Geomagnetic Secular Variation Models for Latitude Scaling of Cosmic Ray Flux and Considerations for 10Be Exposure Dating of Laurentide Ice Sheet Retreat
Abstract
1. Introduction
2. Scaling 10Be Production with Dipole Moment, Latitude, and Altitude
2.1. Variations with Dipole Moment
2.2. Variations with Altitude and Geomagnetic Latitude
2.3. Latitudinal Variations with Secular Variation in Directions
3. CRONUS-Earth Primary 10Be Calibration Sites
4. Discussion
5. Conclusions
- Reported 10Be exposure ages of ~25 ka for the retreat of the southeastern LIS margin in North America are anomalously old for the tempo of deglaciation compared to sea-level and deep-sea sediment oxygen isotope records, as well as 14C AMS dates on terrestrial plant macrofossils in LIS basal deglacial clay deposits in the same areas, which range back to only ~16 cal ka. This age discrepancy prompted our reevaluation of geomagnetic field modulation of cosmic ray flux as a potential contributing factor.
- CRONUS-Earth identified four primary calibration sites for cosmogenic 10Be production in quartz in rock surfaces (at ~9.7, 11.7, 12.3, and 18.2 ka in age), and whose results from a variety of geographic locations require scaling to the LIS terminal moraine locale in terms of altitude and of geomagnetic latitude, including secular variation in dipole moment.
- Over the time frame of a few ka to about 25 ka or longer, empirical and statistical models of geomagnetic secular variation suggest that a geocentric axial dipole provides a good approximation to the time-averaged field; for latitude scaling of cosmic ray flux, geomagnetic latitude can thus be assumed to be equivalent to geographic latitude, but the effect of dispersion in the geomagnetic directions (e.g., as in the statistical model TK03) needs to be taken into account.
- Over the same time frame of a few ka to about 25 ka or longer, the best available records show there are some large secular changes in axial dipole moment, but the cumulative effects relevant to 10Be exposure dating are within about ±5% of the present dipole moment.
- Points #3 & #4 above indicate that the geomagnetic latitude and dipole moment at a given site can be considered to be time-invariant over a time frame of a few ka to at least 25 ka, but the effects of latitudinal scaling will still depend on which of the seven CRONUS-Earth schemes is employed (i.e., based on empirical neutron monitor data or analytical approximations).
- Application of two representative scaling schemes (St and De) with the updated geomagnetic secular variation models for the four CRONUS-Earth primary calibration sites reduces the published 10Be exposure age estimate for the LIS terminal moraine by only up to ~10% and, thus, does not resolve the age discrepancy.
- The 10Be inheritance from previous exposure that was not erased by subglacial erosion becomes a leading potential source of age bias that could be gauged by additional sampling of shielded surfaces in individual boulders and, as suggested by several reviewers, measurements of additional cosmogenic nuclides such as in situ cosmogenic 14C. The objective would be to make 10Be exposure dating less reliant on old bulk 14C dates and more on internal controls for assessing accuracy as a geochronological tool.
- More generally, constraints on long-term changes in 10Be production rates extending into the LGM (including possible solar modulation) and that consider glacio-eustatically lowered sea level (and corresponding reduced air pressure compared to present-day site altitude) would benefit from well-dated primary calibration sites older than the oldest presently available at ~18 ka.
- In the meantime, we maintain that 14C AMS dates that are invariably no older than 16 cal ka for terrestrial plant macrofossils in the earliest deglacial sediments provide a more coherent age estimate for the LIS’s retreat than the currently proposed 10Be exposure dates of ~25 ka.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lisiecki, L.E.; Raymo, M.E. A Pliocene-Pleistocene stack of 57 globally distributed benthic d18O records. Paleoceanography 2005, 20, PA1003. [Google Scholar]
- Tarasov, L.; Dyke, A.S.; Neal, R.M.; Peltier, W.R. A data-calibrated distribution of deglacial chronologies for the North American ice complex from glaciological modeling. Earth Planet. Sci. Lett. 2012, 315–316, 30–40. [Google Scholar] [CrossRef]
- Clark, P.U.; Mix, A.C. Ice sheets and sea level of the Last Glacial Maximum. Quat. Sci. Rev. 2002, 21, 1–7. [Google Scholar] [CrossRef]
- Lambeck, K.; Rouby, H.; Purcell, A.; Sun, Y.; Sambridge, M. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc. Natl. Acad. Sci. USA 2014, 111, 15296. [Google Scholar] [CrossRef] [PubMed]
- Carlson, A.E.; Clark, P.U. Ice sheet sources of sea level rise and freshwater discharge during the last deglaciation. Rev. Geophys. 2012, 50, RG4007. [Google Scholar] [CrossRef]
- Keigwin, L.D.; Jones, G.A.; Lehman, S.J.; Boyle, E.A. Deglacial meltwater discharge, North Atlantic Deep Circulation, and abrupt climate change. J. Geophys. Res. Ocean 1991, 96, 16811–16826. [Google Scholar] [CrossRef]
- Flower, B.P.; Hastings, D.W.; Hill, H.W.; Quinn, T.M. Phasing of deglacial warming and Laurentide Ice Sheet meltwater in the Gulf of Mexico. Geology 2004, 32, 597–600. [Google Scholar] [CrossRef]
- Yanchilina, A.G.; Ryan, W.B.F.; Kenna, T.C.; McManus, J.F. Meltwater floods into the Black and Caspian Seas during Heinrich Stadial 1. Earth-Sci. Rev. 2019, 198, 102931. [Google Scholar] [CrossRef]
- Peteet, D.M.; Beh, M.; Orr, C.; Kurdyla, D.; Nichols, J.; Guilderson, T. Delayed deglaciation or extreme Arctic conditions 21-16 cal. kyr at southeastern Laurentide Ice Sheet margin? Geophys. Res. Lett. 2012, 39, L11706. [Google Scholar] [CrossRef]
- Corbett, L.B.; Bierman, P.R.; Stone, B.D.; Caffee, M.W.; Larsen, P.L. Cosmogenic nuclide age estimate for Laurentide Ice Sheet recession from the terminal moraine, New Jersey, USA, and constraints on latest Pleistocene ice sheet history. Quat. Res. 2017, 87, 482–498. [Google Scholar] [CrossRef]
- Paillard, D.; Labeyrie, L.; Yiou, P. Macintosh program performs time-series analysis. Eos Trans. AGU 1996, 77, 379. [Google Scholar] [CrossRef]
- Balco, G.; Stone, J.O.H.; Porter, S.C.; Caffee, M.W. Cosmogenic-nuclide ages for New England coastal moraines, Martha’s Vineyard and Cape Cod, Massachusetts, USA. Quat. Sci. Rev. 2002, 21, 2127–2135. [Google Scholar] [CrossRef]
- Balco, G.; Schaefer, J.M. Cosmogenic-nuclide and varve chronologies for the deglaciation of southern New England. Quat. Geochronol. 2006, 1, 15–28. [Google Scholar] [CrossRef]
- Balco, G.; Briner, J.; Finkel, R.C.; Rayburn, J.A.; Ridge, J.C.; Schaefer, J.M. Regional beryllium-10 production rate calibration for late-glacial northeastern North America. Quat. Geochronol. 2009, 4, 93–107. [Google Scholar] [CrossRef]
- Balter-Kennedy, A.; Schaefer, J.M.; Balco, G.; Kelly, M.A.; Kaplan, M.R.; Schwartz, R.; Oakley, B.; Young, N.E.; Hanley, J.; Varuolo-Clarke, A.M. The Laurentide Ice Sheet in southern New England and New York during and at the end of the Last Glacial Maximum: A cosmogenic-nuclide chronology. Clim. Past 2024, 20, 2167–2190. [Google Scholar] [CrossRef]
- Harmon, K. Late Pleistocene Forest Succession in Northern New Jersey; Rutgers University: New Brunswick, NJ, USA, 1968; p. 203. [Google Scholar]
- Cotter, J.F.P. The Minimum Age of the Woodfordian Deglaciation of Northeastern Pennsylvania and Northwestern New Jersey; Lehigh University: Bethlehem, PA, USA, 1983; p. 159. [Google Scholar]
- Stone, B.; Reimer, G.; Pardi, R. Revised stratigraphy and history of glacial Lake Passaic, New Jersey. Geol. Soc. Am. Abstr. Programs (Northeast. Sect. Meet.) 1989, 21, 69. [Google Scholar]
- Sirkin, L.; Stuckenrath, R. The Port Washingtonian warm interval in the northern Atlantic coastal plain. Geol. Soc. Am. Bull. 1980, 91, 332–336. [Google Scholar] [CrossRef]
- Peteet, D.M.; Daniels, R.A.; Heusser, L.E.; Vogel, J.S.; Southon, J.R.; Nelson, D.E. Late-glacial pollen, macrofossils and fish remains in Northeastern, USA: The Younger Dryas oscillation. Quat. Sci. Rev. 1993, 12, 597–612. [Google Scholar] [CrossRef]
- Dalton, A.S.; Dulfer, H.E.; Margold, M.; Heyman, J.; Clague, J.J.; Froese, D.G.; Gauthier, M.S.; Hughes, A.L.C.; Jennings, C.E.; Norris, S.L.; et al. Deglaciation of the North American ice sheet complex in calendar years based on a comprehensive database of chronological data: NADI-1. Quat. Sci. Rev. 2023, 321, 108345. [Google Scholar] [CrossRef]
- Birks, H. The importance of plant macrofossils in late-glacial climatic reconstructions: An example from western Norway. Quat. Sci. Rev. 1993, 12, 719–726. [Google Scholar] [CrossRef]
- Zimmerman, S.; Wahl, D. Holocene paleoclimate change in the western US: The importance of chronology in discerning patterns and drivers. Quat. Sci. Rev. 2020, 246, 106487. [Google Scholar] [CrossRef]
- Peteet, D.M.; Vogel, J.S.; Nelson, D.E.; Southon, J.R.; Nickmann, R.J.; Heusser, L.E. Younger Dryas climatic reversal in northeastern USA? AMS ages for an old problem. Quat. Res. 1990, 33, 219–230. [Google Scholar] [CrossRef]
- Hajdas, I.; Ivy, S.D.; Beer, J.; Bonani, G.; Imboden, D.; Lotter, A.F.; Sturm, M.; Suter, M. AMS radiocarbon dating and varve chronology of Lake Soppensee e 6000 to 12000 14C years BP. Clim. Dyn. 1993, 9, 107e116. [Google Scholar] [CrossRef]
- Grimm, E.C.; Maher, L.J.; Nelson, D.M. The magnitude of error in conventional bulk-sediment radiocarbon dates from central North America. Quat. Res. 2009, 72, 301–308. [Google Scholar] [CrossRef]
- Gaglioti, B.V.; Mann, D.H.; Jones, B.M.; Pohlman, J.W.; Kunz, M.L.; Wooller, M.J. Radiocarbon age-offsets in an arctic lake reveal the long-term response of permafrost carbon to climate change. J. Geophys. Res. Biogeosci 2014, 119, 1630–1651. [Google Scholar] [CrossRef]
- Strunk, A.; Olsen, J.; Sanei, H.; Rudra, A.; Larsen, N.K. Improving the reliability of bulk sediment radiocarbon dating. Quat. Sci. Rev. 2020, 242, 106442. [Google Scholar] [CrossRef]
- MacDonald, G.M.; Beukens, R.P.; Kieser, W.E.; Vitt, D.H. Comparative radiocarbon dating of terrestrial plant macrofossils and aquatic moss from the “ice-free corridor” of western Canada. Geology 1987, 15, 837–840. [Google Scholar] [CrossRef]
- Birks, H.H. Plant macrofossils. In Tracking Environmental Change Using Lake Sediments; Smol, J.P., Birks, H.J.B., Last, W.M., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002; Volume 3: Terrestrial, Algal, and Siliceous Indicators, pp. 49–74. [Google Scholar]
- Marty, J.; Myrbo, A. Radiocarbon dating suitability of aquatic plant macrofossils. J. Paleolimnol. 2014, 52, 435–443. [Google Scholar] [CrossRef]
- Stanford, S.D.; Stone, B.D.; Ridge, J.C.; Witte, R.W.; Pardi, R.R.; Reimer, G.E. Chronology of Laurentide glaciation in New Jersey and the New York City area, United States. Quat. Res. 2021, 99, 142–167. [Google Scholar] [CrossRef]
- Halsted, C.T.; Bierman, P.R.; Shakun, J.D.; Davis, P.T.; Corbett, L.B.; Drebber, J.S.; Ridge, J.C. A critical re-analysis of constraints on the timing and rate of Laurentide Ice Sheet recession in the northeastern United States. J. Quat. Sci. 2024, 39, 54–69. [Google Scholar] [CrossRef]
- Ridge, J.C.; Balco, G.; Bayless, R.L.; Beck, C.C.; Carter, L.B.; Dean, J.L.; Voytek, E.B.; Wei, J.H. The new North American Varve Chronology: A precise record of southeastern Laurentide Ice Sheet deglaciation and climate, 18.2–12.5 kyr BP, and correlations with Greenland ice core records. Am. J. Sci. 2012, 312, 685–722. [Google Scholar] [CrossRef]
- Francus, P.; Bradley, R.S.; Lewis, T.; Abbott, M.; Retelle, M.; Stoner, J.S. Limnological and sedimentary processes at Sawtooth Lake, Canadian High Arctic, and their influence on varve formation. J. Paleolimnol. 2008, 40, 963–985. [Google Scholar] [CrossRef]
- Bentley, M.J.; Christoffersen, P.; Hodgson, D.A.; Smith, A.M.; Tulaczyk, S.; Brocq, A.M.L. Subglacial Lake Sediments and Sedimentary Processes: Potential Archives of Ice Sheet Evolution, Past Environmental Change, and the Presence of Life. In Antarctic Subglacial Aquatic Environments; Siegert, M.J., Kennicutt, M.C., II, Bindschadler, R.A., Eds.; American Geophysical Union: Washington, DC, USA, 2011; Volume Geophysical Monograph Series 192, pp. 83–110. [Google Scholar]
- Kasanke, S.A.; Walker, D.A.; Chapin Iii, F.S.; Mann, D.H. Plant succession on glacial moraines in the Arctic Brooks Range along a >125,000-year glacial chronosequence/toposequence. Arct. Antarct. Alp. Res. 2023, 55, 2178151. [Google Scholar] [CrossRef]
- Cooper, W.S. The recent ecological history of Glacier Bay, Alaska. II. The present vegetation cycle. Ecology 1923, 4, 223–246. [Google Scholar] [CrossRef]
- Chapin, F.S.; Walker, L.R.; Fastie, C.L.; Sharman, L.C. Mechanisms of Primary Succession Following Deglaciation at Glacier Bay, Alaska. Ecol. Monogr. 1994, 64, 149–175. [Google Scholar] [CrossRef]
- Hodkinson, I.D.; Coulson, S.J.; Webb, N.R. Community Assembly along Proglacial Chronosequences in the High Arctic: Vegetation and Soil Development in North-West Svalbard. J. Ecol. 2003, 91, 651–663. [Google Scholar] [CrossRef]
- Fickert, T.; Friend, D.; Grüninger, F.; Molnia, B.; Richter, M. Did Debris-Covered Glaciers Serve as Pleistocene Refugia for Plants? A New Hypothesis Derived from Observations of Recent Plant Growth on Glacier Surfaces. Arct. Antarct. Alp. Res. 2007, 39, 245–257. [Google Scholar] [CrossRef]
- Nishiizumi, K.; Winterer, E.L.; Kohl, C.P.; Klein, J.; Middleton, R.; Lal, D.; Arnold, J.R. Cosmic ray production rates of 10Be and 26Al in quartz from glacially polished rocks. J. Geophys. Res. Solid Earth 1989, 94, 17907–17915. [Google Scholar] [CrossRef]
- Lal, D. Cosmic ray labeling of erosion surfaces: In situ nuclide production rates and erosion models. Earth Planet. Sci. Lett. 1991, 104, 424–439. [Google Scholar] [CrossRef]
- Gosse, J.C.; Phillips, F.M. Terrestrial in situ cosmogenic nuclides: Theory and application. Quat. Sci. Rev. 2001, 20, 1475–1560. [Google Scholar] [CrossRef]
- Korschinek, G.; Bergmaier, A.; Faestermann, T.; Gerstmann, U.C.; Knie, K.; Rugel, G.; Wallner, A.; Dillmann, I.; Dollinger, G.; von Gostomski, C.L.; et al. A new value for the half-life of 10Be by Heavy-Ion Elastic Recoil Detection and liquid scintillation counting. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2010, 268, 187–191. [Google Scholar] [CrossRef]
- Balco, G. Production rate calculations for cosmic-ray-muon-produced 10Be and 26Al benchmarked against geological calibration data. Quat. Geochronol. 2017, 39, 150–173. [Google Scholar] [CrossRef]
- Pierre Auger Collaboration; Aab, A.; Abreu, P.; Aglietta, M.; Al Samarai, I.; Albuquerque, I.F.M.; Allekotte, I.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; et al. The Pierre Auger Collaboration. Science 2017, 357, 1266. [Google Scholar] [CrossRef]
- Lal, D.; Peters, B. Cosmic ray produced radioactivity on the Earth. In Handbuch der Physik; Sitte, K., Ed.; Springer: New York, NY, USA, 1967; pp. 551–612. [Google Scholar]
- Lal, D. Theoretically expected variations in the terrestrial cosmic ray production rates of isotopes. In Solar-Terrestrial Relationships and the Earth Environment in the Last Millennia, Proceedings Fermi School Physics 95th; Castagnoli, G.G., Ed.; Italian Physical Society, Varenna on Lake Como: Amsterdam, Netherlands, 1988; pp. 216–233. [Google Scholar]
- Elsasser, W.; Ney, E.P.; Winckler, J.R. Cosmic-ray intensity and geomagnetism. Nature 1956, 178, 1226–1227. [Google Scholar] [CrossRef]
- Balco, G.; Stone, J.O.; Lifton, N.A.; Dunai, T.J. A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quat. Geochronol. 2008, 3, 174–195. [Google Scholar] [CrossRef]
- Phillips, F.M.; Argento, D.C.; Balco, G.; Caffee, M.W.; Clem, J.; Dunai, T.J.; Finkel, R.; Goehring, B.; Gosse, J.C.; Hudson, A.M.; et al. The CRONUS-Earth Project: A synthesis. Quat. Geochronol. 2016, 31, 119–154. [Google Scholar] [CrossRef]
- Marrero, S.M.; Phillips, F.M.; Borchers, B.; Lifton, N.; Aumer, R.; Balco, G. Cosmogenic nuclide systematics and the CRONUScalc program. Quat. Geochronol. 2016, 31, 160–187. [Google Scholar] [CrossRef]
- Stone, J.O. Air pressure and cosmogenic isotope production. J. Geophys. Res. Solid Earth 2000, 105, 23753–23759. [Google Scholar] [CrossRef]
- Pavón-Carrasco, F.J.; Osete, M.L.; Torta, J.M.; De Santis, A. A geomagnetic field model for the Holocene based on archaeomagnetic and lava flow data. Earth Planet. Sci. Lett. 2014, 388, 98–109. [Google Scholar] [CrossRef]
- Borchers, B.; Marrero, S.; Balco, G.; Caffee, M.; Goehring, B.; Lifton, N.; Nishiizumi, K.; Phillips, F.; Schaefer, J.; Stone, J. Geological calibration of spallation production rates in the CRONUS-Earth project. Quat. Geochronol. 2016, 31, 188–198. [Google Scholar] [CrossRef]
- Desilets, D.; Zreda, M. On scaling cosmogenic nuclide production rates for altitude and latitude using cosmic-ray measurements. Earth Planet. Sci. Lett. 2001, 193, 213–225. [Google Scholar] [CrossRef]
- Lifton, N.; Sato, T.; Dunai, T.J. Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes. Earth Planet. Sci. Lett. 2014, 386, 149–160. [Google Scholar] [CrossRef]
- Channell, J.; Hodell, D.A.; Crowhurst, S.J.; Skinner, L.C.; Muscheler, R. Relative paleointensity (RPI) in the latest Pleistocene (10–45 ka) and implications for deglacial atmospheric radiocarbon. Quat. Sci. Rev. 2018, 191, 57–72. [Google Scholar] [CrossRef]
- Channell, J.E.T.; Vigliotti, L. The role of geomagnetic field intensity in Late Quaternary evolution of humans and large mammals. Geophys. 2019, 57, 709–738. [Google Scholar] [CrossRef]
- Muscheler, R.; Beer, J.; Kubik, P.W.; Synal, H.A. Geomagnetic field intensity during the last 60,000 years based on 10Be and 36Cl from the Summit ice cores and 14C. Quat. Sci. Rev. 2005, 24, 1849–1860. [Google Scholar] [CrossRef]
- Nilsson, A.; Nguyen, L.; Panovska, S.; Herbst, K.; Zheng, M.; Suttie, N.; Muscheler, R. Holocene solar activity inferred from global and hemispherical cosmic-ray proxy records. Nat. Geosci. 2024, 17, 654–659. [Google Scholar] [CrossRef]
- Panovska, S.; Poluianov, S.; Gao, J.; Korte, M.; Mishev, A.; Shprits, Y.Y.; Usoskin, I. Effects of Global Geomagnetic Field Variations Over the Past 100,000 Years on Cosmogenic Radionuclide Production Rates in the Earth’s Atmosphere. J. Geophys. Res. Space Phys. 2023, 128, e2022JA031158. [Google Scholar] [CrossRef]
- Steinhilber, F.; Abreu, J.A.; Beer, J.; Brunner, I.; Christl, M.; Fischer, H.; Heikkilä, U.; Kubik, P.W.; Mann, M.; McCracken, K.G.; et al. 9400 years of cosmic radiation and solar activity from ice cores and tree rings. Proc. Natl. Acad. Sci. USA 2012, 109, 5967–5971. [Google Scholar] [CrossRef]
- Usoskin, I.G. A history of solar activity over millennia. Living Rev. Sol. Phys. 2017, 14, 1–97. [Google Scholar] [CrossRef]
- Panovska, S.; Korte, M.; Constable, C.G. One hundred thousand years of geomagnetic field evolution. Rev. Geophys. 2019, 57, 1289–1337. [Google Scholar] [CrossRef]
- Desilets, D.; Zreda, M.; Prabu, T. Extended scaling factors for in situ cosmogenic nuclides: New measurements at low latitude. Earth Planet. Sci. Lett. 2006, 246, 265–276. [Google Scholar] [CrossRef]
- Desilets, D.; Zreda, M. Spatial and temporal distribution of secondary cosmic-ray nucleon intensities and applications to in situ cosmogenic dating. Earth Planet. Sci. Lett. 2003, 206, 21–42. [Google Scholar] [CrossRef]
- R_Core_Team. R: A Language and Environment for Statistical Computing. 2018. Available online: http://www.r-project.org (accessed on 24 August 2025).
- Tauxe, L.; Kent, D.V. A simplified statistical model for the geomagnetic field and the detection of shallow bias in paleomagnetic inclinations: Was the ancient magnetic field dipolar? In Timescales of the Paleomagnetic Field, Geophysical Monograph 145; Channell, J.E.T., Kent, D.V., Lowrie, W., Meert, J., Eds.; American Geophysical Union: Washington, DC, USA, 2004; pp. 101–116. [Google Scholar]
- Lal, D.; Arnold, J.R.; Honda, M. Cosmic-Ray Production Rates of Be7 in Oxygen, and P32, P33, S35 in Argon at Mountain Altitudes. Phys. Rev. 1960, 118, 1626–1632. [Google Scholar] [CrossRef]
- Clark, D.H.; Bierman, P.R.; Larsen, P. Improving in Situ Cosmogenic Chronometers. Quat. Res. 1995, 44, 367–377. [Google Scholar] [CrossRef]
- Opdyke, N.D.; Henry, K.W. A test of the dipole hypothesis. Earth Planet. Sci. Lett. 1969, 6, 139–151. [Google Scholar] [CrossRef]
- Schneider, D.A.; Kent, D.V. The time-averaged paleomagnetic field. Rev. Geophys. 1990, 28, 71–96. [Google Scholar] [CrossRef]
- Alexandrescu, M.; Courtillot, V.; Le Mouel, J.-L. High-resolution secular variation of the geomagnetic field in western Europe over the last 4 centuries: Comparison and integration of historical data from Paris and London. J. Geophys. Res. 1997, 102, 20245–20258. [Google Scholar] [CrossRef]
- Gallet, Y.; Genevey, A.; Le Goff, M. Three millennia of directional variation of the Earth’s magnetic field in western Europe as revealed by archeological artefacts. Phys. Earth Planet. Inter. 2002, 131, 81–89. [Google Scholar] [CrossRef]
- Lifton, N. Implications of two Holocene time-dependent geomagnetic models for cosmogenic nuclide production rate scaling. Earth Planet. Sci. Lett. 2016, 433, 257–268. [Google Scholar] [CrossRef]
- Butler, R.F. Paleomagnetism: Magnetic Domains to Geologic Terranes (2004 Electronic Edition); Blackwell Scientific Publications: Boston, MA, USA, 1992; p. 319. [Google Scholar]
- Johnson, C.L.; Constable, C.G.; Tauxe, L.; Barendregt, R.; Brown, L.L.; Coe, R.S.; Layer, P.; Mejia, V.; Opdyke, N.D.; Singer, B.S.; et al. Recent investigations of the 0–5 Ma geomagnetic field recorded by lava flows. Geochem. Geophys. Geosyst. 2008, 9, Q04032. [Google Scholar] [CrossRef]
- Cromwell, G.; Johnson, C.L.; Tauxe, L.; Constable, C.G.; Jarboe, N.A. PSV10: A Global Data Set for 0–10 Ma Time-Averaged Field and Paleosecular Variation Studies. Geochem. Geophys. Geosyst. 2018, 19, 1533–1558. [Google Scholar] [CrossRef]
- Constable, C.G.; Parker, R.L. Statistics of the geomagnetic secular variation for the past 5 m.y. J. Geophys. Res. 1988, 93, 11569–11581. [Google Scholar] [CrossRef]
- McElhinny, M.W.; McFadden, P.L. Paleosecular variation over the past 5 Myr based on a new generalized database. Geophys. J. Int. 1997, 131, 240–252. [Google Scholar] [CrossRef]
- Martin, L.C.P.; Blard, P.H.; Balco, G.; Lavé, J.; Delunel, R.; Lifton, N.; Laurent, V. The CREp program and the ICE-D production rate calibration database: A fully parameterizable and updated online tool to compute cosmic-ray exposure ages. Quat. Geochronol. 2017, 38, 25–49. [Google Scholar] [CrossRef]
- Putnam, A.E.; Schaefer, J.M.; Barrell, D.J.A.; Vandergoes, M.; Denton, G.H.; Kaplan, M.R.; Finkel, R.C.; Schwartz, R.; Goehring, B.M.; Kelley, S.E. In situ cosmogenic 10Be production-rate calibration from the Southern Alps, New Zealand. Quat. Geochronol. 2010, 5, 392–409. [Google Scholar] [CrossRef]
- Lifton, N.; Caffee, M.; Finkel, R.; Marrero, S.; Nishiizumi, K.; Phillips, F.M.; Goehring, B.; Gosse, J.; Stone, J.; Schaefer, J.; et al. In situ cosmogenic nuclide production rate calibration for the CRONUS-Earth project from Lake Bonneville, Utah, shoreline features. Quat. Geochronol. 2015, 26, 56–69. [Google Scholar] [CrossRef]
- Phillips, F.M.; Kelly, M.A.; Hudson, A.M.; Stone, J.O.H.; Schaefer, J.; Marrero, S.M.; Fifield, L.K.; Finkel, R.; Lowell, T. CRONUS-Earth calibration samples from the Huancané II moraines, Quelccaya Ice Cap, Peru. Quat. Geochronol. 2016, 31, 220–236. [Google Scholar] [CrossRef]
- Staiger, J.; Gosse, J.; Toracinta, R.; Oglesby, B.; Fastook, J.; Johnson, J. Atmospheric scaling of cosmogenic nuclide production: Climate effect. J. Geophys. Res. 2007, 112, BO2205. [Google Scholar] [CrossRef]
- Niu, L.; Knorr, G.; Krebs-Kanzow, U.; Gierz, P.; Lohmann, G. Rapid Laurentide Ice Sheet growth preceding the Last Glacial Maximum due to summer snowfall. Nat. Geosci. 2024, 17, 440–449. [Google Scholar] [CrossRef]
- Wright, H.E.; Stefanova, I. Plant trash in the basal sediments of glacial lakes. Acta Palaeobot. 2004, 44, 141–146. [Google Scholar]
- Słowiński, M.; Błaszkiewicz, M.; Brauer, A.; Noryśkiewicz, B.; Ott, F.; Tyszkowski, S. The role of melting dead ice on landscape transformation in the early Holocene in Tuchola Pinewoods, North Poland. Quat. Int. 2015, 388, 64–75. [Google Scholar] [CrossRef]
- Balco, G. Contributions and unrealized potential contributions of cosmogenic-nuclide exposure dating to glacier chronology, 1990–2010. Quat. Sci. Rev. 2011, 30, 3–27. [Google Scholar] [CrossRef]
- Hallet, B. A Theoretical Model of Glacial Abrasion. J. Glaciol. 1979, 23, 39–50. [Google Scholar] [CrossRef]
Latitude |°| | St Scaling | De Scaling | |||
---|---|---|---|---|---|
GAD | SHA.DIF.14k | K27 | TK03 | ||
0 | 0.5873 | 0.5383 | 0.5402 | 0.5510 | 0.5503 |
5 | 0.5398 | 0.5428 | 0.5540 | 0.5524 | |
10 | 0.5992 | 0.5454 | 0.5507 | 0.5630 | 0.5592 |
15 | 0.5581 | 0.5666 | 0.5800 | 0.5745 | |
20 | 0.6773 | 0.5819 | 0.5942 | 0.6050 | 0.5998 |
25 | 0.6214 | 0.6371 | 0.6410 | 0.6373 | |
30 | 0.8300 | 0.6802 | 0.6972 | 0.6890 | 0.6921 |
35 | 0.7589 | 0.7719 | 0.7480 | 0.7502 | |
40 | 0.9368 | 0.8499 | 0.8512 | 0.8150 | 0.8091 |
45 | 0.9328 | 0.9202 | 0.8830 | 0.8662 | |
50 | 1.0156 | 0.9826 | 0.9670 | 0.9410 | 0.9057 |
55 | 0.9981 | 0.9905 | 0.9800 | 0.9346 | |
60 | 1.0022 | 0.9999 | 0.9984 | 0.9960 | 0.9529 |
65 | 1.0000 | 0.9999 | 1.0000 | 0.9662 | |
70 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9745 |
75 | 1.0000 | 1.0000 | 1.0000 | 0.9815 | |
80 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9861 |
85 | 1.0000 | 1.0000 | 1.0000 | 0.9876 | |
90 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9899 |
Primary 10Be Calibration Sites | LIS Terminal Moraine | ||||||
---|---|---|---|---|---|---|---|
MR | PPT | SCOT | HU08 | AL | |||
Site Parameters | |||||||
Latitude, °N | −43.6 | 41.3 | 57.4 | −13.9 | 41.0 | ||
Longitude, °E | 170.6 | −112.5 | −5.6 | −70.9 | −74.6 | ||
Altitude, m | 1028 | 1603 | 136 | 4857 | 328 | ||
Air pressure (ap), hPa | 895.70 | 834.93 | 997.02 | 550.60 | 974.46 | ||
Atmospheric depth (x), g cm−2 | 913.35 | 851.38 | 1016.66 | 561.45 | 993.66 | ||
Number sampling sites | 7 | 6 | 8 | 10 | 13 | ||
C (10Be conc.), atoms g−1 | 87,100 | 275,000 | 57,275 | 559,650 | 122,000 | ||
Age, calendar years ago | 9630 | 18,360 | 11,700 | 12,300 | TBD | ||
P (10Be prod. rate), atoms g−1 y−1 | 9.04 | 14.98 | 4.90 | 45.50 | TBD | ||
Scaling Parameters | Mean ± 1σ | 10Be ka ± 1σ | |||||
St | |||||||
F = S.lambda | 2.35 | 3.52 | 1.16 | 12.41 | 1.28 | ||
CSLHL: C/F, atoms g−1 | 37,064 | 78,125 | 49,430 | 45,097 | 95,313 | ||
PSLHL: C/F/age, atoms g−1 y−1 | 3.85 | 4.26 | 4.22 | 3.67 | 4.00 ± 0.29 | 23.8 ± 1.7 | |
Mean PSLHL w/o HU08, atoms g−1 y−1 | 4.11 ± 0.23 | 23.2 ± 1.3 | |||||
De-GAD | |||||||
Rc | 4.48 | 5.30 | 1.36 | 14.07 | 5.41 | ||
f(Rc) | 0.91 | 0.87 | 1.00 | 0.56 | 0.87 | ||
f(x) | 2.46 | 3.88 | 1.13 | 26.46 | 1.34 | ||
F = f(Rc) × f(x) | 2.24 | 3.39 | 1.13 | 14.67 | 1.16 | ||
CSLHL: C/F, atoms g−1 | 38,884 | 81,119 | 50,538 | 38,141 | 104,865 | ||
PSLHL: C/F/age, atoms g−1 y−1 | 4.04 | 4.42 | 4.32 | 3.10 | 3.97 ± 0.60 | 26.4 ± 4.0 | |
Mean PSLHL w/o HU08, atoms g−1 y−1 | 4.26 ± 0.20 | 24.6 ± 1.1 | |||||
De-TK03 | |||||||
Rc | 5.83 | 6.44 | 2.84 | 13.49 | 6.62 | ||
f(Rc) | 0.85 | 0.82 | 0.95 | 0.57 | 0.81 | ||
f(x) | 2.43 | 3.84 | 1.13 | 26.77 | 1.34 | ||
F = f(Rc) × f(x) | 2.06 | 3.17 | 1.07 | 15.27 | 1.10 | ||
CSLHL: C/F, atoms g−1 | 42,286 | 86,855 | 53,558 | 36,641 | 111,101 | ||
PSLHL: C/F/age, atoms g−1 y−1 | 4.39 | 4.73 | 4.58 | 2.98 | 4.17 ± 0.81 | 26.6 ± 5.2 | |
Mean PSLHL w/o HU08, atoms g−1 y−1 | 4.57 ± 0.17 | 24.3 ± 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kent, D.V.; Lanci, L.; Peteet, D.M. Geomagnetic Secular Variation Models for Latitude Scaling of Cosmic Ray Flux and Considerations for 10Be Exposure Dating of Laurentide Ice Sheet Retreat. Quaternary 2025, 8, 47. https://doi.org/10.3390/quat8030047
Kent DV, Lanci L, Peteet DM. Geomagnetic Secular Variation Models for Latitude Scaling of Cosmic Ray Flux and Considerations for 10Be Exposure Dating of Laurentide Ice Sheet Retreat. Quaternary. 2025; 8(3):47. https://doi.org/10.3390/quat8030047
Chicago/Turabian StyleKent, Dennis V., Luca Lanci, and Dorothy M. Peteet. 2025. "Geomagnetic Secular Variation Models for Latitude Scaling of Cosmic Ray Flux and Considerations for 10Be Exposure Dating of Laurentide Ice Sheet Retreat" Quaternary 8, no. 3: 47. https://doi.org/10.3390/quat8030047
APA StyleKent, D. V., Lanci, L., & Peteet, D. M. (2025). Geomagnetic Secular Variation Models for Latitude Scaling of Cosmic Ray Flux and Considerations for 10Be Exposure Dating of Laurentide Ice Sheet Retreat. Quaternary, 8(3), 47. https://doi.org/10.3390/quat8030047