A New Integrated Multi-Criteria Decision-Making Model for Resilient Supplier Selection
Abstract
:1. Introduction
- To incorporate the element of resilience into supplier selection;
- To calculate the weights of resilience criteria with a higher consistency;
- To rank the performances of the resilient suppliers while taking into account uncertainties and incomplete data.
2. Literature
Research Gaps
3. Methodology
3.1. GRA for Obtaining the Relative Importance of Criteria
3.1.1. Listing of Questionnaire Responses
3.1.2. Determination of the Reference Score and the Differences from the Reference Score
3.1.3. Calculation of Grey Relational Coefficient
- where,
- ∆min = minⱯiminⱯj∆ri(j),
- ∆max = maxⱯimaxⱯj∆ri(j)
- where p is an identification coefficient.
3.1.4. Determination of Grey Relational Grade
3.2. BWM for Criteria Weights Calculation
3.2.1. Preferences of the Best Criterion over Others and Others over the Worst Criterion
3.2.2. Computation of Criteria Weights
3.2.3. Calculation of Consistency Ratio
3.3. TOPSIS for Supplier Ranking
3.3.1. Formation of Decision Matrix
3.3.2. Formation of Standardized Decision Matrix
3.3.3. Calculation of Weighted Standardized Decision Matrix
3.3.4. Determination of Positive Ideal Solution (PIS) and Negative Ideal Solution (NIS)
3.3.5. Calculation of Distance of Separation from the PIS and NIS
3.3.6. Calculation of Relative Closeness Coefficient
3.3.7. Ranking of Suppliers
3.4. Proposed Framework of GRA-BWM-TOPSIS
4. Case Study
4.1. Data Collection
4.2. Weights Calculation
4.3. Ranking of Suppliers
4.4. Discussion
5. Validation of the Proposed Model
6. Managerial Implications
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ivanov, D. Revealing interfaces of supply chain resilience and sustainability: A simulation study. Int. J. Prod. Res. 2018, 56, 3507–3523. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, S.; Barker, K. Modeling infrastructure resilience using Bayesian networks: A case study of inland waterway ports. Comput. Ind. Eng. 2016, 93, 252–266. [Google Scholar] [CrossRef]
- Mohammed, A.; Yazdani, M.; Oukil, A.; Gonzalez, E.S. A Hybrid MCDM Approach towards Resilient Sourcing. Sustainability 2021, 13, 2695. [Google Scholar] [CrossRef]
- Carvalho, M.; Sivanandam, H.; Rahim, R.; Tan, T. 50,269 SMEs have closed down since March. The Star. 2020. Available online: https://www.thestar.com.my/news/nation/2020/11/10/50269-smes-have-closed-down-since-march#:~:text=A%20TOTAL%20of%2050%2C269%20small,Entrepreneurship%20Development%20and%20Cooperatives%20Ministry.&text=During%20the%20recovery%20MCO%20phase,September%2C%2022%2C794%20SMEs%20winded%20up (accessed on 10 November 2020).
- NACo. Strategies to Bolster Economic Resilience. Available online: https://www.naco.org/sites/default/files/documents/Strategies%20to%20Bolster%20Economic%20Resilience.pdf (accessed on 29 December 2020).
- Rajesh, R.; Ravi, V. Supplier selection in resilient supply chains: A grey relational analysis approach. J. Clean. Prod. 2015, 86, 343–359. [Google Scholar] [CrossRef]
- Munir, M.; Jajja, M.S.S.; Chatha, K.A.; Farooq, S. Supply chain risk management and operational performance: The enabling role of supply chain integration. Int. J. Prod. Econ. 2020, 227, 107667. [Google Scholar] [CrossRef]
- Pitchaiah, D.S.; Hussaian, M.; Govardhan, D. A review on multi attribute decision making for evaluation and selection. In Materials Today: Proceedings; Elsevier: Hyderabad, TS, India, 2020. [Google Scholar]
- Pramanik, D.; Mondal, S.C.; Haldar, A. Resilient supplier selection to mitigate uncertainty: Soft-computing approach. J. Model. Manag. 2020, 15, 1339–1361. [Google Scholar] [CrossRef]
- Xiong, L.; Zhong, S.; Liu, S.; Zhang, X.; Li, Y. An Approach for Resilient-Green Supplier Selection Based on WASPAS, BWM, and TOPSIS under Intuitionistic Fuzzy Sets. Math. Probl. Eng. 2020, 2020, 1–18. [Google Scholar]
- Hasan, M.; Jiang, D.; Ullah, A.S.; Alam, N.-E. Resilient supplier selection in logistics 4.0 with heterogeneous information. Expert Syst. Appl. 2020, 139, 112799. [Google Scholar] [CrossRef]
- Mohammed, A. Towards ‘gresilient’ supply chain management: A quantitative study. Resour. Conserv. Recycl. 2020, 155, 104641. [Google Scholar] [CrossRef]
- Piprani, A.Z.; Jaafar, N.I.; Ali, S.M. Prioritizing resilient capability factors of dealing with supply chain disruptions: An analytical hierarchy process (AHP) application in the textile industry. Benchmarking Int. J. 2020, 27, 2537–2563. [Google Scholar] [CrossRef]
- Parkouhi, S.V.; Ghadikolaei, A.S.; Lajimi, H.F. Resilient supplier selection and segmentation in grey environment. J. Clean. Prod. 2019, 207, 1123–1137. [Google Scholar] [CrossRef]
- Davoudabadi, R.; Mousav, S.M.; Sharifiba, E. An integrated weighting and ranking model based on entropy, DEA and PCA considering two aggregation approaches for resilient supplier selection problem. J. Comput. Sci. 2020, 40, 101074. [Google Scholar] [CrossRef]
- Amindoust, A. A resilient-sustainable based supplier selection model using a hybrid. Comput. Ind. Eng. 2018, 126, 122–135. [Google Scholar] [CrossRef]
- Pramanik, D.; Haldar, A.; Mondal, S.C.; Naskar, S.K.; Ray, A. Resilient supplier selection using AHP-TOPSIS-QFD under a fuzzy environment. Int. J. Manag. Sci. Eng. Manag. 2016, 12, 1–10. [Google Scholar] [CrossRef]
- Shanmugam, P.; Goh, M. Multi-objective supplier selection and order allocation under disruption risk. Transp. Res. Part E Logist. Transp. Rev. 2016, 95, 124–142. [Google Scholar]
- Sahu, A.K.; Datta, S.; Mahapatra, S. Evaluation and selection of resilient suppliers in fuzzy environment Exploration of Fuzzy VIKOR. Benchmarking Int. J. 2016, 23, 651–673. [Google Scholar] [CrossRef]
- Haldar, A.; Ray, A.; Banerjee, D.; Ghosh, S. A hybrid MCDM model for resilient supplier selection. Int. J. Manag. Sci. Eng. Manag. 2013, 7, 284–292. [Google Scholar] [CrossRef]
- Vinodh, S.; Anesh Ramiya, R.; Gautham, S. Application of fuzzy analytic network process for supplier selection in a manufacturing organization. Expert Syst. Appl. 2011, 38, 272–280. [Google Scholar] [CrossRef]
- Peng, A.H.; Xiao, X.M. Material selection using PROMETHEE combined with analytic network process under hybrid environment. Mater. Des. 2013, 47, 643–652. [Google Scholar] [CrossRef]
- Sun, X.; Gollnick, V.; Li, Y.; Stumpf, E. Intelligent Multicriteria Decision Support System for Systems Design. J. Aircr. 2014, 51, 216–225. [Google Scholar] [CrossRef]
- Mousavi-Nasab, S.H.; Sotoudeh-Anvari, A. A comprehensive MCDM-based approach using TOPSIS, COPRAS and DEA as an auxiliary tool for material selection problems. Mater. Des. 2017, 121, 237–253. [Google Scholar] [CrossRef]
- Rezaei, J. Best-worst multi-criteria decision-making method: Some properties and a linear model. Omega 2016, 64, 126–130. [Google Scholar] [CrossRef]
- Deng, J. Control problems of grey systems. Syst. Control Lett. 1982, 1, 288–294. [Google Scholar]
- Deng, J. Grey System Book; Science and Technology Information Services: Windsor, UK, 1988. [Google Scholar]
- Koganti, V.K.; Menikonda, N.; Anbuudayasankar, S.P.; Krishnaraj, T.; Athhukuri, R.; Vastav, M. GRAHP TOP model for supplier selection in Supply Chain: A hybrid MCDM approach. Decis. Sci. Lett. 2019, 8, 65–80. [Google Scholar] [CrossRef]
- Gan, J.; Zhong, S.; Liu, S.; Yang, D. Resilient Supplier Selection Based on Fuzzy BWM and GMo-RTOPSIS under Supply Chain Environment. Discret. Dyn. Nat. Soc. 2019, 2, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Raigar, J.; Sharma, V.S.; Srivastava, S.; Chand, R.; Singh, J. A decision support system for the selection of an additive manufacturing process using a new hybrid MCDM technique. SĀDhanĀ 2020, 45, 45–101. [Google Scholar] [CrossRef]
- Huang, C.; Yoon, K. Methods for Multiple Attribute Decision Making. Lecture Notes in Economics and Mathematical Systems; Springer: Berlin/Heidelberg, Germany, 1981; pp. 58–191. [Google Scholar]
- Kim, G.; Park, C.; Yoon, K. Identifying investment opportunities for advanced manufacturing systems with comparative-integrated performance measurement. Int. J. Prod. Econ. 1997, 50, 23–33. [Google Scholar] [CrossRef]
- Cheng, S.; Chan, C.; Huang, G. Using multiple criteria decision analysis for supporting decisions of solid waste management. J. Environ. Sci. Health Part A 2002, 37, 975–990. [Google Scholar] [CrossRef] [PubMed]
- Yoon, K.; Huang, C. Manufacturing plant location analysis by multiple attribute decision making: Part I—Single-plant strategy. Int. J. Prod. Res. 1985, 23, 345–359. [Google Scholar] [CrossRef]
- Ventura, L. The World’s Biggest Bankruptcies 2020. Global Finance Magazine; United States. 2020. Available online: https://www.gfmag.com/global-data/economic-data/worlds-biggest-bankruptcies (accessed on 29 December 2020).
- Kelly, S. Adjusting Business Models to Sustain Agri-Food Enterprises during COVID-19; also available in Chinese, Spanish, Arabic, French and Russian; FAO: Rome, Italy, 2020. [Google Scholar]
- Staniforth, J. COVID-19 Update: Worker Health, Absenteeism Present Largest Risks to U.S. Food Supply Chain. Food Quality and Safety. Available online: https://www.foodqualityandsafety.com/article/covid-19-update-worker-health-and-absenteeism-present-largest-risk-to-u-s-food-supply-chain/ (accessed on 15 March 2020).
- Parkouhi, S.V.; Ghadikolaei, A.S. A resilience approach for supplier selection: Using Fuzzy Analytic Network Process and grey VIKOR technique. J. Clean. Prod. 2017, 161, 431–451. [Google Scholar] [CrossRef]
- Jahan, A.; Mustapha, F.; Ismail, Y.; Sapuan, M.S.; Baharaminasab, M. A comprehensive VIKOR method for material selection. Mater. Des. 2011, 32, 1215–1221. [Google Scholar] [CrossRef]
- Behrouzi, F.; Wong, K.Y. An integrated stochastic-fuzzy modeling approach for supply chain leanness evaluation. Int. J. Adv. Manuf. Technol. 2013, 68, 1677–1696. [Google Scholar] [CrossRef]
Previous Study | MCDM Methods | Industry |
---|---|---|
Mohammed et al. [8] | DEMATEL-OCRA-TOPSIS-VIKOR | Steel manufacturing |
Pramanik et al. [9] | Fuzzy AHP-ARAS | Automotive manufacturing |
Xiong et al. [10] | Fuzzy BWM-WASPAS-TOPSIS | Illustrative example |
Hasan et al. [11] | Fuzzy DSS-MCGP | Logistics |
Mohammed [12] | Grey DEMATEL-VIKOR | Chemical manufacturing |
Piprani et al. [13] | Fuzzy AHP | Textile manufacturing |
Parkouhi et al. [14] | Grey DEMATEL-SAW | Wood and paper |
Davoudabadi et al. [15] | PCA-DEA | Illustrative example |
Amindoust [16] | FIS-DEA | Alloy manufacturing |
Pramanik et al. [17] | Fuzzy AHP-TOPSIS--QFD | General manufacturing |
Venkatesan and Goh [18] | Fuzzy AHP-PROMETHEE | Numerical experimentation |
Sahu et al. [19] | Fuzzy VIKOR | Empirical example |
Haldar et al. [20] | Fuzzy AHP-QFD | Hypothetical case |
Vinodh et al. [21] | Fuzzy ANP | Electronics manufacturing |
Preference Level | Numeric Value |
---|---|
Equally preferred | 1 |
Equally to moderately preferred | 2 |
Moderately preferred | 3 |
Moderately to strongly preferred | 4 |
Strongly preferred | 5 |
Preference Level | Numeric Value |
---|---|
Equally | 1 |
Weakly | 2 |
Moderately | 3 |
Moderately plus | 4 |
Strongly | 5 |
Strongly plus | 6 |
Very strongly | 7 |
Very, very strongly | 8 |
Extremely | 9 |
Reciprocals | (1/9 to 8/9) |
Preference Level | Numeric Value |
---|---|
Low | 1 |
Below average | 2 |
Average | 3 |
Good | 4 |
Excellent | 5 |
C | Criteria | Definition |
---|---|---|
C1 | Quality | Ability to meet or exceed customers’ expectations. [3,6,11,12,14,16,18,19,21,38] |
C2 | Lead Time | Time taken from releasing an order to receiving the materials. [3,11,12,14,16,19,21] |
C3 | Cost | Total SC cost contributed by a supplier in operating a SC. [6,10,11,12,14,16,18,19,20] |
C4 | Flexibility | Readiness to react to different supply chain turbulences. [3,6,9,11,12,13,14,16,18,19,21] |
C5 | Visibility | Transparency in sharing relevant business information. [3,6,9,11,13,18,38] |
C6 | Responsiveness | Ability to respond to customer demands in a minimal time. [6,10,13,15,16,19,21] |
C7 | Financial Stability | Ability to have positive and growing cash flow. [9,14,16,21,38] |
C1 | C2 | C3 | C4 | C5 | C6 | C7 | |
---|---|---|---|---|---|---|---|
R1 | 4 | 4 | 5 | 4 | 5 | 5 | 4 |
R2 | 4 | 4 | 4 | 3 | 2 | 4 | 4 |
R3 | 3 | 4 | 4 | 4 | 3 | 4 | 3 |
R4 | 2 | 3 | 5 | 3 | 5 | 3 | 5 |
R5 | 1 | 2 | 5 | 5 | 4 | 4 | 5 |
Best to Others | C1 | C2 | C3 | C4 | C5 | C6 | C7 |
---|---|---|---|---|---|---|---|
C3 | 9 | 8 | 1 | 7 | 4 | 5 | 3 |
Others to Worst | C1 |
---|---|
C1 | 1 |
C2 | 3 |
C3 | 9 |
C4 | 4 |
C5 | 6 |
C6 | 5 |
C7 | 7 |
S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | S10 | |
---|---|---|---|---|---|---|---|---|---|---|
C1 | 3.8 | 3.8 | 4.2 | 3.8 | 3.8 | 4.0 | 3.8 | 3.4 | 3.8 | 4.2 |
C2 | 2.8 | 2.4 | 2.6 | 4.2 | 3.6 | 3.6 | 4.4 | 2.8 | 3.2 | 3.6 |
C3 | 2.6 | 3.6 | 4.0 | 4.2 | 4.0 | 3.0 | 3.6 | 2.6 | 3.0 | 4.0 |
C4 | 3.2 | 3.2 | 3.6 | 4.2 | 4.2 | 3.2 | 3.4 | 3.0 | 3.6 | 4.2 |
C5 | 3.2 | 3.6 | 4.0 | 4.4 | 3.8 | 4.0 | 4.0 | 3.4 | 4.2 | 3.6 |
C6 | 2.8 | 3.6 | 4.2 | 4.4 | 4.0 | 3.6 | 3.6 | 2.6 | 3.8 | 3.6 |
C7 | 2.0 | 3.3 | 4.3 | 5.0 | 4.0 | 2.7 | 3.0 | 2.3 | 3.3 | 3.7 |
C | C1 | C2 | C3 | C4 | C5 | C6 | C7 |
---|---|---|---|---|---|---|---|
GRG | 0.5133 | 0.5800 | 0.8667 | 0.6667 | 0.7133 | 0.7000 | 0.7667 |
Rank | 7 | 6 | 1 | 5 | 3 | 4 | 2 |
C | Weights |
---|---|
C1 | 0.0367 |
C2 | 0.0643 |
C3 | 0.4225 |
C4 | 0.0735 |
C5 | 0.1286 |
C6 | 0.1029 |
C7 | 0.1715 |
Consistency ratio | 0.09 |
C1 | C2 | C3 | C4 | C5 | C6 | C7 | RSS | |
---|---|---|---|---|---|---|---|---|
S1 | 3.8 | 2.8 | 2.6 | 3.2 | 3.2 | 2.8 | 2.0 | 7.8333 |
S2 | 3.8 | 4.2 | 4.2 | 4.2 | 4.4 | 4.4 | 5.0 | 11.4490 |
S3 | 4.2 | 2.6 | 4.0 | 3.6 | 4.0 | 4.2 | 4.3 | 10.2708 |
S4 | 3.0 | 2.4 | 3.6 | 3.2 | 3.6 | 3.6 | 3.3 | 8.6470 |
S5 | 3.8 | 3.6 | 4.0 | 4.2 | 3.8 | 4.0 | 4.0 | 10.3673 |
S6 | 3.4 | 2.8 | 2.6 | 3.0 | 3.4 | 2.6 | 2.3 | 7.6662 |
S7 | 3.8 | 4.4 | 3.6 | 3.4 | 4.0 | 3.6 | 3.0 | 9.8122 |
S8 | 4.0 | 3.6 | 3.0 | 3.2 | 4.0 | 3.6 | 2.7 | 9.1897 |
S9 | 3.8 | 3.2 | 3.0 | 3.6 | 4.2 | 3.8 | 3.3 | 9.4663 |
S10 | 4.2 | 3.6 | 4.0 | 4.2 | 3.6 | 3.6 | 3.7 | 10.1907 |
W | 0.0367 | 0.0643 | 0.4225 | 0.0735 | 0.1286 | 0.1029 | 0.1715 |
---|---|---|---|---|---|---|---|
C1 | C2 | C3 | C4 | C5 | C6 | C7 | |
S1 | 0.4851 | 0.3574 | 0.3319 | 0.4085 | 0.4085 | 0.3574 | 0.2553 |
S2 | 0.3319 | 0.3668 | 0.3668 | 0.3668 | 0.3843 | 0.3843 | 0.4367 |
S3 | 0.4089 | 0.2531 | 0.3895 | 0.3505 | 0.3895 | 0.4089 | 0.4187 |
S4 | 0.3469 | 0.2776 | 0.4163 | 0.3701 | 0.4163 | 0.4163 | 0.3816 |
S5 | 0.3665 | 0.3472 | 0.3858 | 0.4051 | 0.3665 | 0.3858 | 0.3858 |
S6 | 0.4435 | 0.3652 | 0.3392 | 0.3913 | 0.4435 | 0.3392 | 0.3000 |
S7 | 0.3873 | 0.4484 | 0.3669 | 0.3465 | 0.4077 | 0.3669 | 0.3057 |
S8 | 0.4353 | 0.3917 | 0.3265 | 0.3482 | 0.4353 | 0.3917 | 0.2938 |
S9 | 0.4014 | 0.3380 | 0.3169 | 0.3803 | 0.4437 | 0.4014 | 0.3486 |
S10 | 0.4121 | 0.3533 | 0.3925 | 0.4121 | 0.3533 | 0.3533 | 0.3631 |
C1 | C2 | C3 | C4 | C5 | C6 | C7 | |
---|---|---|---|---|---|---|---|
S1 | 0.0178 | 0.0230 | 0.1402 | 0.0300 | 0.0525 | 0.0368 | 0.0438 |
S2 | 0.0122 | 0.0236 | 0.1550 | 0.0270 | 0.0494 | 0.0395 | 0.0749 |
S3 | 0.0150 | 0.0163 | 0.1646 | 0.0258 | 0.0501 | 0.0421 | 0.0718 |
S4 | 0.0127 | 0.0178 | 0.1759 | 0.0272 | 0.0535 | 0.0428 | 0.0654 |
S5 | 0.0135 | 0.0223 | 0.1630 | 0.0298 | 0.0471 | 0.0397 | 0.0662 |
S6 | 0.0163 | 0.0235 | 0.1433 | 0.0288 | 0.0570 | 0.0349 | 0.0515 |
S7 | 0.0142 | 0.0288 | 0.1550 | 0.0255 | 0.0524 | 0.0378 | 0.0524 |
S8 | 0.0160 | 0.0252 | 0.1379 | 0.0256 | 0.0560 | 0.0403 | 0.0504 |
S9 | 0.0147 | 0.0217 | 0.1339 | 0.0280 | 0.0571 | 0.0413 | 0.0598 |
S10 | 0.0151 | 0.0227 | 0.1658 | 0.0303 | 0.0454 | 0.0364 | 0.0623 |
V+ | 0.0178 | 0.0288 | 0.1759 | 0.0303 | 0.0571 | 0.0428 | 0.0749 |
V− | 0.0122 | 0.0163 | 0.1339 | 0.0255 | 0.0454 | 0.0349 | 0.0438 |
Fi | Rank | ||||
---|---|---|---|---|---|
S1 | 0.0483 | 0.0138 | 0.0621 | 0.2222 | 10 |
S2 | 0.0240 | 0.0388 | 0.0628 | 0.6178 | 5 |
S3 | 0.0193 | 0.0425 | 0.0618 | 0.6877 | 2 |
S4 | 0.0161 | 0.0486 | 0.0647 | 0.7512 | 1 |
S5 | 0.0203 | 0.0378 | 0.0581 | 0.6506 | 3 |
S6 | 0.0413 | 0.0190 | 0.0603 | 0.3151 | 8 |
S7 | 0.0320 | 0.0271 | 0.0591 | 0.4585 | 6 |
S8 | 0.0457 | 0.0172 | 0.0629 | 0.2734 | 9 |
S9 | 0.0454 | 0.0218 | 0.0672 | 0.3244 | 7 |
S10 | 0.0220 | 0.0379 | 0.0599 | 0.6327 | 4 |
C | Weights |
---|---|
C1 | 0.0254 |
C2 | 0.0403 |
C3 | 0.3603 |
C4 | 0.0754 |
C5 | 0.1576 |
C6 | 0.1050 |
C7 | 0.2360 |
Si | Ri | Qi | Rank | |
---|---|---|---|---|
S1 | 0.9738 | 0.3603 | 1.0000 | 10 |
S2 | 0.5110 | 0.1801 | 0.5063 | 5 |
S3 | 0.2832 | 0.0901 | 0.2615 | 2 |
S4 | 0.0063 | 0.0063 | 0.0000 | 1 |
S5 | 0.2842 | 0.1050 | 0.2830 | 3 |
S6 | 0.7472 | 0.2702 | 0.7556 | 8 |
S7 | 0.5287 | 0.1802 | 0.5156 | 6 |
S8 | 0.7485 | 0.2702 | 0.7563 | 9 |
S9 | 0.6033 | 0.2360 | 0.6330 | 7 |
S10 | 0.3496 | 0.0901 | 0.2958 | 4 |
S+, R+ | 0.9738 | 0.3603 | ||
S−, R− | 0.0063 | 0.0063 |
Criteria | Weights (GRA-BWM-TOPSIS) | Weights (AHP-VIKOR) |
---|---|---|
C1 | 0.0367 | 0.0254 |
C2 | 0.0643 | 0.0403 |
C3 | 0.4225 | 0.3603 |
C4 | 0.0735 | 0.0754 |
C5 | 0.1286 | 0.1576 |
C6 | 0.1029 | 0.1050 |
C7 | 0.1715 | 0.2360 |
Supplier | Rank (GRA-BWM-TOPSIS) | Rank (AHP-VIKOR) |
---|---|---|
S1 | 10 | 10 |
S2 | 5 | 5 |
S3 | 2 | 2 |
S4 | 1 | 1 |
S5 | 3 | 3 |
S6 | 8 | 8 |
S7 | 6 | 6 |
S8 | 9 | 9 |
S9 | 7 | 7 |
S10 | 4 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leong, W.Y.; Wong, K.Y.; Wong, W.P. A New Integrated Multi-Criteria Decision-Making Model for Resilient Supplier Selection. Appl. Syst. Innov. 2022, 5, 8. https://doi.org/10.3390/asi5010008
Leong WY, Wong KY, Wong WP. A New Integrated Multi-Criteria Decision-Making Model for Resilient Supplier Selection. Applied System Innovation. 2022; 5(1):8. https://doi.org/10.3390/asi5010008
Chicago/Turabian StyleLeong, Wan Yee, Kuan Yew Wong, and Wai Peng Wong. 2022. "A New Integrated Multi-Criteria Decision-Making Model for Resilient Supplier Selection" Applied System Innovation 5, no. 1: 8. https://doi.org/10.3390/asi5010008
APA StyleLeong, W. Y., Wong, K. Y., & Wong, W. P. (2022). A New Integrated Multi-Criteria Decision-Making Model for Resilient Supplier Selection. Applied System Innovation, 5(1), 8. https://doi.org/10.3390/asi5010008