A Thermic Effect on Degradation Kinetics of Sugar Cane Bagasse Polypropylene Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Silane Treatment of Sugar Bagasse
2.2.2. Extrusion of rPP with SC Fibers
2.2.3. Preparation of Composites
2.3. Characterization
2.3.1. Scanning Electron Microscopy (SEM)
2.3.2. Fourier Transform Infrared Spectroscopy (FTIR)
2.3.3. Thermogravimetric Analysis (TGA)
3. Results and Discussion
3.1. Scanning Electron Microscope
3.2. Spectral Analysis
3.3. Thermal Degradation Kinetics
3.3.1. Flynn–Wall–Ozawa Method (FWO)
3.3.2. Kissinger–Akahira–Sunose Method (KAS)
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Luz, S.M.; Pires, A.C.; Ferrão, P.M.C. Environmental benefits of substituting talc by sugarcane bagasse fibers as reinforcement in polypropylene composites: Ecodesign and LCA as strategy for automotive components. Resour. Conserv. Recycl. 2010, 54, 1135–1144. [Google Scholar] [CrossRef]
- Cerqueira, E.F.; Baptista, C.A.R.P.; Mulinaria, D.R. Mechanical behaviour of polypropylene reinforced sugarcane bagasse fibers composites. Proc. Eng. 2011, 10, 2046–2051. [Google Scholar] [CrossRef] [Green Version]
- Neto, A.G.V.C.; Ganzerli, T.A.; Cardozo, A.L.; Fávaro, S.L.; Pereira, A.G.B.; Girotto, E.M.; Radovanovic, E. Development of composites based on recycled polyethylene/sugarcane bagasse fiber. Polym. Compos. 2014, 35, 768–774. [Google Scholar] [CrossRef]
- Goulart, S.A.S.; Oliveira, T.A.; Teixeira, A.; Miléo, P.C.; Mulinari, D.R. Mechanical behaviour of polypropylene reinforced palm fibers composites. Proc. Eng. 2011, 10, 2034–2039. [Google Scholar] [CrossRef] [Green Version]
- Longo, C.; Savaris, M.; Zeni, M.; Brandalise, N.R.; Grisa, A.M.C. Degradation study of polypropylene (PP) and bioriented polypropylene (BOPP) in the environment. Mater. Res. 2011, 14, 442–448. [Google Scholar] [CrossRef] [Green Version]
- Vu, N.D.; Tran, H.T.; Nguyen, T.D. Characterization of Polypropylene Green Composites Reinforced by Cellulose Fibers Extracted from Rice Straw. Int. J. Polym. Sci. 2018, 2018, 1813847. [Google Scholar] [CrossRef] [Green Version]
- Shubhra, Q.T.H.; Alam, A.K.M.M.; Quaiyyum, M.A. Mechanical properties of polypropylene composites: A review. J. Thermoplast. Compos. Mater. 2013, 26, 362–391. [Google Scholar] [CrossRef]
- Erdogan, S.; Huner, U. Physical and Mechanical Properties of PP Composites based on Different Types of Lignocellulosic Fillers. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2018, 33, 1298–1307. [Google Scholar] [CrossRef]
- Youssef, H.A.; Ismail, M.R.; Ali, M.A.M.; Zahran, A.H. Effect of the various coupling agents on the mechanical and physical properties of thermoplastic-bagasse fiber composites. Polym. Compos. 2008, 29, 1057–1065. [Google Scholar] [CrossRef]
- Hong, H.; Xiao, R.; Guo, Q.; Hao, L.; Zhang, H. Quantitively Characterizing the Chemical Composition of Tailored Bagasse Fiber and Its Effect on the Thermal and Mechanical Properties of Polylactic Acid-Based Composites. Polymers 2019, 1567, 1567. [Google Scholar] [CrossRef] [Green Version]
- Mohomane, S.M.; Motaung, T.E.; Revaprasadu, N. Thermal Degradation Kinetics of Sugarcane Bagasse and Soft Wood Cellulose. Materials 2017, 1246, 2–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janina, H.B.; Rodrigo, C.; Hugo, A.G. Use of the SPME-GC-MS technique to study the thermal degradation of isotactic polypropylene: Effects of temperature and reaction time, and analysis of the reaction mechanism. e-Polymers 2008, 8, 018. [Google Scholar]
- Chrissafis, K. Kinetics of thermal degradation of polymers. J. Therm. Anal. Calorim. 2009, 95, 273–283. [Google Scholar] [CrossRef]
- Vyazovkin, S.; Burnham, A.K.; Criado, J.M.; Maqueda, L.A.P.; Popescu, C.; Sbirrazzuoli, N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta 2011, 520, 1–19. [Google Scholar] [CrossRef]
- Liang, J.Z.; Wang, J.Z.; Tsui, G.C.P.; Tang, C.Y. Thermal decomposition kinetics of polypropylene composites filled with graphene nanoplatelets. Polym. Test. 2015, 48, 97–103. [Google Scholar] [CrossRef]
- Al-Salem, S.M.; Sharma, B.K.; Khan, A.R.; Arnold, J.C.; Alston, S.M.; Chandrasekaran, S.R.; Al-Dhafeeri, A.T. Thermal Degradation Kinetics of Virgin Polypropylene (PP) and PP with Starch Blends Exposed to Natural Weathering. Ind. Eng. Chem. 2017, 56, 5210–5220. [Google Scholar] [CrossRef]
- Mandal, D.K.; Bhunia, H.; Bajpai, P.K. Thermal degradation kinetics of PP/PLA nanocomposite blends. J. Thermoplast. Compos. Mater. 2019, 32, 1714–1730. [Google Scholar] [CrossRef]
- Vimalathithan, P.K.; Barile, C.; Casavola, C.; Arunachalam, S.; Battisti, M.G.; Friesenbichler, W.; Vijayakumar, C.T. Thermal Degradation Kinetics of Polypropylene/Clay Nanocomposites Prepared by Injection Molding Compounder. Polym. Comosites 2019, 40, 3634–3643. [Google Scholar] [CrossRef]
- Tarani, E.; Papageorgiou, G.Z.; Bikiaris, D.N.; Chrissafis, K. Kinetics of Crystallization and Thermal Degradation of an Isotactic Polypropylene Matrix Reinforced with Graphene/Glass-Fiber Filler. Molecules 2019, 24, 1984. [Google Scholar] [CrossRef] [Green Version]
- Morent, R.; Geyter, N.D.; Leys, C.; Gengembre, L.; Payen, E. Comparison between XPS-and FTIT-analysis of plasma-treated polypropylene film surfaces. Surf. Interface Anal. 2008, 40, 597–600. [Google Scholar] [CrossRef]
- Bockhorn, H.; Hornung, A.; Hornung, U.; Schawaller, D. Kinetic study on the thermal degradation of polypropylene and polyethylene. J. Anal. Appl. Pyrolysis 1999, 48, 93–109. [Google Scholar] [CrossRef]
Barrel temperature (°C) | 226 |
Injection speed (cm/s) | 10 |
Injection pressure (bar) | 1000 |
Holding pressure (bar) | 150 |
Holding time (s) | 12 |
Cooling time (s) | 25 |
Shot volume (cm3) | 22 |
Sample | Char Content/% |
---|---|
PP-SC | 5.33 ± 0.11 |
PP-SC-Silane | 5.10 ± 1.11 |
PP-SC-NaOH | 6.00 ± 0.13 |
α | PP | PP-SC | PP-SC-NaOH | PP-SC-Silane | ||||
---|---|---|---|---|---|---|---|---|
FWO | KAS | FWO | KAS | FWO | KAS | FWO | KAS | |
0.1 | 133 | 127 | 147 | 131 | 150 | 145 | 151 | 144 |
0.2 | 133 | 128 | 128 | 136 | 142 | 137 | 153 | 146 |
0.3 | 135 | 128 | 146 | 126 | 148 | 139 | 140 | 131 |
0.4 | 138 | 129 | 151 | 142 | 153 | 147 | 150 | 142 |
0.5 | 141 | 130 | 153 | 144 | 156 | 149 | 147 | 138 |
0.6 | 140 | 130 | 157 | 145 | 159 | 154 | 146 | 137 |
0.7 | 144 | 132 | 162 | 147 | 166 | 156 | 155 | 147 |
0.8 | 145 | 132 | 166 | 151 | 169 | 160 | 157 | 149 |
0.9 | 147 | 134 | 183 | 166 | 184 | 174 | 167 | 160 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Motaung, T.E.; Motloung, S.V.; Koao, L.F.; Malevu, T.D.; Linganiso, E.C. A Thermic Effect on Degradation Kinetics of Sugar Cane Bagasse Polypropylene Composites. J. Compos. Sci. 2022, 6, 123. https://doi.org/10.3390/jcs6050123
Motaung TE, Motloung SV, Koao LF, Malevu TD, Linganiso EC. A Thermic Effect on Degradation Kinetics of Sugar Cane Bagasse Polypropylene Composites. Journal of Composites Science. 2022; 6(5):123. https://doi.org/10.3390/jcs6050123
Chicago/Turabian StyleMotaung, Tshwafo E., Setumo V. Motloung, Lehlohonolo F. Koao, Thembinkosi D. Malevu, and Ella. C. Linganiso. 2022. "A Thermic Effect on Degradation Kinetics of Sugar Cane Bagasse Polypropylene Composites" Journal of Composites Science 6, no. 5: 123. https://doi.org/10.3390/jcs6050123
APA StyleMotaung, T. E., Motloung, S. V., Koao, L. F., Malevu, T. D., & Linganiso, E. C. (2022). A Thermic Effect on Degradation Kinetics of Sugar Cane Bagasse Polypropylene Composites. Journal of Composites Science, 6(5), 123. https://doi.org/10.3390/jcs6050123