Abstract
Drowning remains the third leading cause of accidental injury-related deaths worldwide, disproportionately affecting low- and middle-income countries where lifeguard coverage is limited or absent. To address this critical gap, we present Robobuoy, an intelligent real-time rescue system that integrates deep learning-based object detection with an unmanned surface vehicle (USV) for autonomous intervention. The system employs a monitoring station equipped with two specialized object detection models: YOLO12m for recognizing drowning individuals and YOLOv5m for tracking the USV. These models were selected for their balance of accuracy, efficiency, and compatibility with resource-constrained edge devices. A geometric navigation algorithm calculates heading directions from visual detections and guides the USV toward the victim. Experimental evaluations on a combined open-source and custom dataset demonstrated strong performance, with YOLO12m achieving an mAP@0.5 of 0.9284 for drowning detection and YOLOv5m achieving an mAP@0.5 of 0.9848 for USV detection. Hardware validation in a controlled water pool confirmed successful target-reaching behavior in all nine trials, achieving a positioning error within 1 m, with traversal times ranging from 11 to 23 s. By combining state-of-the-art computer vision and low-cost autonomous robotics, Robobuoy offers an affordable and low-latency prototype to enhance water safety in unsupervised aquatic environments, particularly in regions where conventional lifeguard surveillance is impractical.