Open AccessArticle
Exploring Continental and Submerged Paleolandscapes at the Pre-Neolithic Site of Ouriakos, Lemnos Island, Northeastern Aegean, Greece
by
Myrsini Gkouma, Panagiotis Karkanas, Olga Koukousioura, George Syrides, Areti Chalkioti, Evangelos Tsakalos, Maria Ntinou and Nikos Efstratiou
Quaternary 2025, 8(3), 42; https://doi.org/10.3390/quat8030042 (registering DOI) - 1 Aug 2025
Abstract
Recent archaeological discoveries across the Aegean, Cyprus, and western Anatolia have renewed interest in pre-Neolithic seafaring and early island colonization. However, the environmental contexts that support such early coastal occupations remain poorly understood, largely due to the submergence of Pleistocene shorelines following post-glacial
[...] Read more.
Recent archaeological discoveries across the Aegean, Cyprus, and western Anatolia have renewed interest in pre-Neolithic seafaring and early island colonization. However, the environmental contexts that support such early coastal occupations remain poorly understood, largely due to the submergence of Pleistocene shorelines following post-glacial sea-level rise. This study addresses this gap through an integrated geoarchaeological investigation of the pre-Neolithic site of Ouriakos on Lemnos Island, northeastern Aegean (Greece), dated to the mid-11th millennium BCE. By reconstructing both the terrestrial and submerged paleolandscapes of the site, we examine ecological conditions, resource availability, and sedimentary processes that shaped human activity and site preservation. Employing a multiscale methodological approach—combining bathymetric survey, geomorphological mapping, soil micromorphology, geochemical analysis, and Optically Stimulated Luminescence (OSL) dating—we present a comprehensive framework for identifying and interpreting early coastal settlements. Stratigraphic evidence reveals phases of fluvial, aeolian, and colluvial deposition associated with an alternating coastline. The core findings reveal that Ouriakos was established during a phase of environmental stability marked by paleosol development, indicating sustained human presence. By bridging terrestrial and marine data, this research contributes significantly to the understanding of human coastal mobility during the Pleistocene–Holocene transition.
Full article
►▼
Show Figures