Constraints on Nuclear Symmetry Energy Parameters
Abstract
:1. Introduction
2. The Nuclear Symmetry Energy
2.1. Nuclear Mass Fitting
2.2. Neutron Matter Theory
2.3. The Unitary Gas Conjecture
3. Neutron Skin Thickness Constraints
3.1. Neutron Skin Measurements and Correlations
Pb Experiment | Reference | (fm) |
---|---|---|
Coherent production | [77] | |
Pionic atoms | [73] | |
Pion scattering | [73] | |
annihilation | [78,79] | |
Elastic polarized p scattering | [70] | |
Elastic polarized p scattering | [80] | |
Elastic p scattering | [81] | |
Elastic p scattering | [72] | |
Parity-violating scattering (PREX I+II) | [17] | |
Pb experimental weighted mean | ||
Pygmy dipole resonances | [82] | |
[83] | ||
Anti-analog giant dipole resonance | [84] | |
Symmetry energy Pb | [85] | |
Dispersive optical model | [86] | |
Dispersive optical model | [67] | |
Coupled cluster expansion | [66] | |
[63,64], this paper | ||
[62], this paper | ||
[20,64], this paper | ||
Pb theoretical weighted mean |
Ca Experiment | Reference | (fm) |
---|---|---|
Elastic polarized p scattering | [70] | |
Elastic p scattering | [76] | |
Elastic p scattering | [72] | |
Elastic p scattering | [71] | |
Pionic atoms | [73] | |
Pion scattering | [74] | |
scattering | [75] | |
Parity-violating scattering (CREX) | [18] | |
Ca experimental weighted mean | * | |
Coupled-cluster expansion | [65] | |
Dispersive optical model | [68] | |
[63], this paper | ||
Ca theoretical weighted mean | * |
3.2. Parity-Violating Electron Scattering Measurements
4. Other Nuclear Methods
4.1. Correlations from Nuclear Dipole Polarizabilities
4.2. Correlations from Heavy Ion Collisions
5. Astrophysical Considerations
5.1. Neutron Star Radii
5.2. Tidal Deformabilities and Radii
6. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NS | neutron star | BNS | binary neutron stars |
EOS | equation of state | PSR | pulsar |
SNM | symmetric nuclear matter | PNM | pure neutron matter |
EFT | chiral effective field theory | RMF | relativistic mean field |
UGC | Unitary Gas Conjecture | UGPC | Unitary Gas Pressure Conjecture |
NICER | Neutron Star Interior Composition ExploreR |
References
- Steiner, A.W.; Prakash, M.; Lattimer, J.M.; Ellis, P. Isospin asymmetry in nuclei and neutron stars. Phys. Rep. 2005, 411, 325. [Google Scholar] [CrossRef] [Green Version]
- Lattimer, J.M.; Prakash, M. Neutron star observations: Prognosis for equation of state constraints. Phys. Rep. 2007, 442, 109. [Google Scholar] [CrossRef] [Green Version]
- Lattimer, J.M. Neutron Stars and the Nuclear Matter Equation of State. Annu. Rev. Nucl. Part. Sci. 2021, 71, 433. [Google Scholar] [CrossRef]
- Swesty, F.D.; Lattimer, J.M.; Myra, E.S. The Role of the Equation of State in the “Prompt” Phase of Type II Supernovae. Astrophys. J. 1994, 425, 195. [Google Scholar] [CrossRef]
- Roberts, L.F.; Shen, G.; Cirigliano, V.; Pons, J.A.; Reddy, S.; Woosley, S.E. Protoneutron Star Cooling with Convection: The Effect of the Symmetry Energy. Phys. Rev. Lett. 2012, 108, 061103. [Google Scholar] [CrossRef] [Green Version]
- Morozova, V.; Radice, D.; Burrows, A.S.; Vartanyan, D. The gravitational wave signal from core-collapse supernovae. Astrophys. J. 2018, 861, 10. [Google Scholar] [CrossRef]
- Lattimer, J.M.; Prakash, M. Neutron Star Structure and the Equation of State. Astrophys. J. 2001, 550, 426. [Google Scholar] [CrossRef] [Green Version]
- Bauswein, A.; Janka, H.-T. Measuring Neutron-Star Properties via Gravitational Waves from Neutron-Star Mergers. Phys. Rev. Lett. 2012, 108, 011101. [Google Scholar] [CrossRef] [Green Version]
- Lackey, B.D.; Kyutoku, K.; Shibata, M.; Brady, P.R.; Friedman, J.L. Extracting equation of state parameters from black hole-neutron star mergers. I. Nonspinning black holes. Phys. Rev. D 2012, 85, 044061. [Google Scholar] [CrossRef] [Green Version]
- Page, D.; Reddy, S. Thermal and transport properties of the neutron star inner crust. In Neutron Star Crust; Bertulani, C.A., Piekarewicz, J., Eds.; Nova Science Publisheres: New York, NY, USA, 2021. [Google Scholar]
- Hurley, K.; Boggs, S.E.; Smith, D.M.; Duncan, R.C.; Lin, R.; Zoglauer, A.; Krucker, S.; Hurford, G.; Hudson, H.; Wigger, C.; et al. An exceptionally bright flare from SGR 1806–1820 and the origins of short-duration γ-ray bursts. Nature 2005, 434, 1098. [Google Scholar] [CrossRef]
- Thompson, C.; Duncan, R.C. The giant flare of 1998 August 27 from SGR 1900+ 14. II. Radiative mechanism and physical constraints on the source. Astrophys. J. 2001, 561, 980. [Google Scholar] [CrossRef] [Green Version]
- Samuelsson, L.; Andersson, N. Neutron star asteroseismology. Axial crust oscillations in the Cowling approximation. MNRAS 2007, 374, 256. [Google Scholar] [CrossRef]
- Lattimer, J.M.; Pethick, C.J.; Prakash, M.; Haensel, P. Direct URCA process in neutron stars. Phys. Rev. Lett. 1991, 66, 2701. [Google Scholar] [CrossRef]
- Nikolov, N.; Schunck, N.; Nazarewicz, W.; Bender, M.; Pei, J. Surface symmetry energy of nuclear energy density functionals. Phys. Rev. C 2011, 83, 034305. [Google Scholar] [CrossRef] [Green Version]
- Drischler, C.; Holt, J.W.; Wellenhofer, C. Chiral Effective Field Theory and the High-Density Nuclear Equation of State. Annu. Rev. Nucl. Part. Sci. 2021, 71, 403. [Google Scholar] [CrossRef]
- Adhikari, D.; Albataineh, H.; Androic, D.; Aniol, K.; Armstrong, D.S.; Averett, T.; Gayoso, C.A.; Barcus, S.; Bellini, V.; Beminiwattha, R.S.; et al. Accurate determination of the neutron skin thickness of 208Pb through parity-violation in electron scattering. Phys. Rev. Lett. 2021, 126, 172502. [Google Scholar] [CrossRef]
- Adhikari, D.; Albatainen, H.; Androic, D.; Anioj, K.A.; Armstrong, D.S.; Averett, T.; Ayerbe Gayoso, C.; Barcus, S.K.; Bellini, V.; Beminiwattha, R.S.; et al. Precision determination of the neutral weak form factor of 48Ca. Phys. Rev. Lett. 2022, 129, 042501. [Google Scholar] [CrossRef]
- Thiel, M.; Sfienti, C.; Piekarewicz, J.; Horowitz, C.J.; Vanderhaeghen, M. Neutron skins of atomic nuclei: Per aspera ad astra. J. Phys. G Nucl. Part. Phys. 2019, 46, 093003. [Google Scholar] [CrossRef] [Green Version]
- Reed, B.T.; Fattoyev, F.J.; Horowitz, C.J.; Piekarewicz, J. Implications of PREX-2 on the equation of state of neutron-rich matter. Phys. Rev. Lett. 2021, 126, 172503. [Google Scholar] [CrossRef]
- De, S.; Finstad, D.; Lattimer, J.M.; Brown, D.A.; Berger, E.; Biwer, C.M. Tidal deformabilities and radii of neutron stars from the observation of GW170817. Phys. Rev. Lett. 2018, 121, 091102. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. Properties of the binary neutron star merger GW170817. Phys. Rev. X 2019, 9, 011001. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Chen, L.-W. Bayesian inference of the symmetry energy and the neutron skin in 48Ca and 208Pb from CREX and PREX-2. arXiv 2022, arXiv:2207.03328. [Google Scholar]
- Reinhard, P.G.; Roca-Maza, X.; Nazarewicz, W. Combined theoretical analysis of the parity-violating asymmetry for 48Ca and 208Pb. Phys. Rev. Lett. 2022, 129, 232501. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.C.; Lamb, F.K.; Dittmann, A.J.; Bogdanov, S.; Arzoumanian, Z.; Gendreau, K.C.; Guillot, S.; Harding, A.K.; Ho, W.C.G.; Lattimer, J.M.; et al. PSR J0030+0451 Mass and Radius from NICER Data and Implications for the Properties of Neutron Star Matter. Astrophys. J. Lett. 2019, 887, L24. [Google Scholar] [CrossRef] [Green Version]
- Riley, T.E.; Watts, A.L.; Bogdanov, S.; Ray, P.S.; Ludlam, R.M.; Guillot, S.; Arzoumanian, Z.; Baker, C.L.; Bilous, A.V.; Chakrabarty, D.; et al. A NICER view of PSR J0030+0451: Millisecond pulsar parameter estimation. Astrophys. J. Lett. 2019, 887, L21. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.C.; Lamb, F.K.; Dittmann, A.J.; Bogdanov, S.; Arzoumanian, Z.; Gendreau, K.C.; Guillot, S.; Ho, W.C.G.; Lattimer, J.M.; Loewenstein, M.; et al. The radius of PSR J0740+6620 from NICER and XMM-Newton data. Astrophys. J. Lett. 2021, 918, L28. [Google Scholar] [CrossRef]
- Riley, T.E.; Watts, A.L.; Ray, P.S.; Bogdanov, S.; Guillot, S.; Morsink, S.M.; Bilous, A.V.; Arzoumanian, Z.; Choudhury, D.; Deneva, J.S.; et al. A NICER view of the massive pulsar PSR J0740+6620 informed by radio timing and XMM-Newton spectroscopy. Astrophys. J. Lett. 2021, 918, L27. [Google Scholar] [CrossRef]
- Wellenhofer, C.; Holt, J.W.; Kaiser, N. Divergence of the isospin-asymmetry expansion of the nuclear equation of state in many-body perturbation theory. Phys. Rev. C 2016, 93, 055802. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, B.K.; Shlomo, S.; Au, V.K. Nuclear matter incompressibility coefficient in relativistic and nonrelativistic microscopic models. Phys. Rev. C 2003, 68, 031304. [Google Scholar] [CrossRef] [Green Version]
- Todd-Rutel, B.G.; Piekarewicz, J. Neutron-rich nuclei and neutron stars: A new accurately calibrated interaction for the study of neutron-rich matter. Phys. Rev. Lett. 2005, 95, 122501. [Google Scholar] [CrossRef] [Green Version]
- Audi, G.; Wapstra, A.H.; Thibault, C. The Ame2003 atomic mass evaluation: (II). Tables, graphs and references. Nucl. Phys. A 2003, 729, 337. [Google Scholar] [CrossRef]
- Myers, W.D.; Swiatecki, W.J. Average nuclear properties. Ann. Phys. 1969, 55, 395. [Google Scholar]
- Dutra, M.; Loureno, O.; Martins, J.S.S.; Delfino, A.; Stone, J.R.; Stevenson, P.D. Skyrme interaction and nuclear matter constraints. Phys. Rev. 2012, C85, 035201. [Google Scholar] [CrossRef] [Green Version]
- Tews, I.; Lattimer, J.M.; Ohnishi, A.; Kolomeitsev, E.E. Symmetry parameter constraints from a lower bound on neutron-matter energy. Astrophys. J. 2017, 848, 105. [Google Scholar] [CrossRef] [Green Version]
- Dutra, M.; Loureno, O.; Avancini, S.S.; Carlson, B.V.; Delfino, A.; Menezes, D.P.; Providencia, C.; Typel, S.; Stone, J.R. Relativistic mean-field hadronic models under nuclear matter constraints. Phys. Rev. 2014, C90, 055203. [Google Scholar] [CrossRef]
- Tagami, S.; Wakasa, T.; Takechi, M.; Matsui, J.; Yahiro, M. Neutron skin in 48Ca determined from p+48Ca and 48Ca+12C scattering. arXiv 2022, arXiv:2201.08541. [Google Scholar] [CrossRef]
- Kortelainen, M.; Lesinski, T.; Moré, J.; Nazarewicz, W.; Sarich, J.; Schunck, N.; NStoitsov, M.V.; Wild, S. Nuclear energy density optimization. Phys. Rev. C 2010, 82, 024313. [Google Scholar] [CrossRef] [Green Version]
- Drischler, C.; Furnstahl, R.J.; Melendez, J.A.; Phillips, D.R. How well do we know the neutron-matter equation of state at the densities inside neutron stars? A Bayesian approach with correlated uncertainties. Phys. Rev. Lett. 2020, 125, 202702. [Google Scholar] [CrossRef]
- Weinberg, S. Precise relations between the spectra of vector and axial-vector mesons. Phys. Rev. Lett. 1967, 18, 507. [Google Scholar] [CrossRef] [Green Version]
- Weinberg, S. Nonlinear realizations of chiral symmetry. Phys. Rev. 1968, 166, 1568. [Google Scholar] [CrossRef]
- Epelbaum, E.; Hammer, H.-W.; Meissner, U.-G. Modern theory of nuclear forces. Rev. Mod. Phys. 2009, 81, 1773. [Google Scholar] [CrossRef]
- Machleidt, R.; Entem, D. Chiral effective field theory and nuclear forces. Phys. Rep. 2011, 503, 1. [Google Scholar] [CrossRef]
- Hammer, H.-W.; König, S.; van Kolck, U. Nuclear effective field theory: Status and perspectives. Rev. Mod. Phys. 2020, 92, 025004. [Google Scholar] [CrossRef]
- Tews, I.; Davoudi, Z.; Ekström; Holt, J.D.; Lynn, J.E. New Ideas in Constraining Nuclear Forces. J. Phys. G 2020, 47, 103001. [Google Scholar] [CrossRef]
- Drischler, C.; Hebeler, K.; Schwenk, A. Chiral interactions up to next-to-next-to-next-to-leading order and nuclear saturation. Phys. Rev. Lett. 2019, 122, 042501. [Google Scholar] [CrossRef] [Green Version]
- Leonhardt, M.; Pospiech, M.; Schallmo, B.; Braun, J.; Drischler, C.; Hebeler, K.; Schwenk, A. Symmetric nuclear matter from the strong interaction. Phys. Rev. Lett. 2020, 125, 142502. [Google Scholar] [CrossRef]
- Drischler, C.; Han, S.; Lattimer, J.M.; Prakash, M.; Reddy, S.; Zhao, T. Limiting masses and radii of neutron stars and their implications. Phys. Rev. C 2021, 103, 045808. [Google Scholar] [CrossRef]
- Drischler, C.; Melendez, J.A.; Furnstahl, R.J.; Phillips, D.R. Quantifying uncertainties and correlations in the nuclear-matter equation of state. Phys. Rev. C 2020, 102, 054315. [Google Scholar] [CrossRef]
- Tsang, M.B.; Zhang, Y.X.; Danielewicz, P.; Famiano, M.; Li, Z.-X.; Lynch, W.G.; Steiner, A.W. Constraints on the density dependence of the symmetry energy. Phys. Rev. Lett. 2009, 102, 122701. [Google Scholar] [CrossRef] [Green Version]
- Hebeler, K.; Lattimer, J.M.; Pethick, C.J.; Schwenk, A. Constraints on Neutron Star Radii Based on Chiral Effective Field Theory Interactions. Phys. Rev. Lett. 2010, 105, 161102. [Google Scholar] [CrossRef]
- Ku, M.J.H.; Sommer, A.T.; Cheui, L.W.; Zwierlein, M.W. Revealing the superfluid lambda transition in the universal thermodynamics of a unitary Fermi gas. Science 2012, 335, 563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zürn, G.; Lompe, T.; Wenz, A.N.; Jochim, S.; Julienne, P.S.; Hutson, J.M. Precise characterization of 6Li Feshbach resonances using trap-sideband-resolved RF spectroscopy of weakly bound molecules. Phys. Rev. Lett. 2013, 110, 135301. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Lattimer, J.M. Tidal deformabilities and neutron star mergers. Phys. Rev. D 2018, 98, 063020. [Google Scholar] [CrossRef] [Green Version]
- Brown, B.A. Neutron radii in nuclei and the neutron equation of state. Phys. Rev. Lett. 2000, 85, 5296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Centelles, M.; Roca-Maza, X.; Vinas, X.; Warda, M. Nuclear symmetry energy probed by neutron skin thickness of nuclei. Phys. Rev. Lett. 2009, 102, 122502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Typel, S.; Brown, B.A. Neutron radii and the neutron equation of state in relativistic models. Phys. Rev. C 2001, 64, 027302. [Google Scholar] [CrossRef]
- Xu, J.; Xie, W.-J.; Li, B.-A. Bayesian inference of nuclear symmetry energy from measured and imagined neutron skin thickness in 116,118,120,122,124,130,132Sn, 208Pb, and 48Ca. Phys. Rev. C 2020, 102, 044316. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, L.-W. Constraining the symmetry energy at subsaturation densities using isotope binding energy difference and neutron skin thickness. Phys. Lett. B 2013, 726, 234. [Google Scholar] [CrossRef] [Green Version]
- Brown, B.A. Mirror charge radii and the neutron equation of state. Phys. Rev. Lett. 2017, 119, 122502. [Google Scholar] [CrossRef] [Green Version]
- Furnstahl, R.J. Neutron radii in mean-field models. Nucl. Phys. 2002, A706, 85. [Google Scholar] [CrossRef] [Green Version]
- Reinhard, P.-G.; Roca-Maza, X.; Nazarewicz, W. Information content of the parity-violating asymmetry in 208Pb. Phys. Rev. Lett. 2021, 127, 232501. [Google Scholar] [CrossRef] [PubMed]
- Horowitz, C.J.; Kumar, K.S.; Michaels, R. Electroweak measurements of neutron densities in CREX and PREX at JLab, USA. Eur. Phys. J. A 2014, 50, 48. [Google Scholar] [CrossRef]
- Piekarewicz, J.; Agrawal, B.K.; Colò, G.; Nazarewicz, W.; Paar, N.; Reinhard, P.-G.; Roca-Maza, X.; Vretenar, D. Electric dipole polarizability and the neutron skin. Phys. Rev. C 2012, 85, 041302. [Google Scholar] [CrossRef] [Green Version]
- Hagen, G.; Ekström, A.; Forssén, C.; Jansen, G.R.; Nazarewicz, W.; Papenbrock, T.; Wendt, K.A.; Bacca, S.; Barnea, N.; Carlsson, B.; et al. Neutron and weak-charge distributions of the 48Ca nucleus. Nat. Phys. 2016, 12, 186. [Google Scholar]
- Hu, B.; Jiang, W.; Miyagi, T.; Sun, Z.; Ekström, A.; Forssén, C.; Hagen, G.; Holt, J.D.; Papenbrock, T.; Stroberg, S.R.; et al. Ab initio predictions link the neutron skin of 208Pb to nuclear forces. Nature Phys. 2021, 18, 1196. [Google Scholar] [CrossRef]
- Atkinson, M.C.; Mahzoon, M.H.; Keim, M.A.; Bordelon, B.A.; Pruitt, C.D.; Charity, R.J.; Dickhoff, W.H. Dispersive optical model analysis of 208Pb generating a neutron-skin prediction beyond the mean field. Phys. Rev. C 2020, 101, 044303. [Google Scholar] [CrossRef] [Green Version]
- Mahzoon, M.H.; Atkinson, M.C.; Charity, R.J.; Dickhoff, W.H. Precision Determination of the Neutral Weak Form Factor of 48Ca. Phys. Rev. Lett. 2017, 119, 22503. [Google Scholar]
- Reinhard, P.-G.; Piekarewicz, J.; Nazarewicz, W.; Agrawal, B.K.; Paar, N.; Roca-Maza, X. Information content of the weak-charge form factor. Phys. Rev. C 2013, 88, 034325. [Google Scholar] [CrossRef] [Green Version]
- Ray, L. Neutron isotopic density differences deduced from 0.8 GeV polarized proton elastic scattering. Phys. Rev. C 1979, 19, 1855. [Google Scholar] [CrossRef]
- Zenhiro, J.; Sakaguchi, H.; Terashima, S.; Uesaka, T.; Hagen, G.; Itoh, M.; Murakami, T.; Nakatsugawa, Y.; Ohnishi, T.; Sagawa, H.; et al. Direct determination of the neutron skin thicknesses in 40,48Ca from proton elastic scattering at Ep = 295 MeV. arXiv 2018, arXiv:1810.11796. [Google Scholar]
- Clark, B.C.; Kerr, L.J.; Hama, S. Neutron densities from a global analysis of medium-energy proton-nucleus elastic scattering. Phys. Rev. C 2003, 67, 054605. [Google Scholar] [CrossRef] [Green Version]
- Friedman, E. Neutron skins of 208Pb and 48Ca from pionic probes. Nucl. Phys. A 2012, 896, 46. [Google Scholar] [CrossRef] [Green Version]
- Gibbs, W.R.; Dedonduer, J.-P. Neutron radii of the calcium isotopes. Phys. Rev. C 1992, 46, 1825. [Google Scholar] [CrossRef] [PubMed]
- Gils, H.J.; Rebel, H.; Friedman, E. Isotopic and isotonic differences between α particle optical potentials and nuclear densities of 1 nuclei. Phys. Rev. C 1984, 29, 1295. [Google Scholar] [CrossRef]
- Shlomo, S.; Schaeffer, R. The difference between neutron and proton radii in the Ca isotopes. Phys. Lett. B 1979, 83, 5. [Google Scholar] [CrossRef]
- Tarbert, C.M.; Watts, D.P.; Glazier, D.I.; Aguar, P.; Ahrens, J.; Annand, J.R.M.; Arends, H.J.; Beck, R.; Bekrenev, V.; Boillat, B.; et al. Neutron Skin of 208Pb from Coherent Pion Photoproduction. Phys. Rev. Lett. 2014, 112, 242502. [Google Scholar] [CrossRef] [Green Version]
- Brown, B.A.; Shen, G.; Hillhouse, G.C.; Meng, J.; Trzcinska, A. Neutron skin deduced from antiprotonic atom data. Phys. Rev. C 2007, 76, 034305. [Google Scholar] [CrossRef] [Green Version]
- Brown, B.A.; Shen, G.; Hillhouse, G.C.; Meng, J.J.; Trzcinska, A. Neutron density distributions from antiprotonic 208Pb and 209 Bi atoms. Phys. Rev. C 2007, 76, 014311. [Google Scholar]
- Zenhiro, J.; Sakaguchi, H.; Murakami, T.; Yosoi, M.; Yasuda, Y.; Terashima, S.; Iwao, Y.; Takeda, H.; Itoh, M.; Yoshida, H.P.; et al. Neutron density distributions of 204,206,208Pb deduced via proton elastic scattering at Ep = 295 MeV. Phys. Rev. C 2010, 82, 044611. [Google Scholar]
- Starodubnsky, V.E.; Hintz, N.M. Extraction of neutron densities from elastic proton scattering by 206,207,208Pb at 650 MeV. Phys. Rev. C 1994, 49, 2118. [Google Scholar] [CrossRef]
- Klimkiewicz, A.; Paar, N.; Adrich, P.; Fallot, M.; Boretzky, K.; Aumann, T.; Cortina-Gil, D.; Pramanik, U.D.; Elze, T.W.; Emling, H.; et al. Nuclear symmetry energy and neutron skins derived from pygmy dipole resonances. Phys. Rev. C 2007, 76, 051603. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.-W.; Ko, C.; Li, B.-A.; Xu, J. Density slope of the nuclear symmetry energy from the neutron skin thickness of heavy nuclei. Phys. Rev. C 2010, 82, 024321. [Google Scholar] [CrossRef] [Green Version]
- Yasuda, J.; Wakasa, T.; Okamoto, M.; Dozono, M.; Hatanaka, K.; Ichimura, M.; Kuroita, S.; Maeda, Y.; Noro, T.; Sakemi, Y.; et al. Anti-Analog Giant Dipole Resonance and the Neutron Skin in 208Pb. JPS Conf. Proc. 2014, 1, 013036. [Google Scholar]
- Dong, J.; Zuo, W.; Gu, J. Constraints on neutron skin thickness in 208Pb and density-dependent symmetry energy. Phys. Rev. C 2015, 91, 034315. [Google Scholar] [CrossRef] [Green Version]
- Pruitt, C.D.; Charity, R.J.; Sobotka, L.G.; Atkinson, M.C.; Dickhoff, W.H. Systematic Matter and Binding-Energy Distributions from a Dispersive Optical Model Analysis. Phys. Rev. Lett. 2020, 125, 102501. [Google Scholar] [CrossRef]
- Zyla, P.A.; Barnett, R.M.; Beringer, J.; Dahl, O.; Dwyer, D.A.; Groom, D.E.; Lin, C.J.; Lugovsky, K.S.; Pianori, E.; Robinson, D.J.; et al. Review of Particle Physics. Prog. Theor. Exp. Phys. 2020, 2020, 083C01. [Google Scholar]
- Danielewicz, P.; Lee, J. Symmetry energy II: Isobaric analog states. Nucl. Phys. A 2014, 922, 1–70. [Google Scholar] [CrossRef] [Green Version]
- Roca-Maza, X.; Viñas, X.; Centelles, M.; Agrawal, B.K.; Colò, G.; Paar, N.; Piekarewicz, J.; Vretenar, D. Neutron skin thickness from the measured electric dipole polarizability in 68Ni, 120Sn, and 208Pb. Phys. Rev. C 2015, 92, 064304. [Google Scholar] [CrossRef] [Green Version]
- Roca-Maza, X.; Brenna, M.; Colò, G.; Centelles, M.; Viñas, X.; Agrawal, B.K.; Paa, N.; Vretenar, D.; Piekarewicz, J.R. Electric dipole polarizability in 208Pb: Insights from the droplet model. Phys. Rev. C 2013, 88, 024316. [Google Scholar] [CrossRef]
- Tamii, A. Complete Electric Dipole Response and the Neutron Skin in 208Pb. Phys. Rev. Lett. 2011, 107, 062502. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, T.; Krumbholz, A.M.; Reinhard, P.G.; Tamii, A.; von Neumann-Cosel, P.; Adachi, T.; Aoi, N.; Bertulani, C.A.; Fujita, H.; Fujita, Y.; et al. Dipole polarizability of 120 Sn and nuclear energy density functionals. Phys. Rev. C 2015, 92, 031305. [Google Scholar] [CrossRef] [Green Version]
- Birkhan, J.; Miorelli, M.; Bacca, S.; Bassauer, S.; Bertulani, C.A.; Hagen, G.; Matsubara, H.; von Neumann-Cosel, P.; Papenbrock, T.; Pietralla, N.; et al. Electric Dipole Polarizability of 48Ca and Implications for the Neutron Skin. Phys. Rev. Lett. 2017, 118, 252501. [Google Scholar] [CrossRef] [Green Version]
- Trippa, L.; Coló, G.; Vigezzi, E. Giant dipole resonance as a quantitative constraint on the symmetry energy. Phys. Rev. C 2008, 77, 061304. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, L.-W. Electric dipole polarizability in 208Pb as a probe of the symmetry energy and neutron matter around ρ0/3. Phys. Rev. C 2015, 92, 031301. [Google Scholar] [CrossRef] [Green Version]
- Piekarewicz, J. Implications of PREX-2 on the electric dipole polarizability of neutron rich nuclei. Phys. Rev. C 2021, 104, 024329. [Google Scholar] [CrossRef]
- Terashima, S.; Sakaguchi, H.; Takeda, H.; Ishikawa, T.; Itoh, M.; Kawabata, T.; Murakami, T.; Uchida, M.; Yasuda, Y.; Yosoi, M.; et al. Proton elastic scattering from tin isotopes at 295 MeV and systematic change of neutron density distributions. Phys. Rev. C 2008, 77, 024317. [Google Scholar] [CrossRef] [Green Version]
- Karsznahorkay, A.; Fujiwara, M.; van Aarle, P.; Akimune, H.; Daito, I.; Fujimura, H.; Fujita, Y.; Harakeh, M.N.; Inomata, T.; Jänecke, J.; et al. Excitation of Isovector Spin-Dipole Resonances and Neutron Skin of Nuclei. Phys. Rev. Lett. 1999, 82, 3216. [Google Scholar] [CrossRef]
- Trzcinska, A.; Jastrzȩbski, J.; Lubiński, P.; Hartmann, F.J.; Schmidt, R.; von Egidy, T.; Kłos, B. Neutron Density Distributions Deduced from Antiprotonic Atoms. Phys. Rev. Lett. 2001, 87, 082501. [Google Scholar] [CrossRef]
- Xie, W.-J.; Li, B.-A. Bayesian inference of the incompressibility, skewness and kurtosis of nuclear matter from empirical pressures in relativistic heavy-ion collisions. J. Phys. G Nucl. Part. Phys. 2021, 48, 025110. [Google Scholar] [CrossRef]
- Fuchs, C. Kaon production in heavy ion reactions at intermediate energies. Prog. Part. Nucl. Phys. 2006, 56, 1. [Google Scholar] [CrossRef] [Green Version]
- Danielewicz, P.; Lacey, R.; Lynch, W.G. The Equation of State of Nuclear Matter and Neutron Stars Properties. Science 2002, 298, 1592. [Google Scholar] [CrossRef] [Green Version]
- Laue, F.; Sturm, C.; Böttcher, I.; Dȩbowski, M.; Förster, A.; Grosse, E.; Koczoń, P.; Kohlmeyer, B.; Mang, M.; Naumann, L.; et al. Medium Effects in Kaon and Antikaon Production in Nuclear Collisions at Subthreshold Beam Energies. Phys. Rev. Lett. 1999, 82, 1640. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, E.I.; Stienike, D.L.; Ryabchikov, D.I.; Adams, G.S.; Adams, T.; Bar-Yam, Z.; Bishop, J.M.; Bodyagin, V.A.; Brown, D.S.; Cason, N.M.; et al. Observation of Exotic Meson Production in the Reaction π−p→η′π−p at 18 GeV/c. Phys. Rev. Lett. 2001, 86, 3977–3980. [Google Scholar] [CrossRef] [Green Version]
- Partlan, M.D.; Albergo, S.; Bieser, F.; Brady, F.P.; Caccia, Z.; Cebra, D.; Chacon, A.D.; Chance, J.; Choi, Y.; Costa, S.; et al. Fragment Flow in Au +Au Collisions. Phys. Rev. Lett. 1995, 75, 2100. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Ajitanand, N.N.; Alexander, J.; Anderson, M.; Best, D.; Brady, F.P.; Case, T.; Caskey, W.; Cebra, D.; Chance, J.; et al. Sideward Flow in Au+Au Collisions between 2A and 8A GeV. Phys. Rev. Lett. 2000, 84, 5488. [Google Scholar] [CrossRef]
- Pinkenburg, C.; Ajitanand, N.N.; Alexander, J.M.; Anderson, M.; Best, D.; Brady, F.P.; Case, T.; Caskey, W.; Cebra, D.; Chance, J.L.; et al. Elliptic Flow: Transition from Out-of-Plane to In-Plane Emission in Au+Au Collisions. Phys. Rev. Lett. 1999, 83, 1295. [Google Scholar] [CrossRef] [Green Version]
- Braun-Munzinger, P.; Stachel, J. Dynamics of ultra-relativistic nuclear collisions with heavy beams: An experimental overview. Nucl. Phys. A 1998, 638, 3c. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Z.; Li, B.-A.; Chen, L.-W.; Yong, G.-C.; Zhang, M. Circumstantial Evidence for a Soft Nuclear Symmetry Energy at Suprasaturation Densities. Phys. Rev. Lett. 2009, 102, 062502. [Google Scholar] [CrossRef] [Green Version]
- Feng, Z.-Q.; Jin, G.-M. Probing high-density behavior of symmetry energy from pion emission in heavy-ion collisions. Phys. Lett. B 2010, 683, 140. [Google Scholar] [CrossRef]
- Xie, W.-J.; Su, J.; Zhu, L.; Zhang, F.-S. Symmetry energy and pion production in the Boltzmann-Langevin approach. Phys. Lett. B 2013, 718, 1510. [Google Scholar] [CrossRef] [Green Version]
- Tsang, M.B.; Liu, T.X.; Shi, L.; Danielewicz, P.; Gelbke, C.K.; Liu, X.D.; Lynch, W.G.; Tan, W.P.; Verde, G.; Wagner, A.; et al. Isospin Diffusion and the Nuclear Symmetry Energy in Heavy Ion Reactions. Phys. Rev. Lett. 2004, 92, 062701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, T.-X.; Lynch, W.G.; Tsang, M.B.; Liu, X.D.; Shomin, R.; Tan, W.P.; Verde, G.; Wagner, A.; Xi, H.F.; Xu, H.S.; et al. Isospin diffusion observables in heavy-ion reactions. Phys. Rev. C 2007, 76, 034603. [Google Scholar] [CrossRef] [Green Version]
- Famiano, M.A.; Liu, T.; Lynch, W.G.; Mocko, M.; Rogers, A.M.; Tsang, M.B.; Wallace, M.S.; Charity, R.J.; Komarov, S.; Sarantites, D.G.; et al. Neutron and proton transverse emission ratio measurements and the density dependence of the asymmetry term of the nuclear equation of state. Phys. Rev. Lett. 2006, 97, 052701. [Google Scholar] [CrossRef] [Green Version]
- Cozma, M.D.; Leifels, Y.; Trautmann, W.; Li, Q.; Russotto, P. Toward a model-independent constraint of the high-density dependence of the symmetry energy. Phys. Rev. C 2013, 88, 044912. [Google Scholar] [CrossRef] [Green Version]
- Yong, G.-C.; Guo, Y.-F. Probing High-density Symmetry Energy Using Heavy-ion Collisions at Intermediate Energies. Nucl. Phys. Rev. 2020, 37, 136. [Google Scholar]
- Cozma, M.D.; Tsang, M.B. In-medium Δ(1232) potential, pion production in heavy-ion collisions and the symmetry energy. Eur. Phys. J. A 2021, 57, 309. [Google Scholar] [CrossRef]
- Jhang, G.; Estee, J.; Barney, J.; Cerizza, G.; Kaneko, M.; Lee, J.W.; Lynch, W.G.; Isobe, T.; Kurata-Nishimura, M.; Murakami, T.; et al. Symmetry energy investigation with pion production from Sn+Sn systems. Phys. Lett. B 2021, 813, 136016. [Google Scholar] [CrossRef]
- Abbott, B.; Abbott, A.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef] [Green Version]
- Raaijmakers, G.; Greif, S.K.; Hebeler, K.; Hinderer, T.; Nissanke, S.; Schwenk, A.; Riley, T.E.; Watts, A.L.; Lattimer, J.M.; Ho, W.C.G. Constraints on the Dense Matter Equation of State and Neutron Star Properties from NICER’s Mass–Radius Estimate of PSR J0740+6620 and Multimessenger Observations. Ap. J. Lett. 2021, 918, L29. [Google Scholar] [CrossRef]
- Lattimer, J.M.; Lim, Y. Constraining the Symmetry Parameters of the Nuclear Interaction. Astrophys. J. 2013, 771, 51. [Google Scholar] [CrossRef]
- Lattimer, J.M. The Nuclear Equation of State and Neutron Star Masses. Annu. Rev. Nucl. Part. Sci. 2012, 62, 485. [Google Scholar] [CrossRef]
Method/ | (MeV) | (MeV) | (MeV) | (MeV) | r |
---|---|---|---|---|---|
UNEDF [38] | 30.5 | 45.1 | 1.9 | 24.0 | 0.970 |
Skyrme [34] | 30.9 | 41.5 | 2.25 | 27.2 | 0.812 |
RMF [36] | 33.1 | 85.8 | 2.12 | 17.4 | 0.625 |
Tagami [37] | 32.0 | 57.7 | 2.37 | 25.2 | 0.702 |
Combined [34,36,37] | 32.1 | 62.2 | 2.45 | 30.6 | 0.783 |
Combined + UGC/UGPC | 32.5 | 57.7 | 2.09 | 20.7 | 0.920 |
EFT (SNM+PNM) [39] | 31.7 | 59.8 | 1.1 | 4.2 | 0.715 |
EFT (SNM+PNM) | 31.7 | 60.4 | 2.4 | 8.1 | 0.913 |
EFT (PNM) | 32.0 | 51.9 | 1.1 | 7.9 | 0.978 |
neutron skin (CREX+PREX) | 32.2 | 52.9 | 1.7 | 13.2 | 0.820 |
neutron skin (other) | 31.0 | 42.1 | 1.2 | 8.2 | 0.729 |
Method/ | (MeV) | (MeV) | (MeV) | (MeV) | |
Skyrme [34] | 73.3 | 41.6 | 98.9 | 27.2 | 0.952 |
RMF [36] | 234.0 | 85.8 | 63.6 | 17.4 | 0.666 |
Tagami 2022 [37] | 161.9 | 57.9 | 99.5 | 25.6 | 0.757 |
Combined [34,36,37] | 147.7 | 60.4 | 113.7 | 30.6 | 0.899 |
Combined [34,36,37] + UGC/UGPC | 137.3 | 57.7 | 74.8 | 20.7 | 0.745 |
EFT (SNM+PNM) | 172.1 | 60.4 | 27.4 | 8.1 | 0.558 |
EFT (PNM) | 152.3 | 51.9 | 35.1 | 7.9 | 0.993 |
neutron skin (CREX+PREX) | 141.6 | 52.9 | 73.2 | 13.2 | 0.530 |
neutron skin (other) | 104.8 | 42.1 | 75.4 | 8.2 | 0.590 |
Method/ | (MeV) | (MeV) | (MeV) | (MeV) | |
Skyrme [34] | 75.3 | 41.6 | 178.5 | 27.2 | −0.843 |
RMF [36] | −211.9 | 85.8 | 421.4 | 17.4 | −0.017 |
Combined [34,36] | −53.4 | 61.2 | 341.2 | 32.1 | −0.498 |
Combined [34,36] + UGC/UGPC | 7.86 | 58.2 | 297.1 | 21.6 | −0.378 |
EFT (SNM+PNM) | −123.3 | 60.4 | 381.3 | 8.1 | −0.686 |
EFT (PNM) | 112.8 | 51.9 | 90.7 | 7.9 | 0.398 |
Reference | (MeV) | ||
---|---|---|---|
[55] | 0.0 | ||
[57] | 0.0036 | ||
[58] | 0.00377 | ||
[1] | 0.00414 | 3 | |
[20] | 0.00313 | ||
[59] | Sn isotopes | ||
[58] | Sn isotopes | ||
Error-weighted mean |
Reference | a | b |
---|---|---|
Pb | ||
[37] | 0.001566 | |
[18] | 0.001617 | |
[60] | 0.001563 | |
[20] | 0.001837 | |
[61] | 0.00145 | |
[62] | 0.001537 | |
Mean | 0.001518 | |
Ca | ||
[37] | 0.000873 | |
[18] | 0.000990 | |
[60] | 0.000791 | |
Mean | 0.000882 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lattimer, J.M. Constraints on Nuclear Symmetry Energy Parameters. Particles 2023, 6, 30-56. https://doi.org/10.3390/particles6010003
Lattimer JM. Constraints on Nuclear Symmetry Energy Parameters. Particles. 2023; 6(1):30-56. https://doi.org/10.3390/particles6010003
Chicago/Turabian StyleLattimer, James M. 2023. "Constraints on Nuclear Symmetry Energy Parameters" Particles 6, no. 1: 30-56. https://doi.org/10.3390/particles6010003
APA StyleLattimer, J. M. (2023). Constraints on Nuclear Symmetry Energy Parameters. Particles, 6(1), 30-56. https://doi.org/10.3390/particles6010003