Two Promising Methodologies for Dealing with Changes in Optical and Electrical Properties of Polymer Electrolytes (SPEs)
Abstract
:1. Introduction
2. Experimental Work
Polymer Salt Complex and Dry Solid Polymer Electrolytes (SPEs)
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dannoun, E.M.A.; Aziz, S.B.; Brza, M.A.; Al-Saeedi, S.I.; Nofal, M.M.; Mishra, K.; Abdullah, R.M.; Karim, W.O.; Hadi, J.M. Electrochemical and Ion Transport Studies of Li+ Ion-Conducting MC-Based Biopolymer Blend Electrolytes. Int. J. Mol. Sci. 2022, 23, 9152. [Google Scholar] [CrossRef]
- Hadi, J.M.; Aziz, S.B.; Brza, M.A.; Kadir, M.F.Z.; Abdulwahid, R.T.; Ali Al-Asbahi, B.; Ahmed Ali Ahmed, A. Structural and energy storage behavior of ion conducting biopolymer blend electrolytes based on methylcellulose: Dextran polymers. Alex. Eng. J. 2022, 61, 9273–9285. [Google Scholar] [CrossRef]
- Aziz, S.B.; Ali, F.; Anuar, H.; Ahamad, T.; Kareem, W.O.; Brza, M.A.; Kadir, M.F.Z.; Abu Ali, O.A.; Saleh, D.I.; Asnawi, A.S.F.M.; et al. Structural and electrochemical studies of proton conducting biopolymer blend electrolytes based on MC:Dextran for EDLC device application with high energy density. Alex. Eng. J. 2022, 61, 3985–3997. [Google Scholar] [CrossRef]
- Aziz, S.B.; Brza, M.A.; Hamsan, M.H.; Kadir, M.F.Z.; Muzakir, S.K.; Abdulwahid, R.T. Effect of ohmic-drop on electrochemical performance of EDLC fabricated from PVA:Dextran:NH4I based polymer blend electrolytes. J. Mater. Res. Technol. 2020, 9, 3734–3745. [Google Scholar] [CrossRef]
- Hamsan, M.H.; Aziz, S.B.; Azha, M.A.S.; Azli, A.A.; Shukur, M.F.; Yusof, Y.M.; Muzakir, S.K.; Manan, N.S.A.; Kadir, M.F.Z. Solid-state double layer capacitors and protonic cell fabricated with dextran from Leuconostoc mesenteroides based green polymer electrolyte. Mater. Chem. Phys. 2020, 241, 122290. [Google Scholar] [CrossRef]
- Aziz, S.B.; Hamsan, M.H.; Brza, M.A.; Kadir, M.F.Z.; Abdulwahid, R.T.; Ghareeb, H.O.; Woo, H.J. Fabrication of energy storage EDLC device based on CS:PEO polymer blend electrolytes with high Li+ ion transference number. Results Phys. 2019, 15, 102584. [Google Scholar] [CrossRef]
- Aziz, S.B.; Brza, M.A.; Mishra, K.; Hamsan, M.H.; Karim, W.O.; Abdullah, R.M.; Kadir, M.F.Z.; Abdulwahid, R.T. Fabrication of high performance energy storage EDLC device from proton conducting methylcellulose: Dextran polymer blend electrolytes. J. Mater. Res. Technol. 2020, 9, 1137–1150. [Google Scholar] [CrossRef]
- Ramesh, S.; Lu, S. Enhancement of ionic conductivity and structural properties by 1-butyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid in poly(vinylidene fluoride-hexafluoropropylene)-based polymer electrolytes. J. Appl. Polym. Sci. 2012, 126, E484–E492. [Google Scholar] [CrossRef]
- Sampathkumar, L.; Selvin, P.C.; Selvasekarapandian, S.; Perumal, P.; Chitra, R.; Muthukrishnan, M. Synthesis and characterization of biopolymer electrolyte based on tamarind seed polysaccharide, lithium perchlorate and ethylene carbonate for electrochemical applications. Ionics 2019, 25, 1067–1082. [Google Scholar] [CrossRef]
- Ng, L.S.; Mohamad, A.A. Effect of temperature on the performance of proton batteries based on chitosan–NH4NO3–EC membrane. J. Membr. Sci. 2008, 325, 653–657. [Google Scholar] [CrossRef]
- Piana, G.; Bella, F.; Geobaldo, F.; Meligrana, G.; Gerbaldi, C. PEO/LAGP hybrid solid polymer electrolytes for ambient temperature lithium batteries by solvent-free, “one pot” preparation. J. Energy Storage 2019, 26, 100947. [Google Scholar] [CrossRef]
- Sharma, K.; Arora, A.; Tripathi, S.K. Review of supercapacitors: Materials and devices. J. Energy Storage 2019, 21, 801–825. [Google Scholar]
- O’Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740. [Google Scholar] [CrossRef]
- Yu, Z.; Vlachopoulos, N.; Gorlov, M.; Kloo, L. Liquid electrolytes for dye-sensitized solar cells. Dalton Trans. 2011, 40, 10289–10303. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Fang, J.; Liu, Y.; Lin, T. Progress in nanostructured photoanodes for dye-sensitized solar cells. Front. Mater. Sci. 2016, 10, 225–237. [Google Scholar] [CrossRef]
- Mohamad, A.A. Physical properties of quasi-solid-state polymer electrolytes for dye-sensitised solar cells: A characterisation review. Sol. Energy 2019, 190, 434–452. [Google Scholar] [CrossRef]
- Gong, J.; Liang, J.; Sumnathy, K. Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials. Renew. Sustain. Energy Rev. 2012, 16, 5848–5860. [Google Scholar] [CrossRef]
- Li, B.; Wang, L.; Kang, B.; Wang, P.; Qiu, Y. Review of recent progress in solid-state dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 2006, 90, 549–573. [Google Scholar] [CrossRef]
- Wu, J.; Lan, Z.; Hao, S.; Li, P.; Lin, J.; Huang, M.; Fang, L.; Huang, Y. Progress on the electrolytes for dye-sensitized solar cells. Pure Appl. Chem. 2008, 80, 2241–2258. [Google Scholar] [CrossRef]
- Larsson, O. Polarization Characteristics in Polyelectrolyte Thin Film Capacitors: Targeting Field-Effect Transistors and Sensors, Linköping Institute of Technology. 2009. Available online: http://liu.diva-portal.org/smash/record.jsf?pid=diva2:275495 (accessed on 6 August 2020).
- Rama Mohan, K.; Achari, V.B.S.; Rao, V.V.R.N.; Sharma, A.K. Electrical and optical properties of (PEMA/PVC) polymer blend electrolyte doped with NaClO4. Polym. Test. 2011, 30, 881–886. [Google Scholar] [CrossRef]
- Jawad, M.K.; Majid, S.R.; Al-Ajaj, E.A.; Suhail, M.H. Preparation and Characterization of Poly(1-vinylpyrroli done-co-vinyl acetate)/Poly(methyl methacrylate) Polymer Electrolyte based on TPAI and KI. Adv. Phys. Theor. Appl. 2014, 29, 14–22. [Google Scholar]
- MacCallum, J.R.; Vincent, C.A. Polymer Electrolytes Review; Elsevier Applied Science Publishers: London, UK, 1987. [Google Scholar]
- Scrosati, B. Application of Electroactive Polymers; Chapman and Hall: London, UK, 1993. [Google Scholar]
- Pradhan, D.K.; Samantaray, B.K.; Choudhary, R.N.P.; Thakur, A.K. Effect of plasticizer on structure—Property relationship in composite polymer electrolytes. J. Power Sources 2005, 139, 384–393. [Google Scholar] [CrossRef]
- Borgohain, M.M.; Joykumar, T.; Bhat, S.V. Studies on a nanocomposite solid polymer electrolyte with hydrotalcite as a filler. Solid State Ion. 2010, 181, 964–970. [Google Scholar] [CrossRef]
- Pillai, C.K.; Paul, W.; Sharma, C.P. Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Prog. Polym. Sci. 2009, 34, 641–678. [Google Scholar] [CrossRef]
- Guibal, E. Heterogeneous catalysis on chitosan-based materials: A review. Prog. Polym. Sci. 2005, 30, 71–109. [Google Scholar] [CrossRef]
- Kumar, J.; Rodrigues, S.J.; Kumar, B. Interface-mediated electrochemical effects in lithium/polymer-ceramic cells. J. Power Sources 2010, 195, 327–334. [Google Scholar] [CrossRef]
- Aziz, S.B.; Hussein, S.; Hussein, A.M.; Saeed, S.R. Optical characteristics of polystyrene based solid polymer composites: Effect of metallic copper powder. Int. J. Met. 2013, 2013, 123657. [Google Scholar] [CrossRef]
- Abdullah, O.G.; Aziz, S.B.; Omer, K.M.; Salih, Y.M. Reducing the optical band gap of polyvinyl alcohol (PVA) based nanocomposite. J. Mater. Sci. Mater. Electron. 2015, 26, 5303–5309. [Google Scholar] [CrossRef]
- Morsi, M.A.; El-Khodary, S.A.; Rajeh, A. Enhancement of the optical, thermal and electrical properties of PEO/PAM: Li polymer electrolyte films doped with Ag nanoparticles. Phys. B Condens. Matter Phys. 2018, 539, 88–96. [Google Scholar] [CrossRef]
- Li, W.; Pang, Y.; Liu, J.; Liu, G.; Wang, Y.; Xia, Y. A PEO-based gel polymer electrolyte for lithium ion batteries. RSC Adv. 2017, 7, 23494–23501. [Google Scholar] [CrossRef]
- El-Bana, M.S.; Mohammed, G.; El Sayed, A.M.; El-Gamal, S. P reparation and characterization of PbO/carboxymethyl cellulose/polyvinylpyrrolidone nanocomposite films. Polym. Compos. 2018, 39, 3712–3725. [Google Scholar] [CrossRef]
- Gupta, R.K.; Rhee, H.-W. Effect of succinonitrile on electrical, structural, optical, and thermal properties of [poly(ethylene oxide)-succinonitrile]/LiI-I2 redox-couple solid polymer electrolyte. Electrochim. Acta 2012, 76, 159–164. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, L.; Yang, K.; Wang, H.; Chuang Yu Di, X.; Bo, X.; Wang, L.-M. Superior blends solid polymer electrolyte with integrated hierarchical architectures for all-solid-state lithium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 36886–36896. [Google Scholar] [CrossRef] [PubMed]
- Gray, F.M. Solid Plymer Electrolytes—Fundamentals and Technological Applications, 1st ed.; Wiley-VCH: New York, NY, USA, 1991. [Google Scholar]
- Agrawal, R.C.; Pandey, G.P. Solid polymer electrolytes: Materials designing and all-solid-state battery applications: An overview. J. Phys. D Appl. Phys. 2008, 41, 223001. [Google Scholar] [CrossRef]
- Reddy, C.S.V.; Sharma, A.K.; Rao, V.N. Electrical and optical properties of a polyblend electrolyte. Polymer 2006, 47, 1318–1323. [Google Scholar] [CrossRef]
- Raja, V.; Mohan, V.M.; Sharma, A.K.; Rao, V.V.R.N. Electrical and optical properties of pure and KClO3-doped P(MMA-CO-4VPNO) polymer electrolyte films. Ionics 2009, 15, 519–524. [Google Scholar] [CrossRef]
- Turky, G.; Dawy, M. Spectral and electrical properties of ternary (TeO2–V2O5–Sm2O3) glasses. Mater. Chem. Phys. 2003, 77, 48–59. [Google Scholar] [CrossRef]
- Ismail, M.S.; Elamin, A.A.; Abdel-Wahab, F.; Elbashar, Y.H.; Mahasen, M.M. Improving the Refractive Index by Engineering Pbs/PVA Nano Polymer Composite for Optoelectronic Applications. Opt. Mater. 2022, 131, 112639. [Google Scholar] [CrossRef]
- Abd El-Raheem, M.M. Optical properties of GeSeTl thin films. J. Phys. Condens. Matter 2007, 19, 216209. [Google Scholar] [CrossRef]
- Mohamad, A.A.; Mohamed, N.S.; Yahya, M.Z.A.; Othman, R.; Ramesh, S.; Alias, Y.; Arof, A.K. Ionic conductivity studies of poly(vinyl alcohol) alkaline solid polymer electrolyte and its use in nickel–zinc cells. Solid State Ionics 2003, 156, 171–177. [Google Scholar] [CrossRef]
- Johnston, S.F.; Ward, I.M.; Cruickshank, J.; Davies, G.R. Spectroscopic studies of triflate ion association in polymer gel electrolytes and their constituents. Solid State Ion. 1996, 90, 39–48. [Google Scholar] [CrossRef]
- Hema, M.; Selvasekerapandian, S.; Sakunthala, A.; Arunkumar, D.; Nithya, H. Structural, vibrational and electrical characterization of PVA-NH4Br polymer electrolyte system. Phys. B Condens. Matter. 2008, 403, 2740–2747. [Google Scholar] [CrossRef]
- Tareev, B. Physics of Dielectric Materials; MIR Publications: Moscow, Russia, 1979. [Google Scholar]
- Sheha, E.; El-Mansy, M.K. Direct liquid methanol-fueled solid oxide fuel cell. J. Power Sources 2008, 185, 188–192. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsulaim, G.M.; Elamin, A.A. Two Promising Methodologies for Dealing with Changes in Optical and Electrical Properties of Polymer Electrolytes (SPEs). J. Compos. Sci. 2023, 7, 221. https://doi.org/10.3390/jcs7060221
Alsulaim GM, Elamin AA. Two Promising Methodologies for Dealing with Changes in Optical and Electrical Properties of Polymer Electrolytes (SPEs). Journal of Composites Science. 2023; 7(6):221. https://doi.org/10.3390/jcs7060221
Chicago/Turabian StyleAlsulaim, Ghayah M., and Ayman. A. Elamin. 2023. "Two Promising Methodologies for Dealing with Changes in Optical and Electrical Properties of Polymer Electrolytes (SPEs)" Journal of Composites Science 7, no. 6: 221. https://doi.org/10.3390/jcs7060221
APA StyleAlsulaim, G. M., & Elamin, A. A. (2023). Two Promising Methodologies for Dealing with Changes in Optical and Electrical Properties of Polymer Electrolytes (SPEs). Journal of Composites Science, 7(6), 221. https://doi.org/10.3390/jcs7060221