61.38 5.656 1.671 0.815 59.8
GRU 6.112 1.761 0.743 60.2 6.285 1.773 0.727 62.41 5.42 1.595 0.83 60.1
MiniRocket 7.566 2.25 0.607 57 7.641 2.243 0.596 58.46 6.383 1.924 0.765 57.1
Proposed technique 0.751 0.197 0.997 91.6 0.795 0.198 0.996 91.71 0.673 0.176 0.997 92.2

First, all the conventional machine learning and statistical forecasting models provide
poorer forecasting performances than the historical mean model in terms of all the consid-
ered metrics. In particular, all the models clearly struggle to learn the complex fluctuations
and trends in the temperature sequences. Nonetheless, the performance of the historical
mean is not good enough, as is evident by the similarly low R2 and DA scores achieved
in all three locations (i.e., R2 = 63% and DA = 70% for Nome, R2 = 57% and DA = 69%
for Bethel, and R2 = 76% and DA = 73% for Utqiagvik). However, the temperature at
Utqiagvik seems to be slightly less challenging to forecast by this model as its average
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errors (i.e., RMSE and MAPE) are slightly better in this location than in the other two.
In general, it is evident that the forecasting task is challenging since the patterns of the
temperature sequences are evidently highly variable from week to week. This issue can be
addressed with the incorporation of signal processing and deeper model architectures.

Indeed, better forecasting performances were achieved in all three field sites when
employing a deep learning model (e.g., InceptionTime). In particular, deep learning
models generally provided slightly better average performance than that of the historical
mean model. In particular, training InceptionTime on undecomposed sequences reached
average improvement rates of 24.63%, 25.30%, −25.40% in Nome, 16.45%, 16.63%, −22.77%
in Bethel, and 24.06%, 25.74%, −12.76% in Utqiagvik, in terms of RMSE, MAPE, and
R2 when compared with the historical mean model. Slightly lower performances were
generally found with the other deep learning models. For instance, TST achieved average
improvement rates of 20.41%, 18.47%, −21.59% in Nome, 23.50%, 19.40%, −31.17% in
Bethel, and 20.32%, 19.72%, −10.94% in Utqiagvik, respectively. However, these models
reported lower performances in terms of AD than those achieved using the historical mean.
In particular, InceptionTime reported average AD deterioration rates of 10.27%, 10.09%,
13.63%, while TST reported 12.03%, 9.57%, 15.63%, in all three locations, respectively. These
results highlight the deep learning models’ inability to forecast the temperature’s trend.
Thus, this simple approach of employing temperature sequences directly for deep model
learning is ineffective.

Improved performances were obtained when incorporating a decomposition technique
in the forecasting approach. Compared with the previous case (i.e., no decomposition),
the processing temperature sequences using WT before model learning provided average
improvement rates in all metrics of 4.38%, 3.57%, −2.28%, −1.7% in Nome, 14.82%, 13.49%,
−11.7%, −3.84% in Bethel, and 4.5%, 3.61%, −1.39%, −0.89% in Utqiagvik, respectively.
However, this approach still seems to struggle in forecasting the next week’s trends, as its
corresponding average DA score is less than 65% in all the considered field sites. Far greater
improvements (compared to the same no decomposition case) were found in terms of all
the metrics when incorporating VMD, with 84.90%, 85.60%, −23.27%, −41.21% in Nome,
85.55%, 86.45%, −27.08%, −41.05% in Bethel, and 83.93%, 84.54%, −13.44%, −42.59% in
Utqiagvik, respectively. These results prove the adequacy and necessity of decomposing
the raw temperature time series first to provide the deep learning model with preprocessed
and simpler temperature sequences.

The proposed technique, incorporating both decomposition techniques and the deep
learning model, was the most accurate at forecasting the temperature in all three locations.
Particularly when compared with the previous case (i.e., VMD only), the hybrid technique
reported RMSE and MAPE average increase rates amounting to 5.89% and 7.94% in Nome,
1.73% and 3.41% in Bethel, and 8.39%, 12.87% in Utqiagvik, respectively. Slight improve-
ments were reported in the R2 and DA metrics, with rates of −0.1% and −1.03% in Nome,
−0.1% and −0.49% in Bethel, and −0.1%, −1.18% in Utqiagvik, respectively. The improved
performance of the proposed hybrid technique over the VMD-only approach is likely due
to the limitations of VMD in considering the temporal dimension of the time series. In
particular, VMD decomposes the time series based on the Fourier spectrum, which does
not take into account the temporal dimension of different frequencies. Hence, the incor-
poration of WT can accomplish such analysis on the already simplified input sequences
(i.e., resulting IMFs from VMD) and more efficiently extract the inherent multi-resolution
patterns, revealing temporal and spectral attributes simultaneously that are directly fed to
the forecasting model for improved performance. In addition, similarly to the performances
seen with the previous models and techniques, the lowest forecasting errors of the proposed
technique among the considered field sites are achieved in Utqiagvik in terms of all the
considered metrics. However, the proposed technique still has an average directional error
(i.e., DA) lower than 93%, which means that the model can provide forecasts very close
to the observed values but seems to struggle slightly in identifying their correct direction
(i.e., increasing or decreasing temperature). This can be partly attributed to the training
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set from all locations having a smaller range of temperature values seen throughout the
year, which would mean a smaller range of possible forecast values with higher minute
differences between them. It is important to note that the other considered deep learning
models were investigated using the decomposed inputs and achieved lower performances
than those achieved using InceptionTime.

The superiority of the proposed hybrid technique compared to its elementary versions
can be further showcased in the scatterplots in Figure 6, where it can be seen that the
points (i.e., predictions) tend to get closer to the black line (i.e., observation) as signal
decompositions are incorporated within the deep learning forecasting approach. The
forecasts from the proposed technique (i.e., WVD+WT+InceptionTime) are the closest and
fit the observed values the most.

(a)

(b)

(c)

Figure 6. Scatterplots comparing observed and forecast air temperatures in the three field sites using
InceptionTime under four approaches: no decomposition, WT decomposition only, VMD only, and
the proposed hybrid VMD-WT technique. (a) Nome; (b) Bethel; (c) Utqiagvik.
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4.4. Impact of VMD Decomposition Level

Figure 7 showcases RMSE and R2 boxplots computed using the proposed technique
under VMD M values ranging from M = 3 to M = 42 with three-step increments. We note
that only these two metrics are reported in the manuscript because the other two metrics
provided a similar pattern.
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Figure 7. Impact of different VMD decomposition levels on the average performance of the proposed
hybrid model on the test set in terms of RMSE and R2. (a) Nome; (b) Bethel; (c) Utqiagvik.

As can be seen, the VMD decomposition level impacts the forecasting performance of
the proposed model. The lowest forecasting performances in all three field sites are found
using the lowest decomposition level of M = 3. Under this configuration, the proposed
model in Nome achieves an average RMSE score of 2.28K with a maximum value of 3.07K
and a minimum of 1.51K, while the average R2 score is 96.41%. For Bethel, the average
RMSE score is 2.45K with a maximum value of 3.36K and a minimum of 1.61K, while the av-
erage R2 score is 95.83%. For Utqiagvik, the average RMSE score is 2.23K with a maximum
value of 2.96K and a minimum of 1.4K, while the average R2 score is 97.23%. Nevertheless,
the proposed technique with lower M values still provides better average RMSE scores
than all the other considered models and approaches. Enhanced performances can be
achieved with higher values of M before either stagnating or worsening after a certain
value. In particular, the average and the range of the RMSE scores are optimal at around
M = 30 for all Nome and Bethel measurements. For Utqiagvik, further improvements can
be achieved with even higher values until M = 39. In terms of R2, the performance follows
a similar pattern and stagnates at around the same M values. These improvements can be
attributed to providing InceptionTime with less complex and more stationary sequences
with highlighted multi-resolution intrinsic patterns.

Figure 8 showcases examples of the input temperature sequences and their corre-
sponding forecasts using the historical mean, InceptionTime (i.e., no decomposition), and
the proposed technique under M = 30 for Nome and Bethel, and M = 39 for Utqiagvik,
during the transition periods spanning different freezing and thawing periods. Specifi-
cally, Figure 8a,b present randomly selected sequences while Figure 8c displays the worst
performance yielded by the proposed technique under the optimal M. In these plots, it is
apparent that both versions of the proposed technique can follow the general trend of the
observed temperature, with more accurate forecasts achieved under the optimal M for each
location. Particularly, the proposed technique under M = 3 seems to struggle to forecast
abrupt and large changes in the temperature from one day to another. In contrast, the
proposed technique under an optimal M seems to handle these variations more accurately.
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Figure 8. Examples of air temperature forecasts using the optimized proposed forecasting technique
(M = 30 for Nome and Bethel and M = 39 for Utqiavik) compared with actual measurements from
the test set. Additional forecasts using the proposed technique under a sub-optimal decomposition
level (M = 3), no decomposition using InceptionTime, and the historical means are shown for reference.
All plots share the same vertical axis limits for comparison reasons. (a) randomly selected sequences.
(b) randomly selected sequences. (c) the worst performance.
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Further insights can be gathered from Figure 9, which reports a boxplot of per-horizon
errors of the proposed technique employed using the optimal M for each of the three
locations. First, it is apparent that the average errors at each horizon are very low. In
particular, the optimized proposed technique for Nome produces forecasts over all seven
horizons with a maximum error of < 1.6K, a minimum error of > −0.91K, and an aver-
age error lower than 0.33K; for Bethel, a maximum error of < 1.43K, a minimum error
of > −1.29K, and an average of < 0.05K; and a maximum error of < 0.74K, a minimum
error of > −0.99K, and an average of < −0.12K for Utqiagvik. Nonetheless, slightly higher
errors can be seen with higher horizons. This can be attributed to the fact that the forecast
uncertainties tend to increase as the horizons get further away in the future.

Figure 9. Boxplot of per-horizon errors found using the optimized proposed technique under M = 30
for Nome and Bethel and under M = 39 for Utqiagvik on the testing sets.

To better analyze the performance of the optimized proposed technique in handling
challenging events, two analyses are conducted and reported. First, Tables 8 and 9 report
the horizon-wise top and bottom three errors from the testing set. It seems that the proposed
technique’s lowest performances are errors of around 7K for Nome, 5K for Bethel, and 6K
for Utqiagvik in the last horizon (i.e., 7th day). In particular, the worst performance of the
optimized proposed technique corresponds to an overprediction for both Nome and Bethel
and an underprediction for Utqiagvik. In addition, most of these errors are not related to
the transition sequences between above- and below-freezing temperatures. Knowing that
the average range, minimum, and maximum values in the target temperature sequences
are 8.41K, 266.64K, and 275.05K in Nome, 8.51K, 269.14K, and 277.65K in Bethel, and 7.61K,
260.43K, 268.05K in Utqiagvik, most of the worst performances of the proposed technique
in all three locations can be attributed to having to produce forecasts of higher variations
and wider temperature ranges than the average. Indeed, most of the best performances of
the proposed technique correspond to observed temperature sequences of ranges shorter
than the average. Nevertheless, the proposed technique under the optimized M proves
adequate and robust at forecasting the temperature at different periods of the year.

Second, Figure 10 showcases the RMSE distributions across different ranges of daily
temperature spanning the whole testing set. The RMSE values were segmented into bins
according to the magnitude of temperature change per day, allowing for an evaluation
of the technique’s performance under varying conditions, ranging from low to rapid air
temperature changes. Notably, the technique maintains generally low RMSE values across
a wide range of daily temperature changes in all locations. Particularly in Bethel and
Utqiagvik, the technique showcases consistent RMSE values across all ranges. However, in-
creased RMSE variability can be seen with larger temperature changes in Nome, suggesting
a slightly reduced forecast accuracy under extreme conditions. Nonetheless, the proposed
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technique under the optimized M proves adequate and robust even during instances of
rapid fluctuations due to winter storms or other events.

Table 8. Top three air temperature forecasting errors produced by the optimized proposed technique
(under M = 30 for Nome and Bethel and M = 39 for Utqiagvik).

Location # Error Horiz.
Target Temperature Sequence

Value Range Min. Max. Month

Nome 1st −7.19 7 283.02 7.48 283.02 290.5 June
2nd 5.16 6 288.34 9.37 280.01 289.38 June
3rd 4.66 4 290.5 7.48 283.02 290.5 June

Bethel 1st −5.3 7 268.33 15.22 257.69 272.91 Mar.
2nd −4.26 1 265.19 11.57 258.25 269.82 Feb.
3rd −3.81 4 250.63 22.88 247.64 270.52 Jan.

Utqiagvik 1st 6.11 7 284.59 11.23 275.44 286.67 July
2nd 5.3 6 265.03 20.32 244.72 265.03 Nov.
3rd 3.87 3 283.82 11.23 275.44 286.67 July

Table 9. Bottom three air temperature forecasting errors produced by the optimized proposed
technique (under M = 30 for Nome and Bethel and M = 39 for Utqiagvik).

Location # Error Horiz.
Target Temperature Sequence

Value Range Min. Max. Month

Nome 1st −0.0003 4 284.31 5.9 282.81 288.71 May
2nd −0.0002 7 276.5 5.16 276.5 281.66 Apr.
3rd 0.0001 6 281.33 3.83 279.21 283.04 Apr.

Bethel 1st 0.0004 6 258.25 12.14 257.68 269.82 Feb.
2nd −0.0001 4 270.62 8.14 268.5 276.64 Feb.
3rd 0.0001 7 282.33 6.52 282.33 288.85 July

Utqiagvik 1st −0.0001 7 285.03 8.86 276.17 285.03 May
2nd −0.0001 5 266.95 5.96 265.26 271.21 Sept.
3rd 0.0001 3 232.97 11.49 232.97 244.46 Dec.
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Figure 10. RMSE performance distribution of the optimized forecasting technique, segmented by the
range of daily air temperature changes. The forecast and observation sequences were binned into
intervals of 2K by computing the amplitude change between consecutive pairs of days (K/day). It is
noteworthy that even under rapid air temperature fluctuations, the technique is capable of producing
forecasts with low RMSE values at all three locations.
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5. Discussion
5.1. Preliminary Comparison with NOAA’s GFSv16

The Global Forecasting System version 16 (GFSv16) is the most recent generation
of the National Atmospheric and Oceanic Administration’s (NOAA) numerical weather
prediction models and is considered to be one of the premier numerical models for the fore-
casting of Earth’s surface air temperatures. The seven-day output from the proposed hybrid
technique will be compared to that from the NOAA’s GFSv16 model. This comparison
is conducted by utilizing the results of the 2021 GFSv16 model validation study that was
undertaken before the GFSv16 was implemented into NOAA’s suite of weather models.

The data for this comparison are not readily available; hence, manual transcription
of the graphics resulting from the study was undertaken to report approximate one-year
RMSE values [58]. Manual transcription of the GFSv16 validation graphic was completed
by first printing the graphic onto paper so that the central section of the figure with the
plotted data points measured 20 cm in length along the x-axis. To tabulate the average
RMSE, the highest relative points and the lowest relative points along the primary grouping
of RMSE values for the given time period were sampled. To account for the difficulty of
manually counting the points within the primary grouping, an estimated average of the
RMSE for the grouping was made every 0.25 cm.

The calculation method used to manually transcribe the average RMSE from the
GFSv16 validation graphic sampled 170 points (47.9% of the total points). However, this
sampling method did not provide equal sampling along the full-year time series. A total
of 57 of the 170 points were taken in the summer–mid-fall time period (i.e., late May
to mid-October), achieving an average RMSE score of 3.29K. Using the winter–spring
period, accounting for 113 points, an average RMSE score of 5.57K was achieved. Since the
summer–mid-fall period is under-sampled with respect to the winter–spring period, the
two values were added in a weighted sum over their respective time periods to reach a
final RMSE score of 4.64K for the whole one-year time series over all of northern Alaska.
This value is significantly greater than the RMSE values found using the proposed hybrid
technique, equating to an expected average improvement rate of 90% in terms of the RMSE,
across the considered three locations.

5.2. Computational Costs

Due to the increasing number of sequences produced by VMD at higher decomposi-
tion levels, this search process can become increasingly computationally and time-intensive.
Thus, it is crucial to select an appropriate increment value for the decomposition levels
in order to demonstrate valuable changes in the technique’s performance and to limit the
number of possibilities and associated costs. Additionally, the optimal decomposition level
should be a compromise between performance improvement and the possible computa-
tional capabilities of the application in question. Nevertheless, the applicability of the
proposed technique with M = 30 or M = 39 in real-world scenarios is feasible as the com-
putational needs to both preprocess the data and to generate forecasts are inexpensive and
timely, especially considering the forecasting granularity needed (i.e., a forecast every day).

5.3. Forecasting Using Different Combinations of Inputs

Different combinations of the five inputs considered in this work were investigated
for air temperature forecasting using the proposed technique. However, the forecasting
performance was generally lower or showed smaller improvements than that achieved
using the past temperature and specific humidity as the sole inputs. These results cor-
roborated the findings from the initial correlation analysis conducted between the inputs
and the output sequences. Nonetheless, further enhancements in performance could still
be achieved by investigating additional inputs and data sources (such as data used for
determining atmospheric fronts and pressure systems). Despite the seeming limitation,
the current results suggest that the proposed hybrid technique can still identify and learn
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the inherent patterns governed by natural processes and, hence, produce forecasts with
small errors.

5.4. Forecasting the Air Temperatures under Rare Conditions

A data-driven approach such as deep learning for weather forecasting can be a pow-
erful tool for better analyzing the input data and generating accurate forecasts. However,
such techniques might be prone to yield lower performance than physics-based numerical
models in certain relatively rare or unseen events, such as unusually fast moving low-
pressure systems [59]. In these cases, numerical methods utilizing the advection–diffusion
equation can prove beneficial in providing more accurate forecasts. In most cases, the best
results are accomplished by ensemble forecasting methods that incorporate both machine
learning and physics-based models [60], although resulting in higher computational costs
and labor expenditure.

5.5. The Most Effective Use of the Findings

The most significant use of these findings may be for the forecasting of dangerously
cold air temperatures during the winter season and for flood risk forecasting during the
snow melt season. The study sites of Nome, Bethel, and Utqiagvik all experience extended
episodes of dangerously low air temperatures that may cause cold-related harm to those
caught without protection. Additionally, these predictions may allow for better forecasting
of annual snow melt season flood risk.

6. Conclusions

In Alaska, accurate weather forecasts are critical for both human and economic vitality.
Given the large computational costs of standard numerical models, a data-driven technique
based on signal processing and deep learning is proposed to produce multi-horizon short-
term local air temperature forecasts in Alaska. The integration of VMD and WT within
the forecasting technique was shown to be able to extract hidden high- and low-frequency
patterns within the raw time series that empowers the deep InceptionTime model to achieve
superior forecasting performances (an average RMSE score of 0.42K over all three loca-
tions). The empirical results obtained highlighted the benefits of using the temperature and
humidity sequences as well as a decomposition level of M < 40 for VMD and I = 3 for WT
(coif6 wavelet function). The forecasting technique presented in this paper provided supe-
rior performances appropriate for the problem of short-term air temperature forecasting.
Future work will focus on the same problem studied under long-term forecasting horizons,
investigating different combinations of signal decomposition techniques.
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