The Safety of Drug Treatment in Patients with Neuropathic Pain: Data from Ambulatory Care in a Real-Life Setting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Inclusion and Exclusion Criteria
2.3. Protocol
2.4. Endpoints
2.5. Statistical Analyses
3. Results
3.1. Demographic and Clinical Characteristics
3.2. ADRs
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IASP International Association for the Study of Pain—Terminology. Available online: https://www.iasp-pain.org/resources/terminology/ (accessed on 18 June 2023).
- Marcianò, G.; Vocca, C.; Evangelista, M.; Palleria, C.; Muraca, L.; Galati, C.; Monea, F.; Sportiello, L.; De Sarro, G.; Capuano, A.; et al. The Pharmacological Treatment of Chronic Pain: From Guidelines to Daily Clinical Practice. Pharmaceutics 2023, 15, 1165. [Google Scholar] [CrossRef] [PubMed]
- Attal, N.; Bouhassira, D. Translational neuropathic pain research. Pain 2019, 160, S23–S28. [Google Scholar] [CrossRef] [PubMed]
- Kawai, S.; Hasegawa, J.; Ito, H.; Fukuuchi, Y.; Nakano, H.; Ohtani, H.; Sasaki, K.; Adachi, T. Efficacy and safety of twice-daily tramadol hydrochloride bilayer sustained-release tablets with an immediate release component for postherpetic neuralgia: Results of a Phase III, randomized, double-blind, placebo-controlled, treatment-withdrawal study. Pain Pract. 2023, 23, 277–289. [Google Scholar] [CrossRef] [PubMed]
- Duehmke, R.M.; Derry, S.; Wiffen, P.J.; Bell, R.F.; Aldington, D.; Moore, R.A. Tramadol for neuropathic pain in adults. Cochrane Database Syst. Rev. 2017, 2017, 1–44. [Google Scholar] [CrossRef]
- Subedi, M.; Bajaj, S.; Kumar, M.S.; YC, M. An overview of tramadol and its usage in pain management and future perspective. Biomed. Pharmacother. 2019, 111, 443–451. [Google Scholar] [CrossRef]
- Bravo, L.; Mico, J.A.; Berrocoso, E. Discovery and development of tramadol for the treatment of pain. Expert. Opin. Drug Discov. 2017, 12, 1281–1291. [Google Scholar] [CrossRef]
- Brueckle, M.S.; Thomas, E.T.; Seide, S.E.; Pilz, M.; Gonzalez-Gonzalez, A.I.; Dinh, T.S.; Gerlach, F.M.; Harder, S.; Glasziou, P.P.; Muth, C. Amitriptyline’s anticholinergic adverse drug reactions—A systematic multiple-indication review and meta-analysis. PLoS ONE 2023, 18, e0284168. [Google Scholar] [CrossRef]
- Evoy, K.E.; Morrison, M.D.; Saklad, S.R. Abuse and Misuse of Pregabalin and Gabapentin. Drugs 2017, 77, 403–426. [Google Scholar] [CrossRef]
- Rivera, I.V.; Clavarana, L.V.; Velasco, P.G.; Ramos, C.M. Opioid-induced constipation in chronic pain: Experience with 180 patients. J. Opioid. Manag. 2019, 15, 69–76. [Google Scholar] [CrossRef]
- Cavalli, E.; Mammana, S.; Nicoletti, F.; Bramanti, P.; Mazzon, E. The neuropathic pain: An overview of the current treatment and future therapeutic approaches. Int. J. Immunopathol. Pharmacol. 2019, 33. [Google Scholar] [CrossRef]
- Clayton, A.; Kornstein, S.; Prakash, A.; Mallinckrodt, C.; Wohlreich, M. Changes in sexual functioning associated with duloxetine, escitalopram, and placebo in the treatment of patients with major depressive disorder. J. Sex. Med. 2007, 4, 917–929. [Google Scholar] [CrossRef] [PubMed]
- Bozkurt, M.; Gocmez, C.; Soylemez, H.; Daggulli, M.; Em, S.; Yildiz, M.; Atar, M.; Bozkurt, Y.; Ozbey, I. Association between neuropathic pain, pregabalin treatment, and erectile dysfunction. J. Sex. Med. 2014, 11, 1816–1822. [Google Scholar] [CrossRef] [PubMed]
- Sarzi-Puttini, P.; Giorgi, V.; Di Lascio, S.; Fornasari, D. Acetyl-L-carnitine in chronic pain: A narrative review. Pharmacol. Res. 2021, 173, 105874. [Google Scholar] [CrossRef] [PubMed]
- Frediani, J.K.; Lal, A.A.; Kim, E.; Leslie, S.L.; Boorman, D.W.; Singh, V. The role of diet and non-pharmacologic supplements in the treatment of chronic neuropathic pain: A systematic review. Pain Pract. 2023. Online ahead of a print. [Google Scholar] [CrossRef] [PubMed]
- Onofrj, M.; Ciccocioppo, F.; Varanese, S.; Di Muzio, A.; Calvani, M.; Chiechio, S.; Osio, M.; Thomas, A. Acetyl-L-carnitine: From a biological curiosity to a drug for the peripheral nervous system and beyond. Expert. Rev. Neurother. 2013, 13, 925–936. [Google Scholar] [CrossRef] [PubMed]
- D’Egidio, F.; Lombardozzi, G.; Kacem Ben Haj M’Barek, H.E.; Mastroiacovo, G.; Alfonsetti, M.; Cimini, A. The Influence of Dietary Supplementations on Neuropathic Pain. Life 2022, 12, 1125. [Google Scholar] [CrossRef] [PubMed]
- Chiechio, S.; Copani, A.; Iv, R.W.G.; Nicoletti, F. Acetyl-L-carnitine in neuropathic pain: Experimental data. CNS Drugs 2007, 21, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Di Cesare Mannelli, L.; Ghelardini, C.; Calvani, M.; Nicolai, R.; Mosconi, L.; Toscano, A.; Pacini, A.; Bartolini, A. Neuroprotective effects of acetyl-L-carnitine on neuropathic pain and apoptosis: A role for the nicotinic receptor. J. Neurosci. Res. 2009, 87, 200–207. [Google Scholar] [CrossRef]
- Sima, A.A.F.; Calvani, M.; Mehra, M.; Amato, A. Acetyl-L-carnitine improves pain, nerve regeneration, and vibratory perception in patients with chronic diabetic neuropathy: An analysis of two randomized placebo-controlled trials. Diabetes Care 2005, 28, 89–94. [Google Scholar] [CrossRef]
- Chirchiglia, D.; Paventi, S.; Seminara, P.; Cione, E.; Gallelli, L. N-Palmitoyl Ethanol Amide Pharmacological Treatment in Patients with Nonsurgical Lumbar Radiculopathy. J. Clin. Pharmacol. 2018, 58, 733–739. [Google Scholar] [CrossRef]
- Chirchiglia, D.; Chirchiglia, P.; Marotta, R.; Gallelli, L. Add-on administration of ultramicronized palmitoylethanolamide in the treatment of new-onset burning mouth syndrome. Int. Med. Case Rep. J. 2019, 12, 39–42. [Google Scholar] [CrossRef] [PubMed]
- Rankin, L.; Fowler, C.J. The Basal pharmacology of palmitoylethanolamide. Int. J. Mol. Sci. 2020, 21, 7942. [Google Scholar] [CrossRef] [PubMed]
- Lang-Illievich, K.; Klivinyi, C.; Rumpold-Seitlinger, G.; Dorn, C.; Bornemann-Cimenti, H. The Effect of Palmitoylethanolamide on Pain Intensity, Central and Peripheral Sensitization, and Pain Modulation in Healthy Volunteers—A Randomized, Double-Blinded, Placebo-Controlled Crossover Trial. Nutrients 2022, 14, 4084. [Google Scholar] [CrossRef] [PubMed]
- D’Amico, R.; Impellizzeri, D.; Cuzzocrea, S.; Di Paola, R. Aliamides update: Palmitoylethanolamide and its formulations on management of peripheral neuropathic pain. Int. J. Mol. Sci. 2020, 21, 5330. [Google Scholar] [CrossRef]
- Andresen, S.R.; Bing, J.; Hansen, R.M.; Biering-Sørensen, F.; Johannesen, I.L.; Hagen, E.M.; Rice, A.S.C.; Nielsen, J.F.; Bach, F.W.; Finnerup, N.B. Ultramicronized palmitoylethanolamide in spinal cord injury neuropathic pain: A randomized, double-blind, placebo-controlled trial. Pain 2016, 157, 2097–2103. [Google Scholar] [CrossRef]
- Cobellis, L.; Castaldi, M.A.; Giordano, V.; Trabucco, E.; De Franciscis, P.; Torella, M.; Colacurci, N. Effectiveness of the association micronized N-Palmitoylethanolamine (PEA)-transpolydatin in the treatment of chronic pelvic pain related to endometriosis after laparoscopic assessment: A pilot study. Eur. J. Obstet. Gynecol. Reprod. Biol. 2011, 158, 82–86. [Google Scholar] [CrossRef]
- Kamper, D. Palmitoylethanolamide (PEA) in the treatment of neuropathic pain: A case study. Nutr. Health 2022, 28, 265–269. [Google Scholar] [CrossRef]
- Viana, M.D.M.; Lauria, P.S.S.; de Lima, A.A.; Opretzka, L.C.F.; Marcelino, H.R.; Villarreal, C.F. Alpha-Lipoic Acid as an Antioxidant Strategy for Managing Neuropathic Pain. Antioxidants 2022, 11, 2420. [Google Scholar] [CrossRef]
- Gilron, I.; Robb, S.; Tu, D.; Holden, R.R.; Jackson, A.C.; Duggan, S.; Milev, R. Randomized, double-blind, controlled trial of a combination of alpha-lipoic acid and pregabalin for neuropathic pain: The PAIN-CARE trial. Pain 2023. Online ahead of print. [Google Scholar] [CrossRef]
- Ziegler, D.; Schatz, H.; Conrad, F.; Gries, F.A.; Ulrich, H.; Reichel, G.; Group, D.S. Effects of Treatment with the Antioxidant. Emerg. Treat. Technol. 1997, 20, 369–373. [Google Scholar] [CrossRef]
- Tankova, T.; Koev, D.; Dakovska, L. Alpha-lipoic acid in the treatment of autonomic diabetic neuropathy (controlled, randomized, open-label study). Rom. J. Intern. Med. 2004, 42, 457–464. [Google Scholar] [PubMed]
- Liu, F.; Zhang, Y.; Yang, M.; Liu, B.; Shen, Y.; Jia, W.-P.; Xiang, K.-S. Curative effect of alpha-lipoic acid on peripheral neuropathy in type 2 diabetes: A clinical study. Zhonghua Yi Xue Za Zhi 2007, 87, 2706–2709. [Google Scholar] [PubMed]
- Cassanego, G.; Rodrigues, P.; Bauermann, L.D.F.; Trevisan, G. Evaluation of the analgesic effect of ɑ-lipoic acid in treating pain disorders: A systematic review and meta-analysis of randomized controlled trials. Pharmacol. Res. 2022, 177, 106075. [Google Scholar] [CrossRef] [PubMed]
- Rochette, L.; Ghibu, S.; Richard, C.; Zeller, M.; Cottin, Y.; Vergely, C. Direct and indirect antioxidant properties of α-lipoic acid and therapeutic potential. Mol. Nutr. Food Res. 2013, 57, 114–125. [Google Scholar] [CrossRef] [PubMed]
- Pullano, S.A.; Marcianò, G.; Bianco, M.G.; Oliva, G.; Rania, V.; Vocca, C.; Cione, E.; De Sarro, G.; Gallelli, L.; Romeo, P.; et al. FT-IR Analysis of Structural Changes in Ketoprofen Lysine Salt and KiOil Caused by a Pulsed Magnetic Field. Bioengineering 2022, 9, 503. [Google Scholar] [CrossRef] [PubMed]
- Premi, E.; Benussi, A.; La Gatta, A.; Visconti, S.; Costa, A.; Gilberti, N.; Cantoni, V.; Padovani, A.; Borroni, B.; Magoni, M. Modulation of long-term potentiation-like cortical plasticity in the healthy brain with low frequency-pulsed electromagnetic fields. BMC Neurosci. 2018, 19, 34. [Google Scholar] [CrossRef]
- Ahmed, Z.; Wieraszko, A. Pulsed magnetic stimulation modifies amplitude of action potentials in vitro via ionic channels-dependent mechanism. Bioelectromagnetics 2015, 36, 386–397. [Google Scholar] [CrossRef]
- Roberti, R.; Marcianò, G.; Casarella, A.; Rania, V.; Palleria, C.; Muraca, L.; Citraro, R.; De Sarro, G.; Serra, R.; Romeo, P.; et al. High-Intensity, Low-Frequency Pulsed Electromagnetic Field as an Odd Treatment in a Patient with Mixed Foot Ulcer: A Case Report. Reports 2022, 5, 3. [Google Scholar] [CrossRef]
- Roberti, R.; Marcianò, G.; Casarella, A.; Rania, V.; Palleria, C.; Vocca, C.; Catarisano, L.; Muraca, L.; Citraro, R.; Romeo, P.; et al. Diamagnetic Therapy in a Patient with Complex Regional Pain Syndrome Type I and Multiple Drug Intolerance: A Case Report. Reports 2022, 5, 18. [Google Scholar] [CrossRef]
- Gallelli, L.; Nardi, M.; Prantera, T.; Barbera, S.; Raffaele, M.; Arminio, D.; Pirritano, D.; Colosimo, M.; Maselli, R.; Pelaia, G.; et al. Retrospective analysis of adverse drug reactions induced by gemcitabine treatment in patients with non-small cell lung cancer. Pharmacol. Res. 2004, 49, 259–263. [Google Scholar] [CrossRef]
- Gallelli, L.; Colosimo, M.; Pirritano, D.; Ferraro, M.; De Fazio, S.; Marigliano, N.M.; De Sarro, G. Retrospective evaluation of adverse drug reactions induced by nonsteroidal anti-inflammatory drugs. Clin. Drug Investig. 2007, 27, 115–122. [Google Scholar] [CrossRef]
- Naranjo, C.A.; Busto, U.; Sellers, E.M.; Sandor, P.; Ruiz, I.; Roberts, E.A.; Janecek, E.; Domecq, C.; Greenblatt, D.J. A method for estimating the probability of adverse drug reactions. Clin. Pharmacol. Ther. 1981, 30, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Mascolo, A.; Scavone, C.; Sessa, M.; di Mauro, G.; Cimmaruta, D.; Orlando, V.; Rossi, F.; Sportiello, L.; Capuano, A. Can causality assessment fulfill the new European definition of adverse drug reaction? A review of methods used in spontaneous reporting. Pharmacol. Res. 2017, 123, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.M.M.; Zimmet, P.; Shaw, J. The metabolic syndrome—A new worldwide definition. Lancet 2005, 366, 1059–1062. [Google Scholar] [CrossRef]
- Puenpatom, R.A.; Victor, T.W. Increased Prevalence of Metabolic Syndrome in Individuals with Osteoarthritis. Postgrad. Med. 2009, 121, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Louati, K.; Vidal, C.; Berenbaum, F.; Sellam, J. Association between diabetes mellitus and osteoarthritis: Systematic literature review and meta-analysis. RMD Open 2015, 1, e000077. [Google Scholar] [CrossRef] [PubMed]
- Shashar, R.; Chatumi, S.; Amiel, G. Gender-Specific Medicine in Urology. Harefuah 2021, 160, 603–607. [Google Scholar]
- Laroche, M.L.; Charmes, J.P.; Nouaille, Y.; Picard, N.; Merle, L. Is inappropriate medication use a major cause of adverse drug reactions in the elderly? Br. J. Clin. Pharmacol. 2007, 63, 177–186. [Google Scholar] [CrossRef]
- Hanlon, J.T.; Fillenbaum, G.G.; Kuchibhatla, M.; Artz, M.B.; Boult, C.; Gross, C.R.; Garrard, J.; Schmader, K.E. Impact of inappropriate drug use on mortality and functional status in representative community dwelling elders. Med. Care 2002, 40, 166–176. [Google Scholar] [CrossRef]
- Frankenthal, D.; Lerman, Y.; Lerman, Y. The impact of hospitalization on potentially inappropriate prescribing in an acute medical geriatric division. Int. J. Clin. Pharm. 2015, 37, 60–67. [Google Scholar] [CrossRef]
- Lechevallier-Michel, N.; Gautier-Bertrand, M.; Alpérovitch, A.; Berr, C.; Belmin, J.; Legrain, S.; Saint-Jean, O.; Tavernier, B.; Dartigues, J.F.; Fourrier-Réglat, A. Frequency and risk factors of potentially inappropriate medication use in a community-dwelling elderly population: Results from the 3C Study. Eur. J. Clin. Pharmacol. 2005, 60, 813–819. [Google Scholar] [CrossRef] [PubMed]
- Al-Hashar, A.; Al-Zakwani, I.; Eriksson, T.; Sarakbi, A.; Al-Zadjali, B.; Al Mubaihsi, S.; Al Za’abi, M. Impact of medication reconciliation and review and counselling, on adverse drug events and healthcare resource use. Int. J. Clin. Pharm. 2018, 40, 1154–1164. [Google Scholar] [CrossRef] [PubMed]
- Onder, G.; Landi, F.; Liperoti, R.; Fialova, D.; Gambassi, G.; Bernabei, R. Impact of inappropriate drug use among hospitalized older adults. Eur. J. Clin. Pharmacol. 2005, 61, 453–459. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, J.R.; Sleath, B.L.; Cerdeira, M.; Cavaco, A.M. Older people, medication usage and long-term care pharmacists: A retrospective cohort study. Eur. J. Hosp. Pharm. 2023. Online ahead of print. [Google Scholar] [CrossRef]
- Cole, J.A.; Gonçalves-Bradley, D.C.; Alqahtani, M.; Barry, H.E.; Cadogan, C.; Rankin, A.; Patterson, S.M.; Kerse, N.; Cardwell, C.R.; Ryan, C.; et al. Interventions to improve the appropriate use of polypharmacy for older people. Cochrane Database Syst. Rev. 2023, 11, CD008165. [Google Scholar] [CrossRef]
- Kvarnström, K.; Westerholm, A.; Airaksinen, M.; Liira, H. Factors contributing to medication adherence in patients with a chronic condition: A scoping review of qualitative research. Pharmaceutics 2021, 13, 1100. [Google Scholar] [CrossRef]
- Gast, A.; Mathes, T. Medication adherence influencing factors—An (updated) overview of systematic reviews. Syst. Rev. 2019, 8, 112. [Google Scholar] [CrossRef] [PubMed]
- Sampaio, R.; Azevedo, L.F.; Dias, C.C.; Lopes, J.M.C. Non-adherence to pharmacotherapy: A prospective multicentre study about its incidence and its causes perceived by chronic pain patients. Patient Prefer. Adherence 2020, 14, 321–332. [Google Scholar] [CrossRef]
- Rosser, B.A.; McCracken, L.M.; Velleman, S.C.; Boichat, C.; Eccleston, C. Concerns about medication and medication adherence in patients with chronic pain recruited from general practice. Pain 2011, 152, 1201–1205. [Google Scholar] [CrossRef]
- Gadkari, A.S.; McHorney, C.A. Unintentional non-adherence to chronic prescription medications: How unintentional is it really? BMC Health Serv. Res. 2012, 12, 98. [Google Scholar] [CrossRef]
- Fick, M.; Waller, J.L.; Maclean, J.R.; Heuvel, R.; Vanden; Gary, J. Potentially Inappropriate Medication Use in a Medicare Costs and Utilization. J. Manag. Care Pharm. 2001, 7, 407–413. [Google Scholar]
- Niwata, S.; Yamada, Y.; Ikegami, N. Prevalence of inappropriate medication using Beers criteria in Japanese long-term care facilities. BMC Geriatr. 2006, 6, 1. [Google Scholar] [CrossRef] [PubMed]
- Zah, V.; Brookfield, R.B.; Imro, M.; Tatovic, S.; Pelivanovic, J.; Vukicevic, D. Healthcare costs and resource utilization in chronic pain patients treated with extended-release formulations of tapentadol, oxycodone, or morphine stratified by type of pain: A retrospective claims analysis, 2012–2016. J. Pain Res. 2019, 12, 3037–3048. [Google Scholar] [CrossRef]
- Guliani, H.; Hadjistavropoulos, T.; Jin, S.; Lix, L.M. Pain-related health care costs for long-term care residents. BMC Geriatr. 2021, 21, 552. [Google Scholar] [CrossRef]
- Nury, E.; Schmucker, C.; Nagavci, B.; Motschall, E.; Nitschke, K.; Schulte, E.; Wegwarth, O.; Meerpohl, J.J. Efficacy and safety of strong opioids for chronic noncancer pain and chronic low back pain a systematic review and meta-analyses. Pain 2022, 163, 610–636. [Google Scholar] [CrossRef] [PubMed]
- AIFA Agenzia Italiana del Farmaco Riassunto delle Caratteristiche del Prodotto-Ossicodone. Available online: https://farmaci.agenziafarmaco.gov.it/aifa/servlet/PdfDownloadServlet?pdfFileName=footer_000549_043927_RCP.pdf&sys=m0b1l3 (accessed on 16 August 2022).
- AIFA Agenzia Italiana del Farmaco Fentanyl-Riassunto delle Caratteristiche del Prodotto. Available online: https://farmaci.agenziafarmaco.gov.it/aifa/servlet/PdfDownloadServlet?pdfFileName=footer_002838_035693_RCP.pdf&sys=m0b1l3 (accessed on 16 August 2022).
- AIFA Agenzia Italiana del Farmaco Buprenorfina-Riassunto delle Caratteristiche del Prodotto. Available online: https://farmaci.agenziafarmaco.gov.it/aifa/servlet/PdfDownloadServlet?pdfFileName=footer_002322_039747_RCP.pdf&retry=0&sys=m0b1l3 (accessed on 16 August 2022).
- AIFA Agenzia Italiana del Farmaco Riassunto delle Caratteristiche del Prodotto-Contramal. Available online: https://farmaci.agenziafarmaco.gov.it/aifa/servlet/PdfDownloadServlet?pdfFileName=footer_000045_028853_RCP.pdf&sys=m0b1l3 (accessed on 16 August 2022).
- AIFA Agenzia Italiana del Farmaco Riassunto delle Caratteristiche del Prodotto-Duloxetina. Available online: https://farmaci.agenziafarmaco.gov.it/aifa/servlet/PdfDownloadServlet?pdfFileName=footer_000813_043843_RCP.pdf&sys=m0b1l3 (accessed on 25 July 2022).
- AIFA Agenzia Italiana del Farmaco Riassunto delle Caratteristiche del Prodotto-Pregabalin. Available online: https://farmaci.agenziafarmaco.gov.it/aifa/servlet/PdfDownloadServlet?pdfFileName=footer_003891_043719_RCP.pdf&sys=m0b1l3 (accessed on 24 July 2022).
- Gallucci, M.; Limbucci, N.; Zugaro, L.; Barile, A.; Stavroulis, E.; Ricci, A.; Galzio, R.; Masciocchi, C. Sciatica: Treatment with intradiscal and intraforaminal injections of steroid and oxygen-ozone versus steroid only. Radiology 2007, 242, 907–913. [Google Scholar] [CrossRef] [PubMed]
- Viebahn-Haensler, R.; Fernández, O.S.L. Ozone in medicine. The low-dose ozone concept and its basic biochemical mechanisms of action in chronic inflammatory diseases. Int. J. Mol. Sci. 2021, 22, 7890. [Google Scholar] [CrossRef]
- Paoloni, M.; Di Sante, L.; Cacchio, A.; Apuzzo, D.; Marotta, S.; Razzano, M.; Franzini, M.; Santilli, V. Intramuscular oxygen-ozone therapy in the treatment of acute back pain with lumbar disc herniation: A multicenter, randomized, double-blind, clinical trial of active and simulated lumbar paravertebral injection. Spine 2009, 34, 1337–1344. [Google Scholar] [CrossRef]
- Muto, M.; Ambrosanio, G.; Guarnieri, G.; Capobianco, E.; Piccolo, G.; Annunziata, G.; Rotondo, A. “Low back pain” e sciatalgia: Trattamento con iniezione intradiscale-intraforaminale di O2-O3. La nostra esperienza. Radiol. Medica 2008, 113, 695–706. [Google Scholar] [CrossRef]
- Biazzo, A.; Corriero, A.S.; Confalonieri, N. Intramuscular oxygen-ozone therapy in the treatment of low back pain. Acta Biomed. 2018, 89, 41–46. [Google Scholar] [CrossRef]
- Andreula, C.F.; Simonetti, L.; De Santis, F.; Agati, R.; Ricci, R.; Leonardi, M. Minimally invasive oxygen-ozone therapy for lumbar disk herniation. Am. J. Neuroradiol. 2003, 24, 996–1000. [Google Scholar] [PubMed]
- Magalhaes, F.N.D.O.; Dotta, L.; Sasse, A.; Teixera, M.J.; Fonoff, E.T. Ozone therapy as a treatment for low back pain secondary to herniated disc: A systematic review and meta-analysis of randomized controlled trials. Pain Physician 2012, 15, E115–E129. [Google Scholar] [PubMed]
- AIFA Agenzia Italiana del Farmaco Riassunto delle Caratteristiche del Prodotto-Nicetile. Available online: https://farmaci.agenziafarmaco.gov.it/aifa/servlet/PdfDownloadServlet?pdfFileName=footer_004375_025369_RCP.pdf&sys=m0b1l3 (accessed on 19 August 2022).
Men N: 328 | % | Women N: 584 | % | Delta Percentage | |
---|---|---|---|---|---|
Age | |||||
18–64 | 195 | 59.4 | 333 | 57.0 | −4.2 |
≥65 | 133 | 40.6 | 251 | 43.0 | 6.2 |
Degree | |||||
Yes | 62 | 18.8 | 128 | 21.9 | 15.9 |
No | 266 | 81.2 | 456 | 78.1 | −3.7 |
Body mass index | |||||
<25 | 82 | 25.0 | 184 | 31.6 | 26 |
25–30 | 169 | 51.6 | 200 | 34.2 | −33.6 |
≥30 | 77 | 23.4 | 200 | 34.2 | 45.5 |
Smokers | |||||
Yes (or former smokers) | 190 | 57.8 | 194 | 33.3 | −42.7 |
No | 138 | 42.2 | 390 | 66.7 | 58.7 |
Diagnosis | |||||
Low back pain | 159 | 48.4 | 276 | 47.4 | −2.5 |
Low back pain + cervicobrachial pain | 149 | 45.3 | 272 | 46.5 | 2.6 |
Cervicobrachial pain | 21 | 6.3 | 36 | 6.1 | −3.1 |
18–64 | >65 | 18–64 | >65 | |||||
---|---|---|---|---|---|---|---|---|
Men | Women | |||||||
N | % | N | % | N | % | N | % | |
Enrolled | 195 | 59.4 | 133 | 40.6 | 333 | 57.0 | 251 | 43.0 |
Age | 52.1 ± 9.8 | 73 ± 6 | 53.3 ± 9.2 | 73.1 ± 7 | ||||
BMI | 27.4 ± 3.9 | 26.9 ± 4.7 | 27.5 ± 5.5 | 28.5 ± 5.2 | ||||
DN4 | 5.7 ± 1.1 | 5.8 ± 1.4 | 5.8 ± 1.2 | 5.9 ± 1.2 | ||||
NRS | 8.2 ± 1.7 | 7.9 ± 1.3 | 8.3 ± 1.3 | 8.7 ± 1.4 | ||||
Degree | 31 | 15.8 | 76 | 57.1 | 135 | 23.1 | 119 | 20.4 |
Smokers | 103 | 52.8 | 133 | 100.0 | 216 | 64.8 | 151 | 60.2 |
Comorbidity | 180 | 92.3 | 133 | 100.0 | 323 | 96.9 | 251 | 100.0 |
Cardiovascular diseases | 82 | 42.1 | 87 | 65.4 | 164 | 49.2 | 213 | 84.8 |
Diabetes | 108 | 55.4 | 97 | 72.9 | 184 | 55.4 | 184 | 73.3 |
Osteoarthritis | 82 | 42.1 | 87 | 65.4 | 220 | 66.1 | 208 | 82.8 |
Urologic diseases | 41 | 21.1 | 82 | 61.5 ** | 21 | 6.3 | 26 | 10.3 |
Gastrointestinal diseases | 41 | 21.1 | 46 | 34.6 | 128 | 38.4 | 103 | 41 |
Neurological diseases | 26 | 13.3 | 31 | 23.1 | 108 | 32.4 | 61 | 24.3 |
Rheumatological diseases | 15 | 7.7 | 8 | 6 | 133 | 40.0 ** | 56 | 22.3 ** |
Psychiatric diseases | 26 | 13.3 | 0 | 0.0 | 72 | 21.6 | 41 | 16.3 ** |
Renal diseases | 21 | 10.8 | 21 | 15.7 | 10 | 3.1 | 36 | 14.3 |
Respiratory diseases | 10 | 5.1 | 21 | 15.7 | 36 | 10.8 | 41 | 16.3 |
Hematological diseases | 5 | 2.6 | 21 | 15.7 | 31 | 9.3 | 21 | 8.3 |
drug users | 195 | 100.0 | 133 | 100.0 | 333 | 100.0 | 251 | 100.0 |
18–64 | >65 | 18–64 | >65 | |||||
---|---|---|---|---|---|---|---|---|
Men | Women | |||||||
N | % | N | % | N | % | N | % | |
Opioids | ||||||||
Oxycodone/naloxone | 30 | 9.1 | 11 | 3.4 | 15 | 2.6 | 26 | 4.5 |
Buprenorphine | 12 | 3.7 | 3 | 0.9 | 35 | 6.0 | 26 | 4.5 |
Codeine | 38 | 11.6 | 13 | 4.0 | 83 | 14.2 | 40 | 6.8 |
Tramadol | 41 | 12.5 | 26 | 7.9 | 56 | 9.6 | 26 | 4.5 |
Tapentadol | 4 | 1.2 | 4 | 1.2 | 6 | 1 | 9 | 1.5 |
Fentanyl | 8 | 2.4 | 2 | 0.6 | 13 | 2.2 | 2 | 0.3 |
Oxycodone | 10 | 3.0 | 15 | 4.6 | 11 | 1.9 | 9 | 1.5 |
Antidepressants | ||||||||
Amitriptyline | 12 | 3.7 | 13 | 4.0 | 30 | 5.1 | 16 | 2.7 |
Duloxetine | 36 | 11 | 15 | 4.6 | 53 | 9.1 | 40 | 6.8 |
Antiepileptics | ||||||||
Pregabalin | 91 | 27.7 | 62 | 18.9 | 118 | 20.2 | 82 | 14 |
Other treatments | ||||||||
Eperisone | 35 | 10.7 | 27 | 8.2 | 52 | 8.9 | 51 | 8.7 |
Cannabidiol and β-caryophyllene | 23 | 7.0 | 18 | 5.5 | 39 | 6.7 | 33 | 5.7 |
Cyclobenzaprine | 14 | 4.3 | 11 | 3.4 | 35 | 6 | 11 | 1.9 |
Tizanidine | 8 | 2.4 | 2 | 0.6 | 15 | 2.6 | 5 | 0.9 |
L-acetyl-carnitine | 63 | 19.2 | 30 | 9.1 | 58 | 9.9 | 59 | 10.1 |
Nutraceuticals | 97 | 29.6 | 77 | 23.5 | 179 | 30.7 | 154 | 26.4 |
Diamagnetic therapy | 102 | 31.1 | 41 | 12.5 | 133 | 22.8 | 82 | 14 |
Oxygen–ozone therapy | 151 | 46.0 | 85 | 25.9 | 220 | 37.7 | 153 | 26.2 |
Men | Women | ||||
---|---|---|---|---|---|
N | % | N | % | Delta Percentage | |
Enrolled | 67 | 20.4 | 97 | 16.6 | −18.7 |
Age | 61 ± 13.2 | 60.3 ± 14 | |||
BMI | 27.3 ± 2.8 | 28.4 ± 5.4 | |||
DN4 | 5.8 ± 1 | 6 ± 1.9 | |||
NRS | 9.3 ± 1.3 | 9.3 ± 1.1 | |||
Degree | 10 | 14.9 | 26 | 26.8 | 79.6 |
Smokers | 41 | 61.2 | 46 | 47.4 | −22.5 |
Comorbidity | 62 | 92.5 | 97 | 100.0 | 8.1 |
Cardiovascular diseases | 46 | 68.7 | 51 | 52.6 | −23.4 |
Diabetes | 41 | 61.2 | 56 | 57.7 | −5.7 |
Osteoarthritis | 31 | 46.3 | 71 | 73.2 | 58.2 |
Urologic diseases | 21 | 31.3 * | 10 | 10.3 | −67.1 |
Gastrointestinal diseases | 21 | 31.3 | 36 | 37.1 | 18.4 |
Neurological diseases | 10 | 14.9 | 31 | 32.0 ** | 114.1 |
Rheumatological diseases | 15 | 22.4 | 41 | 42.3 ** | 88.8 |
Psychiatric diseases | 5 | 7.5 | 10 | 10.3 | 38.1 |
Renal diseases | 15 | 22.4 | 10 | 10.3 | −54.0 |
Respiratory diseases | 5 | 7.5 | 15 | 15.5 ** | 107.2 |
Hematological diseases | 10 | 14.9 | 15 | 15.5 | 3.6 |
drug users | 67 | 100.0 | 97 | 100.0 | 0.0 |
Patients without ADRs | Patients with ADRs | |
---|---|---|
men vs. women | men vs. women | |
Age | 0.233522 | 0.422397 |
BMI | 0.208000 | 0.224596 |
DN4 | 0.430926 | 0.327175 |
NRS | 0.061957 | 0.408738 |
Men | |||||
---|---|---|---|---|---|
without ADRs | with ADRs | ||||
N | % | N | % | Delta Percentage | |
Enrolled | 261 | 79.6 | 67 | 20.4 | 74.3 |
Age | 60.5 ± 13.5 | 61 ± 13.2 | |||
BMI | 27.2 ± 4.6 | 27.3 ± 2.8 | |||
DN4 | 5.8 ± 1.2 | 5.8 ± 1 | |||
NRS | 7.9 ± 1.5 | 9.3 ± 1.3 | |||
Degree | 13 | 5 | 10 | 14.9 ** | 199.6 |
Smokers | 38 | 1.5 | 41 | 61.2 ** | 4024.1 |
Women | |||||
without ADRs | with ADRs | ||||
N | % | N | % | Delta Percentage | |
Enrolled | 487 | 83.4 | 97 | 16.6 | 80.1 |
Age | 62.1 ± 12.6 | 60.3 ± 14 | |||
BMI | 27.9 ± 5.4 | 28.4 ± 5.4 | |||
DN4 | 5.8 ± 1.1 | 6 ± 1.9 | |||
NRS | 8.3 ± 1.3 | 9.3 ± 1.1 | |||
Degree | 103 | 21.1 | 26 | 26.8 | 26.7 |
Smokers | 149 | 30.6 | 46 | 47.4 ** | 55.0 |
Men | |||||
---|---|---|---|---|---|
without ADRs (N) | % | with ADRs (N) | % | Delta percentage | |
Total | 261 | 79.6 | 67 | 20.4 | −74.3 |
Cardiovascular diseases | 119 | 45.6 | 50 | 74.6 | 63.7 |
Diabetes | 160 | 61.3 | 45 | 67.2 | 9.6 |
Osteoarthritis | 135 | 51.7 | 34 | 50.7 | −1.9 |
Urologic diseases | 101 | 38.7 | 22 | 32.8 | −15.1 |
Gastrointestinal diseases | 65 | 24.9 | 22 | 32.8 | 31.8 |
Neurological diseases | 46 | 17.6 | 11 | 16.4 | −6.8 |
Rheumatological diseases | 6 | 2.3 | 17 | 25.4 ** | 1003.7 |
Psychiatric diseases | 20 | 7.7 | 6 | 9.0 | 16.9 |
Renal diseases | 25 | 9.6 | 17 | 25.4 ** | 164.9 |
Respiratory diseases | 25 | 9.6 | 6 | 9.0 | −6.5 |
Hematological diseases | 15 | 5.7 | 11 | 16.4 | 185.7 |
Women | |||||
without ADRs (N) | % | with ADRs (N) | % | Delta percentage | |
Total | 487 | 83.4 | 97 | 16.6 | −80.1 |
Cardiovascular diseases | 280 | 57.5 | 51 | 52.6 | −8.6 |
Diabetes | 317 | 65.1 | 56 | 57.7 | −11.3 |
Osteoarthritis | 372 | 76.4 | 71 | 73.2 | −4.2 |
Urologic diseases | −24 | −4.9 | 10 | 10.3 ** | −309.2 |
Gastrointestinal diseases | 221 | 45.4 | 36 | 37.1 | −18.2 |
Neurological diseases | 133 | 27.3 | 31 | 32.0 | 17.0 |
Rheumatological diseases | 158 | 32.4 | 41 | 42.3 | 30.3 |
Psychiatric diseases | 72 | 14.8 | 10 | 10.3 | −30.3 |
Renal diseases | 36 | 7.4 | 10 | 10.3 | 39.5 |
Respiratory diseases | 67 | 13.8 | 15 | 15.5 | 12.4 |
Hematological diseases | 37 | 7.6 | 15 | 15.5 | 103.5 |
Dosage | |||
---|---|---|---|
Drug | Without ADRs | With ADR | p Value |
Oxycodone | 10 ± 7.1 | 45 ± 41.5 | 0.56357 |
Tramadol | 78.8 ± 37.8 | 84.7 ± 54.4 | 0.86652 |
Buprenorphine | 20.5 ± 26.0 | 26.9 ± 21.2 | 0.19847 |
Codeine | 41.8 ± 17.0 | 30.0 ± 0 | 0.17533 |
Fentanyl | 62.5 ± 17.7 | 41.7 ± 14.4 | 0.09469 |
Pregabalin | 122.1 ± 65.3 | 138,49 ± 118 | 0.97648 |
Duloxetine | 38.6 ± 13.9 | 38.6 ± 14.6 | 1 |
Amitriptyline | 14 ± 12.8 | 24.5 ± 24.0 | 0.68413 |
Men | |||||
---|---|---|---|---|---|
without ADRs (n: 261) | with ADRs (n: 67) | ||||
N | % | N | % | Delta Percentage | |
Opioids | 146 | ||||
Oxycodone/naloxone | 26 | 10.0 | 15 | 22.4 | 124.7 |
Buprenorphine | 10 | 3.8 | 5 | 7.5 | 94.8 |
Codeine | 46 | 17.6 | 5 | 7.5 | −57.7 |
Tramadol | 46 | 17.6 | 21 | 31.3 | 77.8 |
Tapentadol | 3 | 1.1 | 5 | 7.5 | 549.3 |
Fentanyl | 5 | 1.9 | 5 | 7.5 | 289.6 |
Oxycodone | 10 | 3.8 | 15 | 22.4 | 484.3 |
Antidepressants | |||||
Amitriptyline | 15 | 5.7 | 10 | 14.9 | 159.7 |
Duloxetine | 41 | 15.7 | 10 | 14.9 | −5.0 |
Antiepileptics | |||||
Pregabalin | 107 | 41.0 | 46 | 68.7 | 67.5 |
Other treatments | |||||
Eperisone | 26 | 10.0 | 36 | 53.7 | 439.4 |
Cannabidiol and β-caryophyllene | 36 | 13.8 | 5 | 7.5 | −45.9 |
Cyclobenzaprine | 20 | 7.7 | 5 | 7.5 | −2.6 |
Tizanidine | 5 | 1.9 | 5 | 7.5 | 289.6 |
L-acetyl-carnitine | 67 | 25.7 | 26 | 38.8 | 51.2 |
Nutraceuticals | 143 | 54.8 | 31 | 46.3 | −15.6 |
Diamagnetic therapy | 97 | 37.2 | 46 | 68.7 | 84.7 |
Oxygen–ozone therapy | 179 | 68.6 | 57 | 85.1 | 24.0 |
Women | |||||
without ADRs (n: 487) | with ADRs (n: 97) | ||||
N | % | N | % | Delta Percentage | |
Opioids | |||||
Oxycodone/naloxone | 31 | 6.4 | 10 | 10.3 | 62.0 |
Buprenorphine | 46 | 9.4 | 15 | 15.5 | 63.7 |
Codeine | 97 | 19.9 | 26 | 26.8 | 34.6 |
Tramadol | 56 | 11.5 | 26 | 26.8 | 133.1 |
Tapentadol | 10 | 2.1 | 5 | 5.2 | 151.0 |
Fentanyl | 5 | 1.0 | 10 | 10.3 | 904.1 |
Oxycodone | 10 | 2.1 | 10 | 10.3 | 402.1 |
Antidepressants | |||||
Amitriptyline | 36 | 7.4 | 10 | 10.3 | 39.5 |
Duloxetine | 67 | 13.8 | 26 | 26.8 | 94.8 |
Antiepileptics | 0.0 | ||||
Pregabalin | 154 | 31.6 | 46 | 47.4 | 50.0 |
Other treatments | |||||
Eperisone | 67 | 13.8 | 36 | 37.1 | 169.8 |
Cannabidiol and β-caryophyllene | 36 | 7.4 | 36 | 37.1 | 402.1 |
Cyclobenzaprine | 26 | 5.3 | 20 | 20.6 | 286.2 |
Tizanidine | 10 | 2.1 | 10 | 10.3 | 402.1 |
L-acetyl-carnitine | 97 | 19.9 | 20 | 20.6 | 3.5 |
Nutraceuticals | 272 | 55.9 | 61 | 62.9 | 12.6 |
Diamagnetic therapy | 154 | 31.6 | 61 | 62.9 | 98.9 |
Oxygen–ozone therapy | 302 | 62.0 | 71 | 73.2 | −15.7 |
Patients without ADRs | ||||||
---|---|---|---|---|---|---|
BMI–NRS | BMI–DN4 | NRS–DN4 | Age–NRS | Age–DN4 | Age–BMI | |
men | 0.1774 | 0.0791 | 0.2597 | −0.0845 | −0.0737 | −0.0049 |
women | 0.1183 | 0.0884 | 0.0419 | 0.2375 | 0.0297 | 0.1603 |
Patients with ADRs | ||||||
BMI–NRS | BMI–DN4 | NRS–DN4 | Age–NRS | Age–DN4 | Age–BMI | |
Men | 0.2063 | 0.0539 | 0.1275 | −0.3820 | 0.0917 | 0.1463 |
Women | 0.3221 | 0.0576 | 0.2001 | 0.1716 | 0.1118 | 0.3215 |
Men (n: 67) | Women (n: 97) | |||||
---|---|---|---|---|---|---|
N | % | Type | N | % | Type | |
Oxycodone | 5 | 7.7 | Stypsis (5) | 5 | 5.3 | somnolence (4); somnolence (1) *a |
oxycodone/naloxone | 10 | 15.4 | stypsis (1) *; confusion (9) | 5 | 5.3 | stypsis (5) *f |
Buprenorphine | 5 | 7.7 | blood hypertension (5) | 10 | 10.5 | stypsis (5); skin rash (4); skin rash (1) *a |
Codeine | 5 | 7.7 | Stypsis (5) | 5 | 5.3 | stypsis (4); stypsis (1) *b |
Tramadol | 0 | 0.0 | 10 | 10.5 | blood hypertension (9), (1) *c | |
Tapentadol | 0 | 0.0 | 0 | 0.0 | ||
Fentanyl | 5 | 7.7 | Stypsis (5) | 0 | 0.0 | |
amitriptyline | 10 | 15.4 | confusion (6); somnolence (4) | 5 | 5.3 | Confusion (5) |
Duloxetine | 5 | 7.7 | Confusion (5) | 15 | 15.8 | confusion (8); somnolence (7) |
Pregabalin | 10 | 15.4 | confusion (1) *; somnolence (9) | 31 | 31.6 | Somnolence (28),(1) *d, (1) *e, (1) *f |
Cyclobenzaprine | 21 | 30.8 | somnolence (20), (1) * | 20 | 21.1 | somnolence (17), (1) *b; (1) *d; skin rash (1) *e |
Nutrients | 0 | 0.0 | 15 | 15.8 | blood hypertension (1) *c; bowel dysfunction (13), (1) *f | |
Oxygen–ozone therapy | 0 | 0.0 | 10 | 10.5 | pain in the site of administration (10) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vocca, C.; Rania, V.; Siniscalchi, A.; Palleria, C.; Marcianò, G.; Galati, C.; Catarisano, L.; Mastrangelo, V.; Corasaniti, F.; Monea, F.; et al. The Safety of Drug Treatment in Patients with Neuropathic Pain: Data from Ambulatory Care in a Real-Life Setting. Reports 2023, 6, 57. https://doi.org/10.3390/reports6040057
Vocca C, Rania V, Siniscalchi A, Palleria C, Marcianò G, Galati C, Catarisano L, Mastrangelo V, Corasaniti F, Monea F, et al. The Safety of Drug Treatment in Patients with Neuropathic Pain: Data from Ambulatory Care in a Real-Life Setting. Reports. 2023; 6(4):57. https://doi.org/10.3390/reports6040057
Chicago/Turabian StyleVocca, Cristina, Vincenzo Rania, Antonio Siniscalchi, Caterina Palleria, Gianmarco Marcianò, Cecilia Galati, Luca Catarisano, Valentina Mastrangelo, Franco Corasaniti, Francesco Monea, and et al. 2023. "The Safety of Drug Treatment in Patients with Neuropathic Pain: Data from Ambulatory Care in a Real-Life Setting" Reports 6, no. 4: 57. https://doi.org/10.3390/reports6040057
APA StyleVocca, C., Rania, V., Siniscalchi, A., Palleria, C., Marcianò, G., Galati, C., Catarisano, L., Mastrangelo, V., Corasaniti, F., Monea, F., Muraca, L., Citraro, R., D’Agostino, B., Gallelli, L., & De Sarro, G. (2023). The Safety of Drug Treatment in Patients with Neuropathic Pain: Data from Ambulatory Care in a Real-Life Setting. Reports, 6(4), 57. https://doi.org/10.3390/reports6040057