Structural and Fire Performance of Cold-Formed Steel Columns Subjected to Cavity Fire in Modular Buildings
Abstract
1. Introduction
2. Materials and Methods
2.1. Fire Dynamics Simulation
2.1.1. Experimental Program
2.1.2. Numerical Model Development and Validation
2.2. CFS Column Structural Fire Simulation
2.2.1. Sequentially Coupled Thermo-Mechanical Simulation
2.2.2. Validation of Modelling Techniques
2.3. Parametric Analysis
2.3.1. Fire Scenario Analysis
2.3.2. Structural Response Analysis
3. Results and Discussion
3.1. Critical Cavity Fire Scenario
3.2. Effect of Ventilation Conditions on Column Temperature
3.3. Heat Transfer in the Column
3.4. Structural Response
3.4.1. Phases of Structural Response
3.4.2. Increment of Restraint Forces
3.4.3. Capacity Reduction
3.4.4. Lateral Deformations
3.4.5. Failure Modes
3.4.6. Failure Time
3.4.7. Design Recommendations
- Intermodular connections with pinned idealization or semi-rigid connections characterized by a fixity factor nearing zero can enhance the fire performance of intermediate columns affected by cavity fire, generating lesser axial/restraint forces under comparable load ratios.
- The relationship between the maximum restraint/axial force increment percentage and the load ratio was quadratic, as illustrated in Figure 18. This serves as a reference for the structural robustness design of intermodular connections and intermediate columns, allowing for verification based on the load ratio of columns at the serviceability limit state. Accordingly, the corresponding restraint/axial force increment can be determined to assess if the structural capacity of the intermediate column and the connected intermodular connections are sufficient to accommodate the anticipated loads during the cavity fire exposure. Thus, under serviceability conditions corresponding to a 0.5 load ratio, the supporting connections and the intermediate columns are identified to be designed to withstand an additional load corresponding to 56% of the service load of the column.
4. Conclusions
- Across all three fire scenarios examined, structural fire safety vulnerabilities were evident. Case 2 (fire entering the intermodular cavity through the boundary of the two open-sided modular units) highlighted the risk of impacting intermediate column posts exposed to the cavity fire by showing 49% and 34% higher average gas temperatures than Cases 1 and 3.
- Under cavity fire conditions, restrained SHS column sections revealed two distinct phases of behavior: an initial phase dominated by thermal bowing, restrained expansion, and additional moments due to centroid shift, followed by significant lateral deformations under material yielding and buckling. Restrained thermal expansion in the initial phase significantly increased maximum restraint/axial forces, up to 155% of the initial load, which subsequently participated in reducing axial load capacity by 2.4% to 35%.
- The plastic strain distribution demonstrates two distinct failure modalities. Global buckling accompanied by localized yielding is predominant in cases with a high slenderness ratio (>90). The stiffer cases with a low slenderness ratio (<63) demonstrated the second failure mode of local buckling near the column base.
- The study’s failure times, ranging from 149 s to 1400 s, underscore the intermediate columns’ susceptibility to failure under cavity fire heat exposure conditions.
- Intermodular connections with pinned idealization are recommended to enhance the fire performance of intermediate columns affected by cavity fire, and those connections and the intermediate columns are identified to be designed to withstand an additional load corresponding to 56% of the service load of the column.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CF | Cold flange |
FDS | Fire Dynamics Simulator |
HF | Hot flange |
HRR | Heat release rate |
SHS | Square hollow section |
Appendix A
Column | Steel Grade | Fixity | Buckling Capacity Ambient State (kN) | Load P0 (kN) | LR | Max. Reaction (kN) | Max. Increment of Restraint Force (%) | Capacity Reduction (%) |
---|---|---|---|---|---|---|---|---|
65 × 65 × 3 | G450 | Pinned | 91 | 27.3 | 0.3 | 61.4 | 124.83 | 33 |
65 × 65 × 3 | G450 | Pinned | 91 | 44.73 | 0.5 | 65.3 | 46 | 28 |
65 × 65 × 3 | G450 | Pinned | 91 | 63.7 | 0.7 | 71.3 | 12 | 22 |
65 × 65 × 3 | G450 | Pinned | 91 | 81.9 | 0.9 | 81.9 | 0.01 | 10 |
89 × 89 × 3.5 | G450 | Pinned | 251 | 75.29 | 0.3 | 165 | 119 | 34 |
89 × 89 × 3.5 | G450 | Pinned | 251 | 125.5 | 0.5 | 178 | 42 | 29 |
89 × 89 × 3.5 | G450 | Pinned | 251 | 175.7 | 0.7 | 199 | 13 | 21 |
89 × 89 × 3.5 | G450 | Pinned | 251 | 225.9 | 0.9 | 227 | 0.5 | 10 |
100 × 100 × 3 | G450 | Pinned | 294 | 88.09 | 0.3 | 190 | 116 | 35 |
100 × 100 × 3 | G450 | Pinned | 294 | 147 | 0.5 | 212 | 44 | 28 |
100 × 100 × 3 | G450 | Pinned | 294 | 205.8 | 0.7 | 237 | 15 | 20 |
100 × 100 × 3 | G450 | Pinned | 294 | 264.6 | 0.9 | 270 | 2 | 8 |
125 × 125 × 4 | G450 | Pinned | 594 | 178.2 | 0.3 | 412 | 131 | 31 |
125 × 125 × 4 | G450 | Pinned | 594 | 297 | 0.5 | 443 | 49 | 26 |
125 × 125 × 4 | G450 | Pinned | 594 | 415.8 | 0.7 | 491 | 18 | 17 |
125 × 125 × 4 | G450 | Pinned | 594 | 534.6 | 0.9 | 545 | 2 | 8 |
150 × 150 × 5 | G450 | Pinned | 990 | 297 | 0.3 | 722 | 143 | 27 |
150 × 150 × 5 | G450 | Pinned | 990 | 495 | 0.5 | 777 | 57 | 22 |
150 × 150 × 5 | G450 | Pinned | 990 | 693 | 0.7 | 832 | 20 | 16 |
150 × 150 × 5 | G450 | Pinned | 990 | 891 | 0.9 | 909 | 2 | 8 |
65 × 65 × 3 | G350 | Pinned | 83 | 24.9 | 0.3 | 59 | 137 | 29 |
65 × 65 × 3 | G350 | Pinned | 83 | 41.5 | 0.5 | 62.3 | 50 | 25 |
65 × 65 × 3 | G350 | Pinned | 83 | 58.1 | 0.7 | 68 | 17 | 18 |
65 × 65 × 3 | G350 | Pinned | 83 | 74.7 | 0.9 | 74.7 | 0.0001 | 10 |
89 × 89 × 3.5 | G350 | Pinned | 206.5 | 61.95 | 0.3 | 142 | 130 | 31 |
89 × 89 × 3.5 | G350 | Pinned | 206.5 | 103.3 | 0.5 | 155 | 50 | 25 |
89 × 89 × 3.5 | G350 | Pinned | 206.5 | 144.6 | 0.7 | 171 | 18 | 17 |
89 × 89 × 3.5 | G350 | Pinned | 206.5 | 185.9 | 0.9 | 188 | 1.1 | 9 |
100 × 100 × 3 | G350 | Pinned | 232 | 69.6 | 0.3 | 160 | 130 | 31 |
100 × 100 × 3 | G350 | Pinned | 232 | 116 | 0.5 | 174 | 50 | 25 |
100 × 100 × 3 | G350 | Pinned | 232 | 162.4 | 0.7 | 192 | 18 | 17 |
100 × 100 × 3 | G350 | Pinned | 232 | 208.8 | 0.9 | 211 | 1 | 9 |
125 × 125 × 4 | G350 | Pinned | 444 | 133.2 | 0.3 | 325 | 144 | 27 |
125 × 125 × 4 | G350 | Pinned | 444 | 222 | 0.5 | 346 | 56 | 22 |
125 × 125 × 4 | G350 | Pinned | 444 | 310.8 | 0.7 | 373 | 20 | 16 |
125 × 125 × 4 | G350 | Pinned | 444 | 399.6 | 0.9 | 408 | 2 | 8 |
150 × 150 × 5 | G350 | Pinned | 724 | 217.2 | 0.3 | 554 | 155 | 23 |
150 × 150 × 5 | G350 | Pinned | 724 | 362 | 0.5 | 579 | 60 | 20 |
150 × 150 × 5 | G350 | Pinned | 724 | 506.8 | 0.7 | 613 | 21 | 15 |
150 × 150 × 5 | G350 | Pinned | 724 | 651.6 | 0.9 | 671 | 3 | 7 |
65 × 65 × 3 | G350 | Fixed | 174 | 87 | 0.5 | 170 | 95 | 2 |
65 × 65 × 3 | G450 | Fixed | 234 | 117 | 0.5 | 221 | 89 | 5 |
89 × 89 × 3.5 | G350 | Fixed | 327 | 163.3 | 0.5 | 271 | 66 | 17 |
89 × 89 × 3.5 | G450 | Fixed | 449 | 224.4 | 0.5 | 359 | 60 | 20 |
100 × 100 × 3 | G350 | Fixed | 340 | 170 | 0.5 | 264 | 55 | 23 |
100 × 100 × 3 | G450 | Fixed | 469 | 234.5 | 0.5 | 347 | 48 | 26 |
125 × 125 × 4 | G350 | Fixed | 604 | 302 | 0.5 | 429 | 42 | 29 |
125 × 125 × 4 | G450 | Fixed | 837 | 418.5 | 0.5 | 573 | 37 | 32 |
150 × 150 × 5 | G350 | Fixed | 951 | 475.5 | 0.5 | 637 | 34 | 33 |
150 × 150 × 5 | G450 | Fixed | 1290 | 645 | 0.5 | 861 | 33.5 | 33 |
Column | Steel Grade | Support Condition | LR | Failure Time | |
---|---|---|---|---|---|
(s) | (min) | ||||
65 × 65 × 3 | G450 | Pinned | 0.3 | - | - |
65 × 65 × 3 | G450 | Pinned | 0.5 | 1372 | 23 |
65 × 65 × 3 | G450 | Pinned | 0.7 | 805 | 13 |
65 × 65 × 3 | G450 | Pinned | 0.9 | 149 | 2 |
89 × 89 × 3.5 | G450 | Pinned | 0.3 | - | - |
89 × 89 × 3.5 | G450 | Pinned | 0.5 | - | - |
89 × 89 × 3.5 | G450 | Pinned | 0.7 | 805 | 13 |
89 × 89 × 3.5 | G450 | Pinned | 0.9 | 505 | 8 |
100 × 100 × 3 | G450 | Pinned | 0.3 | - | - |
100 × 100 × 3 | G450 | Pinned | 0.5 | 1400 | 23 |
100 × 100 × 3 | G450 | Pinned | 0.7 | 750 | 13 |
100 × 100 × 3 | G450 | Pinned | 0.9 | 337 | 6 |
125 × 125 × 4 | G450 | Pinned | 0.3 | - | - |
125 × 125 × 4 | G450 | Pinned | 0.5 | - | - |
125 × 125 × 4 | G450 | Pinned | 0.7 | 1029 | 17 |
125 × 125 × 4 | G450 | Pinned | 0.9 | 568 | 9 |
150 × 150 × 5 | G450 | Pinned | 0.3 | - | - |
150 × 150 × 5 | G450 | Pinned | 0.5 | - | - |
150 × 150 × 5 | G450 | Pinned | 0.7 | 1279 | 21 |
150 × 150 × 5 | G450 | Pinned | 0.9 | 662 | 11 |
65 × 65 × 3 | G350 | Pinned | 0.3 | - | - |
65 × 65 × 3 | G350 | Pinned | 0.5 | 1227 | 20 |
65 × 65 × 3 | G350 | Pinned | 0.7 | 832 | 14 |
65 × 65 × 3 | G350 | Pinned | 0.9 | 224 | 4 |
89 × 89 × 3.5 | G350 | Pinned | 0.3 | - | - |
89 × 89 × 3.5 | G350 | Pinned | 0.5 | - | - |
89 × 89 × 3.5 | G350 | Pinned | 0.7 | 752 | 13 |
89 × 89 × 3.5 | G350 | Pinned | 0.9 | 505 | 8 |
100 × 100 × 3 | G350 | Pinned | 0.3 | - | - |
100 × 100 × 3 | G350 | Pinned | 0.5 | 1400 | 23 |
100 × 100 × 3 | G350 | Pinned | 0.7 | 757 | 13 |
100 × 100 × 3 | G350 | Pinned | 0.9 | 393 | 7 |
125 × 125 × 4 | G350 | Pinned | 0.3 | - | - |
125 × 125 × 4 | G350 | Pinned | 0.5 | - | - |
125 × 125 × 4 | G350 | Pinned | 0.7 | 1110 | 19 |
125 × 125 × 4 | G350 | Pinned | 0.9 | 550 | 9 |
150 × 150 × 5 | G350 | Pinned | 0.3 | - | - |
150 × 150 × 5 | G350 | Pinned | 0.5 | 1355 | 23 |
150 × 150 × 5 | G350 | Pinned | 0.7 | 1294 | 22 |
150 × 150 × 5 | G350 | Pinned | 0.9 | 677 | 11 |
65 × 65 × 3 | G350 | Fixed | 0.5 | 1205 | 20 |
65 × 65 × 3 | G450 | Fixed | 0.5 | 1128 | 19 |
89 × 89 × 3.5 | G350 | Fixed | 0.5 | 1400 | 23 |
89 × 89 × 3.5 | G450 | Fixed | 0.5 | 1385 | 23 |
100 × 100 × 3 | G350 | Fixed | 0.5 | 1282 | 21 |
100 × 100 × 3 | G450 | Fixed | 0.5 | 1144 | 19 |
125 × 125 × 4 | G350 | Fixed | 0.5 | - | - |
125 × 125 × 4 | G450 | Fixed | 0.5 | 1283 | 21 |
150 × 150 × 5 | G350 | Fixed | 0.5 | - | - |
150 × 150 × 5 | G450 | Fixed | 0.5 | 1400 | 23 |
Appendix B
Axial Stiffness Ratio | Initial Load (kN) | Amb Capacity (kN) | Buckling Onset (s) | Buckling Onset Increment (%) | Max Axial Force (kN) | Capacity Reduction (%) |
---|---|---|---|---|---|---|
Infinity | 116 | 232 | 630 | - | 174 | 25 |
1 | 116 | 232 | 750 | 19 | 160 | 31 |
0.5 | 116 | 232 | 810 | 29 | 153 | 34 |
0.25 | 116 | 232 | 885 | 40 | 145 | 38 |
0.1 | 116 | 232 | 1050 | 67 | 135 | 42 |
0.075 | 116 | 232 | 1110 | 76 | 132 | 43 |
0.05 | 116 | 232 | 1163 | 85 | 128 | 45 |
Appendix C
References
- Bertram, N.; Fuchs, S.; Mischke, J.; Palter, R.; Strube, G.; Woetzel, J. Modular Construction: From Projects to Products; McKinsey & Company: New York, NY, USA, 2019. [Google Scholar]
- Ferdous, W.; Bai, Y.; Ngo, T.D.; Manalo, A.; Mendis, P. New advancements, challenges and opportunities of multi-storey modular buildings—A state-of-the-art review. Eng. Struct. 2019, 183, 883–893. [Google Scholar] [CrossRef]
- Lacey, A.W.; Chen, W.; Hao, H.; Bi, K. Structural response of modular buildings—An overview. J. Build. Eng. 2018, 16, 45–56. [Google Scholar] [CrossRef]
- Thai, H.T.; Ngo, T.; Uy, B. A review on modular construction for high-rise buildings. Structures 2020, 28, 1265–1290. [Google Scholar] [CrossRef]
- Just, A.; Brandon, D. Fire Stops in Buildings; Brandforsk: Stockholm, Sweden, 2017. [Google Scholar]
- Stout, J. Shetland fires ‘should act as warning to modular building industry’. BBC News, 27 July 2021. [Google Scholar]
- Meacham, B.J. Fire performance and regulatory considerations with modern methods of construction. Build. Cities 2022, 3, 464–487. [Google Scholar] [CrossRef]
- Nguyen, K.T.Q.; Navaratnam, S.; Mendis, P.; Zhang, K.; Barnett, J.; Wang, H. Fire safety of composites in prefabricated buildings: From fibre reinforced polymer to textile reinforced concrete. Compos. Part B Eng. 2020, 187, 107815. [Google Scholar] [CrossRef]
- Godakandage, R.; Weerasinghe, P.; Gamage, K.; Adnan, H.; Nguyen, K. A Systematic Review on Cavity Fires in Buildings: Flame Spread Characteristics, Fire Risks, and Safety Measures. Fire 2023, 7, 12. [Google Scholar] [CrossRef]
- Apps, P. Are two fires on the Shetland Islands a canary in the coal mine for modular construction? Inside Housing, 16 October 2020. [Google Scholar]
- Modular building fire risks ‘need more investigation’. BBC News, 25 August 2021.
- Jensen, G. Fire spread modes and performance of fire stops in vented façade constructions—Overview and standardization of test methods. In Proceedings of the MATEC Web of Conferences, Paris, France, 25–27 September 2013. [Google Scholar]
- Livkiss, K.; Svensson, S.; Husted, B.; van Hees, P. Flame Heights and Heat Transfer in Façade System Ventilation Cavities. Fire Technol. 2018, 54, 689–713. [Google Scholar] [CrossRef]
- Mendez, J.E.; Lange, D.; Hidalgo, J.P.; McLaggan, M.S. Effect of cavity parameters on the fire dynamics of ventilated façades. Fire Saf. J. 2022, 133, 103671. [Google Scholar] [CrossRef]
- Sharma, A.; Mishra, K.B. Experimental investigations on the influence of ‘chimney-effect’ on fire response of rainscreen façades in high-rise buildings. J. Build. Eng. 2021, 44, 103257. [Google Scholar] [CrossRef]
- Paneni, C. Development of Fire Engineering Solutions for Modular Construction. Master’s Thesis, School of Civil Engineering, The University of Queensland, Brisbane, Australia, 2018; pp. 17–78. [Google Scholar] [CrossRef]
- Shan, S.; Pan, W. Collapse mechanisms of multi-story steel-framed modular structures under fire scenarios. J. Constr. Steel Res. 2022, 196, 107419. [Google Scholar] [CrossRef]
- Balarupan, M. Structural Behaviour and Design of Cold-Formed Steel Hollow Section Columns Under Simulated Fire Conditions. Ph.D. Thesis, Queensland University of Technology, Brisbane, Australia, 2015. [Google Scholar]
- Pires, T.A.C.; do Rêgo Silva, J.J.; dos Santos, M.M.L.; Costa, L.M. Fire resistance of built-up cold-formed steel columns. J. Constr. Steel Res. 2021, 177, 106456. [Google Scholar] [CrossRef]
- Yang, J.; Shi, Y.; Wang, W.; Xu, L.; Al-azzani, H. Experimental and numerical studies on axially restrained cold-formed steel built-up box columns at elevated temperatures. J. Constr. Steel Res. 2020, 171, 106143. [Google Scholar] [CrossRef]
- Craveiro, H.D.; Rodrigues, J.P.C.; Laím, L. Experimental analysis of built-up closed cold-formed steel columns with restrained thermal elongation under fire conditions. Thin-Walled Struct. 2016, 107, 564–579. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, Z.; Li, G.-Q. Simple vs. sophisticated fire models to predict performance of SHS column in localized fire. J. Constr. Steel Res. 2016, 120, 62–69. [Google Scholar] [CrossRef]
- Moura Correia, A.J.P.; Rodrigues, J.P.C.; Real, P.V. Thermal bowing on steel columns embedded on walls under fire conditions. Fire Saf. J. 2014, 67, 53–69. [Google Scholar] [CrossRef]
- Yuan, W.-B.; Ge, P.-J.; Shen, Y.-T.; Cheng, S.-S.; Yu, N.-T. Buckling Analysis of Steel H Column with Thermal Gradient Along the Flanges. Int. J. Steel Struct. 2020, 20, 677–691. [Google Scholar] [CrossRef]
- Mahenthirarasa, R. Cold-Formed Steel Compression Members Exposed to Extreme Temperature Environments. Ph.D. Thesis, Queensland University of Technology, Brisbane, Australia, 2021. [Google Scholar]
- Kesawan, S.; Mahendran, M. Fire design rules for LSF walls made of hollow flange channel sections. Thin-Walled Struct. 2016, 107, 300–314. [Google Scholar] [CrossRef]
- Maraveas, C. Local buckling of steel members under fire conditions: A review. Fire Technol. 2019, 55, 51–80. [Google Scholar] [CrossRef]
- McGrattan, K.; Hostikka, S.; Floyd, J.; McDermott, R.; Vanella, M. Fire Dynamics Simulator—User’s Guide; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2021.
- Lawson, M.; Ogden, R.; Goodier, C. Design in Modular Construction; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Munmulla, T.; Navaratnam, S.; Thamboo, J.; Ponnampalam, T.; Damruwan, H.-G.H.; Tsavdaridis, K.D.; Zhang, G. Analyses of Structural Robustness of Prefabricated Modular Buildings: A Case Study on Mid-Rise Building Configurations. Buildings 2022, 12, 1289. [Google Scholar] [CrossRef]
- Hurley, M.J. (Ed.) SFPE Handbook of Fire Protection Engineering, 5th ed.; Society of Fire Protection Engineers: Gaithersburg, MD, USA, 2016. [Google Scholar]
- PyroSim User Manual; Thunderhead Engineering: Manhattan, KS, USA, 2019.
- Livkiss, K.; Husted, B.P.; Beji, T.; van Hees, P. Numerical study of a fire-driven flow in a narrow cavity. Fire Saf. J. 2019, 108, 102834. [Google Scholar] [CrossRef]
- Complex Stoichiometry in Pyrosim; Thunderhead Engineering: Manhattan, KS, USA, 2024.
- Keerthan, P.; Mahendran, M. Numerical studies of gypsum plasterboard panels under standard fire conditions. Fire Saf. J. 2012, 53, 105–119. [Google Scholar] [CrossRef]
- McGrattan, K.B. Fire Dynamics Simulator (Version 4): Technical Reference Guide; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2006.
- Abaqus/CAE. 2023. Available online: https://help.3ds.com/2023/English/DSSIMULIA_Established/SIMACAERNGRefMap/simarng-c-ov.htm?contextscope=all&id=b72e43e71e4c41189ba5fb37f9550322 (accessed on 30 September 2024).
- AS/NZS 4600:2018; Cold-Formed Steel Structures. Standards New Zealand: Wellington, New Zealand, 2018.
- Imran, M.; Mahendran, M.; Keerthan, P. Mechanical properties of cold-formed steel tubular sections at elevated temperatures. J. Constr. Steel Res. 2018, 143, 131–147. [Google Scholar] [CrossRef]
- Rokilan, M.; Mahendran, M. Design of cold-formed steel columns subject to local buckling at elevated temperatures. J. Constr. Steel Res. 2021, 179, 106539. [Google Scholar] [CrossRef]
- Zha, X.; Zuo, Y. Finite Element Study of Container Structure under Normal and High Temperature. Math. Probl. Eng. 2016, 2016, 2652149. [Google Scholar] [CrossRef]
- Zammarano, M.; Hoehler, M.S.; Shields, J.R.; Thompson, A.L.; Kim, I.; Leventon, I.T.; Bundy, M.F. Full-Scale Experiments to Demonstrate Flammability Risk of Residential Upholstered Furniture and Mitigation Using Barrier Fabric; NIST Technical Note 2129; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2020.
- Godakandage, R.L.P.; Nguyen, K.T.Q.; Weerasinghe, T.G.P.L.; Gamage, J.C.P.H. Hidden Dangers of Fire Safety in Modular Constructions. In Proceedings of the 14th International Conference on Sustainable Built Environment; Springer Nature: Singapore, 2024; pp. 517–536. [Google Scholar]
- Andy Prabowo, P. Multi-storey Modular Cold-Formed Steel Building in Hong Kong: Challenges & Opportunities. IOP Conf. Ser. Mater. Sci. Eng. 2019, 650, 012033. [Google Scholar] [CrossRef]
- Simões da Silva, L.; Silva, L.C.; Tankova, T.; Craveiro, H.D.; Simões, R.; Costa, R.; D’Aniello, M.; Landolfo, R. Performance of modular hybrid cold-formed/tubular structural system. Structures 2021, 30, 1006–1019. [Google Scholar] [CrossRef]
- Farajian, M.; Sharafi, P.; Eslamnia, H.; Kildashti, K.; Bai, Y. Classification of inter-modular connections for stiffness and strength in sway corner-supported steel modular frames. J. Constr. Steel Res. 2022, 197, 107458. [Google Scholar] [CrossRef]
- Craveiro, H.D.d.S. Fire Resistance of Cold Formed Steel Columns. Ph.D. Thesis, University of Coimbra, Coimbra, Portugal, 2015. [Google Scholar]
- Sun, J.; Meng, F.; Andisheh, K.; Clifton, G.C. Numerical Analysis of Restrained Continuous Steel Columns under Standard Fire. Fire 2023, 6, 330. [Google Scholar] [CrossRef]
- Gunalan, S.; Heva, Y.B.; Mahendran, M. Local buckling studies of cold-formed steel compression members at elevated temperatures. J. Constr. Steel Res. 2015, 108, 31–45. [Google Scholar] [CrossRef]
Thermocouple No. (Refer to Figure 1) | Type of Temperature Measurement | Location |
---|---|---|
1 | Surface temperature | The unexposed side of the top boundary of the fire compartment |
2 | Gas temperature | Mid-height near the wall boundary of the fire compartment |
3 | Gas temperature | The ceiling level of the adjacent compartment |
4, 5, 6 | Gas temperature | Middle of the cavity at heights of 350 mm, 900 mm, and 1200 mm from the bottom of the setup |
7, 8 | Surface temperature | Unexposed side of the cavity boundary at heights of 780 mm and 1040 mm from the bottom of the setup |
Section | Temp | Exp Balarupan [18] | Section | Temp |
---|---|---|---|---|
65 × 65 × 3 | 20 | 277.6 | 302.7 | 1.09 |
65 × 65 × 3 | 200 | 271.9 | 293.25 | 1.08 |
65 × 65 × 3 | 400 | 229.2 | 237.8 | 1.04 |
65 × 65 × 3 | 500 | 151.3 | 174.64 | 1.15 |
65 × 65 × 3 | 600 | 93.2 | 106.5 | 1.14 |
65 × 65 × 3 | 700 | 37.1 | 44.3 | 1.19 |
65 × 65 × 6 | 500 | 298.8 | 272.6 | 0.91 |
65 × 65 × 6 | 600 | 179.4 | 169.35 | 0.94 |
65 × 65 × 6 | 700 | 72 | 84.5 | 1.17 |
Case | Fire Entering Mode | Window Configuration | Fire |
---|---|---|---|
1 | Through the perimeter of a door opening sized at 900 × 2700 mm | 1.2 m × 1.6 m open window for each module | 1.2 m × 1.2 m burner at the center of the fire compartment following the design fire curve |
2 | Through the boundary of the two open-sided modular units | ||
3 | through a vertical boundary of a 2 m × 3 m opening |
SHS Column (Width × Depth × Thickness (mm)) | w/t | Steel Grade | Fixity | Ambient Buckling Capacity (kN) | Load Ratio |
---|---|---|---|---|---|
65 × 65 × 3 | 21.7 | G450 | Pinned | 91 | 0.3, 0.5, 0.7, 0.9 |
Fixed | 117 | 0.5 | |||
G350 | Pinned | 83 | 0.3, 0.5, 0.7, 0.9 | ||
Fixed | 87 | 0.5 | |||
89 × 89 × 3.5 | 25.4 | G450 | Pinned | 251 | 0.3, 0.5, 0.7, 0.9 |
Fixed | 449 | 0.5 | |||
G350 | Pinned | 207 | 0.3, 0.5, 0.7, 0.9 | ||
Fixed | 327 | 0.5 | |||
100 × 100 × 3 | 33.3 | G450 | Pinned | 294 | 0.3, 0.5, 0.7, 0.9 |
Fixed | 469 | 0.5 | |||
G350 | Pinned | 232 | 0.3, 0.5, 0.7, 0.9 | ||
Fixed | 340 | 0.5 | |||
125 × 125 × 4 | 31.3 | G450 | Pinned | 594 | 0.3, 0.5, 0.7, 0.9 |
Fixed | 837 | 0.5 | |||
G350 | Pinned | 444 | 0.3, 0.5, 0.7, 0.9 | ||
Fixed | 604 | 0.5 | |||
150 × 150 × 5 | 30 | G450 | Pinned | 990 | 0.3, 0.5, 0.7, 0.9 |
Fixed | 1290 | 0.5 | |||
G350 | Pinned | 724 | 0.3, 0.5, 0.7, 0.9 | ||
Fixed | 951 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Godakandage, R.; Gamage, K.; Weerasinghe, P.; Navaratnam, S.; Nguyen, K.T.Q. Structural and Fire Performance of Cold-Formed Steel Columns Subjected to Cavity Fire in Modular Buildings. Fire 2025, 8, 190. https://doi.org/10.3390/fire8050190
Godakandage R, Gamage K, Weerasinghe P, Navaratnam S, Nguyen KTQ. Structural and Fire Performance of Cold-Formed Steel Columns Subjected to Cavity Fire in Modular Buildings. Fire. 2025; 8(5):190. https://doi.org/10.3390/fire8050190
Chicago/Turabian StyleGodakandage, Rajeendra, Kumari Gamage, Pasindu Weerasinghe, Satheeskumar Navaratnam, and Kate T. Q. Nguyen. 2025. "Structural and Fire Performance of Cold-Formed Steel Columns Subjected to Cavity Fire in Modular Buildings" Fire 8, no. 5: 190. https://doi.org/10.3390/fire8050190
APA StyleGodakandage, R., Gamage, K., Weerasinghe, P., Navaratnam, S., & Nguyen, K. T. Q. (2025). Structural and Fire Performance of Cold-Formed Steel Columns Subjected to Cavity Fire in Modular Buildings. Fire, 8(5), 190. https://doi.org/10.3390/fire8050190