Design of Experiment to Determine the Effect of the Geometric Variables on Tensile Properties of Carbon Fiber Reinforced Polymer Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mechanical Properties of IM7 Carbon Fiber
2.2. Properties of RDM2019-053 Resin
2.3. Sizing Treatment on Carbon Fibers
2.4. CF Sample Preparation
2.5. Fiber Volume Content of Impregnated Tow Samples
2.6. Test Specimen Fabrication
2.7. Experimental Design
2.8. Design of Experiment
3. Results and Discussion
3.1. Solvent Wash Results
3.2. Recommendations for Complex Part Design
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Herbeck, L.; Wilmes, H.; Kolesnikov, B.; Kleineberg, M. Technology and design development for a CFRP fuselage. In Proceedings of the SAMPE Europe Conference, Paris, France, 29 September–17 October 2003. [Google Scholar]
- Jacobsen, G. Process and Performance Characterization of Stretch Broken Carbon Fiber Material. In Proceedings of the SAMPE ‘07: M and P—From Coast to Coast and Around the World, Baltimore, MD, USA, 3–7 June 2007. [Google Scholar]
- Janicki, J.; Bajwa, D.; Cairns, D.; Amendola, R.; Ryan, C.; Dynkin, A. Gauge length and temperature influence on the tensile properties of stretch broken carbon fiber tow. Compos. Part A Appl. Sci. Manuf. 2021, 146, 106426. [Google Scholar] [CrossRef]
- Bussetta, P.; Correia, N. Numerical forming of continuous fibre reinforced composite material: A Review. Compos. Part A 2018, 113, 12–31. [Google Scholar]
- Park, S. Carbon Fibers; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Edie, D.D.; McHugh, J.J. High Performance Carbon Fibers. In Carbon Materials for Advanced Technologies; Elsevier Science Ltd.: Amsterdam, The Netherlands, 1999; pp. 119–138. [Google Scholar]
- Hexcel Corporation. HexTow IM7 Carbon Fiber Product Data Sheet; Hexcel Corporation: Stamford, CT, USA, 2020. [Google Scholar]
- Hunstman Corporation. RDM 2019-053 Data Sheet; Hunstman Corporation: The Woodlands, TX, USA, 2020. [Google Scholar]
- Kim, D.; Centea, T.; Nutt, S. In-situ cure monitoring of an out-of-autoclave prepreg: Effects of out-time on viscosity, gelation and vitrification. Compos. Sci. Technol. 2014, 102, 132–138. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, J.; Zhao, L.; Sun, Y. Sizing agent on the carbon fibers surface and interface properties of its composites. Fibers Polym. 2015, 16, 657–663. [Google Scholar] [CrossRef]
- Nie, W.; Li, J. Effects of plasma and nitric acid treatment of carbon fibers on the mechanical properties of thermoplastic polymer composites. Mech. Compos. Mater. 2010, 46, 251–256. [Google Scholar] [CrossRef]
- Dai, Z.; Shi, F.; Zhang, B.; Li, M.; Zhang, Z. Effect of sizing on carbon fiber surface properties and fibers/epoxy interfacial adhesion. Appl. Surf. Sci. 2011, 257, 6980–6985. [Google Scholar] [CrossRef]
- Broyles, N.; Verghese, N.; Davis, R.; Lesko, J.; Riffle, J. Pultruded Carbon Fiber/Vinyl Ester Composites Processed with Different Fiber Sizing Agents. Part I: Processing and Static Mechanical Performance. J. Mater. Civ. Eng. 2005, 17, 3. [Google Scholar] [CrossRef]
- Jacobsen, G.; Schimpf, W. Process development and characterization of stretch broken carbon fibre materials. In Proceedings of the SAMPE ‘09 Spring Symposium Technical Conference, Baltimore, MD, USA, 18–21 May 2009. [Google Scholar]
- ASTM D5103-07; Standard Test Method for Length and Length Distribution of Manufactured Staple Fibers (Single-Fiber Test). ASTM International: West Conshohocken, PA, USA, 2018.
- Gibson, R. Principles of Composite Material Mechanics, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Miyauchi, M.; Ishida, Y.; Ogasawara, T.; Yokota, R. Highly soluble phenylethynyl-terminated imide oligomers based on KAPTON-type backbone structures for carbon fiber-reinforced composites with high heat resistance. Polym. J. 2013, 45, 594–600. [Google Scholar] [CrossRef]
- Janicki, J.; Egloff, M.; Amendola, R.; Ryan, C.; Bajwa, D.; Dynkin, A.; Cairns, D. Formability Characterization of Fiber Reinforced Polymer Composites Using a Novel Test Method. J. Test. Eval. 2021, 50, 2. [Google Scholar] [CrossRef]
- Wysmulski, P. Non-linear analysis of the postbuckling behaviour of eccentrically compressed composite channel-section columns. Compos. Struct. 2023, 305, 116446. [Google Scholar] [CrossRef]
- Nelson, H.L., Jr.; Granger, C.W.J. Experience with using the Box-Cox transformation when forecasting economic time series. J. Econom. 1979, 10, 57–69. [Google Scholar] [CrossRef]
- Antony, J. Design of Experiments for Engineers and Scientists; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Constantinos, S. Carbon fiber reinforced plastics in aircraft construction. J. Mater. Sci. Eng. Part A 2005, 412, 171–176. [Google Scholar]
IM7-12K | |
---|---|
Tensile Strength (GPa) | 5.7 |
Tensile Modulus (GPa) | 275.8 |
Elongation at failure | 1.8% |
Density (g/cm3) | 1.8 |
Temperature (°C) | Viscosity (Pa·s) [9] | |
---|---|---|
1 | 21 (70 °F) | >3500 |
2 | 57 (135 °F) | 791 |
3 | 82 (180 °F) | 168 |
4 | 107 (225 °F) | 25 |
5 | 121 (250 °F) | 11 |
Fiber Name | Manufacturer | Fiber Precursor | Sizing Type |
---|---|---|---|
12K Hexcel IM7-GP Cont. | Hexcel | NA | GP |
Hexcel SBCF | Hexcel | 12K Hexcel IM7 | GP |
MSU SBCF | MSU | 12K Hexcel IM7 | G |
Independent Variables | Dependent Variables | |
---|---|---|
Variables | Levels | |
Forming tool diameter (mm) | 12.7, 19, 25 | Maximum yield displacement (Δmax) Maximum Load (Fmax) |
Gap Width (mm) | 16, 28.6, 54 | |
Forming tool diameter and Gap width Combined (mm) | [12.7, 16], [12.7, 28.6], [12.7, 54], [19, 28.6], [19, 54], [25, 28.6], [25, 54] | |
Temperature (°C) | 24 ± 1 [Room temperature], 82 ± 1 (Elevated temperature) | |
Replications | N = 6 |
Fiber Type | Resin Type | Resin Volume (n = 10) | Fiber Volume (n = 10) |
---|---|---|---|
IM7-GP | RDM2019-053 | 50.1% | 49.9% |
Hexcel SBCF | RDM2019-053 | 53.6% | 46.4% |
MSU SBCF | RDM2019-053 | 67.2% | 32.8% |
IM7-GP Continuous | Hexcel SBCF | MSU SBCF | ||||
---|---|---|---|---|---|---|
Fmax (N) | Δmax (mm) | Fmax (N) (mm) | Δmax (mm) | Fmax (N) (N) | Δmax (mm) | |
Average | 442.23 | 12.71 | 424.74 | 10.64 | 198.33 | 14.31 |
Stdev. | 135.06 | 1.56 | 105.14 | 3.58 | 49.23 | 2.15 |
Source | F Value | Contribution (%) | p-Value | |
---|---|---|---|---|
Average maximum force (Fmax) for IM7-GP continuous | ||||
Gap Width (mm) | 27.78 | 38.35% | 0.00 | |
Forming tool Ø (mm) | 1.19 | 36.36% | 0.31 | |
Temperature (°C) | 49.59 | 1.26% | 0.00 | |
Average maximum yield disp. (Δmax) for IM7-GP continuous | ||||
Gap Width (mm) | 52.85 | 58.46% | 0.00 | |
Forming tool Ø (mm) | 1.27 | 1.13% | 0.29 | |
Temperature (°C) | 26.84 | 11.94% | 0.00 | |
Average maximum force (Fmax) for Hexcel SBCF | ||||
Gap Width (mm) | 41.7 | 3.23% | 0.00 | |
Forming tool Ø (mm) | 0.02 | 0.00% | 0.99 | |
Temperature (°C) | 2709.85 | 94.54% | 0.00 | |
Average maximum yield disp. (Δmax) for Hexcel SBCF | ||||
Gap Width (mm) | 35.73 | 30.22% | 0.00 | |
Forming tool Ø (mm) | 22.6 | 10.36% | 0.00 | |
Temperature (°C) | 195.14 | 44.74% | 0.00 | |
Average maximum force (Fmax) for MSU SBCF | ||||
Gap Width (mm) | 19.87 | 0.57% | 0.00 | |
Forming tool Ø (mm) | 3.23 | 0.10% | 0.05 | |
Temperature (°C) | 6511.04 | 98.37% | 0.00 | |
Average maximum yield disp. (Δmax) for MSU SBCF | ||||
Gap Width (mm) | 72.05 | 19.20% | 0.00 | |
Forming tool Ø (mm) | 0.93 | 0.23% | 0.40 | |
Temperature (°C) | 579.09 | 72.55% | 0.00 |
Source | F Value | Contribution (%) | p-Value | |
---|---|---|---|---|
Average maximum force (Fmax) for IM7-GP continuous | ||||
Forming tool_gap combined (mm) | 15.21 | 43.85% | 0.00 | |
Temperature (°C) | 54.87 | 26.36% | 0.00 | |
Maximum yield displacement (Δmax) for IM7-GP continuous | ||||
Forming tool_gap combined (mm) | 24.6 | 62.01% | 0.00 | |
Temperature (°C) | 28.43 | 11.94% | 0.00 | |
Average maximum force (Fmax) for Hexcel SBCF | ||||
Forming tool_gap combined (mm) | 15.3 | 3.26% | 0.00 | |
Temperature (°C) | 2660.97 | 94.54% | 0.00 | |
Maximum yield displacement (Δmax) for Hexcel SBCF | ||||
Forming tool_gap combined (mm) | 29.04 | 40.75% | 0.00 | |
Temperature (°C) | 191.29 | 44.74% | 0.00 | |
Average maximum force (Fmax) for MSU SBCF | ||||
Forming tool_gap combined (mm) | 7.7 | 0.70% | 0.00 | |
Temperature (°C) | 6516.37 | 98.37% | 0.00 | |
Maximum yield displacement (Δmax) for MSU SBCF | ||||
Forming tool_gap combined (mm) | 28.69 | 20.18% | 0.00 | |
Temperature (°C) | 618.72 | 72.55% | 0.00 |
IM7-GP | |
Hexcel SBCF |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janicki, J.C.; Egloff, M.C.; Bajwa, D.S.; Amendola, R.; Ryan, C.A.; Cairns, D.S. Design of Experiment to Determine the Effect of the Geometric Variables on Tensile Properties of Carbon Fiber Reinforced Polymer Composites. J. Compos. Sci. 2023, 7, 222. https://doi.org/10.3390/jcs7060222
Janicki JC, Egloff MC, Bajwa DS, Amendola R, Ryan CA, Cairns DS. Design of Experiment to Determine the Effect of the Geometric Variables on Tensile Properties of Carbon Fiber Reinforced Polymer Composites. Journal of Composites Science. 2023; 7(6):222. https://doi.org/10.3390/jcs7060222
Chicago/Turabian StyleJanicki, Joseph C., Matthew C. Egloff, Dilpreet S. Bajwa, Roberta Amendola, Cecily A. Ryan, and Douglas S. Cairns. 2023. "Design of Experiment to Determine the Effect of the Geometric Variables on Tensile Properties of Carbon Fiber Reinforced Polymer Composites" Journal of Composites Science 7, no. 6: 222. https://doi.org/10.3390/jcs7060222
APA StyleJanicki, J. C., Egloff, M. C., Bajwa, D. S., Amendola, R., Ryan, C. A., & Cairns, D. S. (2023). Design of Experiment to Determine the Effect of the Geometric Variables on Tensile Properties of Carbon Fiber Reinforced Polymer Composites. Journal of Composites Science, 7(6), 222. https://doi.org/10.3390/jcs7060222