Recent Advances in Cochlear Implantation
Abstract
:1. Introduction
2. Expanding Indications
3. Technological Advances
3.1. Electrode Design
3.2. Signal Processing
3.3. Connectivity
4. Surgical Techniques
4.1. Pre-Operative Simulation Planning
4.2. Atraumatic Electrode Insertion Techniques
4.3. Cochlear Implantation Under Conscious Sedation
5. Biocompatibility and Longevity
Materials and Coatings
6. Ethical and Social Considerations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chadha, S.; Kamenov, K.; Cieza, A. The world report on hearing, 2021. Bull. World Health Organ. 2021, 99, 242–242a. [Google Scholar] [CrossRef] [PubMed]
- Goman, A.M.; Reed, N.S.; Lin, F.R. Addressing Estimated Hearing Loss in Adults in 2060. JAMA Otolaryngol. Head Neck Surg. 2017, 143, 733–734. [Google Scholar] [CrossRef] [PubMed]
- Bekele Okuba, T.; Lystad, R.P.; Boisvert, I.; McMaugh, A.; Moore, R.C.; Walsan, R.; Mitchell, R.J. Cochlear implantation impact on health service utilisation and social outcomes: A systematic review. BMC Health Serv. Res. 2023, 23, 929. [Google Scholar] [CrossRef] [PubMed]
- Yeo, B.S.Y.; Song, H.; Toh, E.M.S.; Ng, L.S.; Ho, C.S.H.; Ho, R.; Merchant, R.A.; Tan, B.K.J.; Loh, W.S. Association of Hearing Aids and Cochlear Implants With Cognitive Decline and Dementia: A Systematic Review and Meta-analysis. JAMA Neurol. 2023, 80, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Zeng, F.G. Celebrating the one millionth cochlear implant. JASA Express Lett. 2022, 2, 077201. [Google Scholar] [CrossRef]
- Clark, G. Cochlear implants in children: Safety as well as speech and language. Int. J. Pediatr. Otorhinolaryngol. 2003, 67 (Suppl. S1), S7–S20. [Google Scholar] [CrossRef]
- Cottrell, J.; Spitzer, E.; Friedmann, D.; Jethanamest, D.; McMenomey, S.; Roland, J.T.J.; Waltzman, S. Cochlear Implantation in Children Under 9 Months of Age: Safety and Efficacy. Otol. Neurotol. 2024, 45, 121–127. [Google Scholar] [CrossRef]
- Niparko, J.K.; Tobey, E.A.; Thal, D.J.; Eisenberg, L.S.; Wang, N.-Y.; Quittner, A.L.; Fink, N.E. Spoken language development in children following cochlear implantation. JAMA 2010, 303, 1498–1506. [Google Scholar] [CrossRef]
- Park, L.R.; Griffin, A.M.; Sladen, D.P.; Neumann, S.; Young, N.M. American Cochlear Implant Alliance Task Force Guidelines for Clinical Assessment and Management of Cochlear Implantation in Children With Single-Sided Deafness. Ear Hear. 2022, 43, 255–267. [Google Scholar] [CrossRef]
- Tarabichi, O.; Jensen, M.; Hansen, M.R. Advances in hearing preservation in cochlear implant surgery. Curr. Opin. Otolaryngol. Head Neck Surg. 2021, 29, 385–390. [Google Scholar] [CrossRef]
- Yu, K.; Shen, S.; Bowditch, S.; Sun, D. Estimating the United States Patient Population Size Meeting Audiologic Candidacy for Cochlear Implantation. Otolaryngol. Head Neck Surg. 2024, 170, 870–876. [Google Scholar] [CrossRef] [PubMed]
- Kumpik, D.P.; King, A.J. A review of the effects of unilateral hearing loss on spatial hearing. Hear. Res. 2019, 372, 17–28. [Google Scholar] [CrossRef]
- Lucas, L.; Katiri, R.; Kitterick, P.T. The psychological and social consequences of single-sided deafness in adulthood. Int. J. Audiol. 2018, 57, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Vannson, N.; James, C.; Fraysse, B.; Strelnikov, K.; Barone, P.; Deguine, O.; Marx, M. Quality of life and auditory performance in adults with asymmetric hearing loss. Audiol. Neurootol. 2015, 20 (Suppl. S1), 38–43. [Google Scholar] [CrossRef]
- Daher, G.S.; Kocharyan, A.; Dillon, M.T.; Carlson, M.L. Cochlear Implantation Outcomes in Adults With Single-Sided Deafness: A Systematic Review and Meta-analysis. Otol. Neurotol. 2023, 44, 297–309. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, E.M.; Gaboury, I.; Durieux-Smith, A.; Coyle, D.; Whittingham, J.; Nassrallah, F. Auditory and language outcomes in children with unilateral hearing loss. Hear. Res. 2019, 372, 42–51. [Google Scholar] [CrossRef]
- Gordon, K.; Henkin, Y.; Kral, A. Asymmetric Hearing During Development: The Aural Preference Syndrome and Treatment Options. Pediatrics 2015, 136, 141–153. [Google Scholar] [CrossRef]
- Dunn, C.C.; Zwolan, T.A.; Balkany, T.J.; Strader, H.L.; Biever, A.; Gifford, R.H.; Hall, M.W.; Holcomb, M.A.; Hill, H.; King, E.R.; et al. A Consensus to Revise the Minimum Speech Test Battery-Version 3. Am. J. Audiol. 2024, 33, 624–647. [Google Scholar] [CrossRef]
- Marinelli, J.P.; Carlson, M.L. Barriers to Access and Health Care Disparities Associated With Cochlear Implantation Among Adults in the United States. Mayo Clin. Proc. 2021, 96, 547–549. [Google Scholar] [CrossRef]
- Zwolan, T.A.; Schvartz-Leyzac, K.C.; Pleasant, T. Development of a 60/60 Guideline for Referring Adults for a Traditional Cochlear Implant Candidacy Evaluation. Otol. Neurotol. 2020, 41, 895–900. [Google Scholar] [CrossRef]
- Peterson, G.E.; Lehiste, I. Revised CNC lists for auditory tests. J. Speech Hear. Disord. 1962, 27, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Spahr, A.J.; Dorman, M.F.; Litvak, L.M.; Van Wie, S.; Gifford, R.H.; Loizou, P.C.; Loiselle, L.M.; Oakes, T.; Cook, S. Development and validation of the AzBio sentence lists. Ear Hear. 2012, 33, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Gifford, R.H.; Shallop, J.K.; Peterson, A.M. Speech recognition materials and ceiling effects: Considerations for cochlear implant programs. Audiol. Neurootol. 2008, 13, 193–205. [Google Scholar] [CrossRef]
- Sladen, D.P.; Gifford, R.H.; Haynes, D.; Kelsall, D.; Benson, A.; Lewis, K.; Zwolan, T.; Fu, Q.; Gantz, B.; Gilden, J.; et al. Evaluation of a revised indication for determining adult cochlear implant candidacy. Laryngoscope 2017, 127, 2368–2374. [Google Scholar] [CrossRef]
- McRackan, T.R.; Hand, B.N.; Cochlear Implant Quality of Life Development Consortium; Velozo, C.A.; Dubno, J.R. Cochlear Implant Quality of Life (CIQOL): Development of a Profile Instrument (CIQOL-35 Profile) and a Global Measure (CIQOL-10 Global). J. Speech Lang. Hear. Res. 2019, 62, 3554–3563. [Google Scholar] [CrossRef]
- Newman, C.W.; Jacobson, G.P.; Spitzer, J.B. Development of the Tinnitus Handicap Inventory. Arch. Otolaryngol. Head Neck Surg. 1996, 122, 143–148. [Google Scholar] [CrossRef]
- Noble, W.; Jensen, N.S.; Naylor, G.; Bhullar, N.; Akeroyd, M.A. A short form of the Speech, Spatial and Qualities of Hearing scale suitable for clinical use: The SSQ12. Int. J. Audiol. 2013, 52, 409–412. [Google Scholar] [CrossRef]
- Polterauer, D.; Mandruzzato, G.; Neuling, M.; Polak, M.; Müller, J.; Hempel, J.M. Evaluation of auditory pathway excitability using a pre-operative trans-tympanic electrically evoked auditory brainstem response under local anesthesia in cochlear implant candidates. Int. J. Audiol. 2023, 62, 1176–1186. [Google Scholar] [CrossRef]
- Kileny, P.R.; Kemink, J.L. Electrically Evoked Middle-Latency Auditory Potentials in Cochlear Implant Candidates. Arch. Otolaryngol. Head Neck Surg. 1987, 113, 1072–1077. [Google Scholar] [CrossRef] [PubMed]
- Mudry, A.; Mills, M. The early history of the cochlear implant: A retrospective. JAMA Otolaryngol. Head Neck Surg. 2013, 139, 446–453. [Google Scholar] [CrossRef]
- Noble, J.H.; Gifford, R.H.; Hedley-Williams, A.J.; Dawant, B.M.; Labadie, R.F. Clinical evaluation of an image-guided cochlear implant programming strategy. Audiol. Neurootol. 2014, 19, 400–411. [Google Scholar] [CrossRef] [PubMed]
- Dhanasingh, A.; Jolly, C. An overview of cochlear implant electrode array designs. Hear. Res. 2017, 356, 93–103. [Google Scholar] [CrossRef]
- Jwair, S.; Prins, A.; Wegner, I.; Stokroos, R.J.; Versnel, H.; Thomeer, H.G.X.M. Scalar Translocation Comparison Between Lateral Wall and Perimodiolar Cochlear Implant Arrays—A Meta-Analysis. Laryngoscope 2021, 131, 1358–1368. [Google Scholar] [CrossRef]
- Rivas, A.; Cakir, A.; Hunter, J.B.; Labadie, R.F.; Zuniga, M.G.; Wanna, G.B.; Dawant, B.M.; Noble, J.H. Automatic Cochlear Duct Length Estimation for Selection of Cochlear Implant Electrode Arrays. Otol. Neurotol. 2017, 38, 339–346. [Google Scholar] [CrossRef]
- Usami, S.; Miyagawa, M.; Nishio, S.Y.; Moteki, H.; Takumi, Y.; Suzuki, M.; Kitano, Y.; Iwasaki, S. Patients with CDH23 mutations and the 1555A>G mitochondrial mutation are good candidates for electric acoustic stimulation (EAS). Acta Otolaryngol. 2012, 132, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Berenstein, C.K.; Vanpoucke, F.J.; Mulder, J.J.; Mens, L.H. Electrical field imaging as a means to predict the loudness of monopolar and tripolar stimuli in cochlear implant patients. Hear. Res. 2010, 270, 28–38. [Google Scholar] [CrossRef]
- Zhu, Z.; Tang, Q.; Zeng, F.G.; Guan, T.; Ye, D. Cochlear-implant spatial selectivity with monopolar, bipolar and tripolar stimulation. Hear. Res. 2012, 283, 45–58. [Google Scholar] [CrossRef]
- Somek, B.; Fajt, S.; Dembitz, A.; Ivkovi’c, M.; Ostoji’c, J. Coding strategies for cochlear implants. AUTOMATIKA Časopis Za Autom. Mjer. Elektron. Računarstvo Komun. 2006, 47, 69–74. [Google Scholar]
- Wilson, B.S.; Finley, C.C.; Lawson, D.T.; Wolford, R.D.; Eddington, D.K.; Rabinowitz, W.M. Better speech recognition with cochlear implants. Nature 1991, 352, 236–238. [Google Scholar] [CrossRef]
- Hochmair, I.; Hochmair, E.; Nopp, P.; Waller, M.; Jolly, C. Deep electrode insertion and sound coding in cochlear implants. Hear. Res. 2015, 322, 14–23. [Google Scholar] [CrossRef]
- Skinner, M.W.; Holden, L.K.; Whitford, L.A.; Plant, K.L.; Psarros, C.; Holden, T.A. Speech recognition with the nucleus 24 SPEAK, ACE, and CIS speech coding strategies in newly implanted adults. Ear Hear. 2002, 23, 207–223. [Google Scholar] [CrossRef] [PubMed]
- von Ilberg, C.A.; Baumann, U.; Kiefer, J.; Tillein, J.; Adunka, O.F. Electric-acoustic stimulation of the auditory system: A review of the first decade. Audiol. Neurootol. 2011, 16 (Suppl. S2), 1–30. [Google Scholar] [CrossRef]
- Schatzer, R.; Vermeire, K.; Visser, D.; Krenmayr, A.; Kals, M.; Voormolen, M.; Van de Heyning, P.; Zierhofer, C. Electric-acoustic pitch comparisons in single-sided-deaf cochlear implant users: Frequency-place functions and rate pitch. Hear. Res. 2014, 309, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Hersbach, A.A.; Grayden, D.B.; Fallon, J.B.; McDermott, H.J. A beamformer post-filter for cochlear implant noise reduction. J. Acoust. Soc. Am. 2013, 133, 2412–2420. [Google Scholar] [CrossRef]
- Goehring, T.; Keshavarzi, M.; Carlyon, R.P.; Moore, B.C.J. Using recurrent neural networks to improve the perception of speech in non-stationary noise by people with cochlear implants. J. Acoust. Soc. Am. 2019, 146, 705. [Google Scholar] [CrossRef]
- Carlyon, R.P.; Goehring, T. Cochlear Implant Research and Development in the Twenty-first Century: A Critical Update. J. Assoc. Res. Otolaryngol. 2021, 22, 481–508. [Google Scholar] [CrossRef]
- Qian, H.; Loizou, P.C.; Dorman, M.F. A phone-assistive device based on Bluetooth technology for cochlear implant users. IEEE Trans. Neural Syst. Rehabil. Eng. 2003, 11, 282–287. [Google Scholar] [CrossRef] [PubMed]
- Cheung, L.L.; Fowler, A.; Hassarati, R.T.; Birman, C.S. Distance and Socieoeconomic Status as Barriers to Cochlear Implantation. Otol. Neurotol. 2023, 44, 134–140. [Google Scholar] [CrossRef]
- Introducing Bluetooth® LE Audio, Nick Hunn January 2022. Available online: https://www.bluetooth.com/wp-content/uploads/2022/01/Introducing-Bluetooth-LE-Audio-book.pdf (accessed on 23 July 2024).
- Martínez Basterra, Z.; Fernández de Pinedo, M.; Rey, J.A.; Palicio, I.; Soriano-Reixach, M.M.; Urreta, I.; Mariezcurena, X.A. Phone Speech Recognition Improvement in Noisy Environment: Use of a Bluetooth Accessory. Ear Nose Throat J. 2021, 100, 490–496. [Google Scholar] [CrossRef]
- Wolfe, J.; Morais, M.; Schafer, E. Speech Recognition of Bimodal Cochlear Implant Recipients Using a Wireless Audio Streaming Accessory for the Telephone. Otol. Neurotol. 2016, 37, e20–e25. [Google Scholar] [CrossRef]
- Wolfe, J.; Morais, M.; Schafer, E. Improving Hearing Performance for Cochlear Implant Recipients with Use of a Digital, Wireless, Remote-Microphone, Audio-Streaming Accessory. J. Am. Acad. Audiol. 2015, 26, 532–539. [Google Scholar] [CrossRef] [PubMed]
- Duke, M.M.; Wolfe, J.; Schafer, E. Recognition of Speech from the Television with Use of a Wireless Technology Designed for Cochlear Implants. J. Am. Acad. Audiol. 2016, 27, 388–394. [Google Scholar] [CrossRef] [PubMed]
- Maruthurkkara, S.; Case, S.; Rottier, R. Evaluation of Remote Check: A Clinical Tool for Asynchronous Monitoring and Triage of Cochlear Implant Recipients. Ear Hear. 2022, 43, 495–506. [Google Scholar] [CrossRef]
- Sorrentino, F.; Cazzador, D.; Gazzola, F.; Cassarà, A.; Ariano, M.; Colombo, A.; Franchella, S.; Trevisi, P.; de Filippis, C.; Marioni, G.; et al. Remote Check as a tele-health instrument for cochlear implant recipients: Analysis of impact and feasibility of application. Am. J. Otolaryngol. 2024, 45, 104294. [Google Scholar] [CrossRef]
- Maruthurkkara, S. Cochlear Implant Remote Assist: Clinical and Real-World Evaluation. Int. J. Audiol. 2024, 64, 232–242. [Google Scholar] [CrossRef]
- Ramos, A.; Rodriguez, C.; Martinez-Beneyto, P.; Perez, D.; Gault, A.; Falcon, J.C.; Boyle, P. Use of telemedicine in the remote programming of cochlear implants. Acta Otolaryngol. 2009, 129, 533–540. [Google Scholar] [CrossRef]
- Kuzovkov, V.; Yanov, Y.; Levin, S.; Bovo, R.; Rosignoli, M.; Eskilsson, G.; Willbas, S. Remote programming of MED-EL cochlear implants: Users’ and professionals’ evaluation of the remote programming experience. Acta Otolaryngol. 2014, 134, 709–716. [Google Scholar] [CrossRef] [PubMed]
- Rienas, W.; Hubbell, R.; Toivonen, J.; Geritano, M.; Hall, A.; Prabhu, S.; Robson, C.; Weinstock, P.; Poe, D.S. 3D printed temporal bones for preoperative simulation and planning. Am. J. Otolaryngol. 2024, 45, 104340. [Google Scholar] [CrossRef]
- Kamakura, T.; Nadol, J.B., Jr. Correlation between word recognition score and intracochlear new bone and fibrous tissue after cochlear implantation in the human. Hear. Res. 2016, 339, 132–141. [Google Scholar] [CrossRef]
- Friedland, D.R.; Runge-Samuelson, C. Soft cochlear implantation: Rationale for the surgical approach. Trends Amplif. 2009, 13, 124–138. [Google Scholar] [CrossRef]
- Roland, P.S.; Wright, C.G.; Isaacson, B. Cochlear implant electrode insertion: The round window revisited. Laryngoscope 2007, 117, 1397–1402. [Google Scholar] [CrossRef] [PubMed]
- Richard, C.; Fayad, J.N.; Doherty, J.; Linthicum, F.H., Jr. Round window versus cochleostomy technique in cochlear implantation: Histologic findings. Otol. Neurotol. 2012, 33, 1181–1187. [Google Scholar] [CrossRef]
- van der Jagt, A.M.A.; Briaire, J.J.; Boehringer, S.; Verbist, B.M.; Frijns, J.H.M. Prolonged Insertion Time Reduces Translocation Rate of a Precurved Electrode Array in Cochlear Implantation. Otol. Neurotol. 2022, 43, e427–e434. [Google Scholar] [CrossRef]
- Todt, I.; Mittmann, P.; Ernst, A. Intracochlear fluid pressure changes related to the insertional speed of a CI electrode. Biomed. Res. Int. 2014, 2014, 507241. [Google Scholar] [CrossRef]
- Kaufmann, C.R.; Henslee, A.M.; Claussen, A.; Hansen, M.R. Evaluation of Insertion Forces and Cochlea Trauma Following Robotics-Assisted Cochlear Implant Electrode Array Insertion. Otol. Neurotol. 2020, 41, 631–638. [Google Scholar] [CrossRef] [PubMed]
- Labadie, R.F.; Riojas, K.; Von Wahlde, K.; Mitchell, J.; Bruns, T.; Webster, R.I.; Dawant, B.; Fitzpatrick, J.M.; Noble, J. Clinical Implementation of Second-generation Minimally Invasive Image-guided Cochlear Implantation Surgery. Otol. Neurotol. 2021, 42, 702–705. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.M.R.; Labadie, R.F.; Noble, J.H. Preoperative prediction of angular insertion depth of lateral wall cochlear implant electrode arrays. J. Med. Imaging 2020, 7, 031504. [Google Scholar] [CrossRef]
- Shabashev, S.; Fouad, Y.; Huncke, T.K.; Roland, J.T. Cochlear implantation under conscious sedation with local anesthesia; Safety, Efficacy, Costs, and Satisfaction. Cochlear Implant. Int. 2017, 18, 297–303. [Google Scholar] [CrossRef]
- Walters, B.; Gaskell, P.; Muzaffar, J.; Iftikhar, H.; Monksfield, P.; Bance, M. Cochlear implantation under local anesthetic: A systematic review and meta-analysis. Laryngoscope Investig. Otolaryngol. 2022, 7, 226–236. [Google Scholar] [CrossRef]
- Ali Diab, K.M.; Daikhes, N.A.; Ryazanov, V.B.; Pashchinina, O.A.; Arabi, A.M.; Panina, O.S. Adult Cochlear Implantation Under Local Anesthesia and Conscious Sedation with Dexmedetomidine: Efficacy and a Method to Interact with the Conscious and Cooperative Patient. J. Int. Adv. Otol. 2022, 18, 285–290. [Google Scholar] [CrossRef]
- Leigh, B.L.; Cheng, E.; Xu, L.; Derk, A.; Hansen, M.R.; Guymon, C.A. Antifouling Photograftable Zwitterionic Coatings on PDMS Substrates. Langmuir 2019, 35, 1100–1110. [Google Scholar] [CrossRef]
- Shen, N.; Cheng, E.; Whitley, J.W.; Horne, R.R.; Leigh, B.; Xu, L.; Jones, B.D.; Guymon, C.A.; Hansen, M.R. Photograftable Zwitterionic Coatings Prevent Staphylococcus aureus and Staphylococcus epidermidis Adhesion to PDMS Surfaces. ACS Appl. Bio Mater. 2021, 4, 1283–1293. [Google Scholar] [CrossRef]
- Bennion, D.M.; Horne, R.; Peel, A.; Reineke, P.; Henslee, A.; Kaufmann, C.; Guymon, C.A.; Hansen, M.R. Zwitterionic Photografted Coatings of Cochlear Implant Biomaterials Reduce Friction and Insertion Forces. Otol. Neurotol. 2021, 42, 1476–1483. [Google Scholar] [CrossRef]
- Cortés Fuentes, I.A.; Videhult Pierre, P.; Engmér Berglin, C. Improving Clinical Outcomes in Cochlear Implantation Using Glucocorticoid Therapy: A Review. Ear Hear. 2020, 41, 17–24. [Google Scholar] [CrossRef] [PubMed]
- O’Leary, S.J.; Choi, J.; Brady, K.; Matthews, S.; Ozdowska, K.B.; Payne, M.; McLean, T.; Rousset, A.; Lo, J.; Creber, N.; et al. Systemic methylprednisolone for hearing preservation during cochlear implant surgery: A double blinded placebo-controlled trial. Hear. Res. 2021, 404, 108224. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.Y.; Jung, S.K.; Jang, J.; Choi, H.; Choung, Y.H.; Jang, J.H. Sialyllactose preserves residual hearing after cochlear implantation. Sci. Rep. 2024, 14, 13376. [Google Scholar] [CrossRef] [PubMed]
- Fleet, A.; Nikookam, Y.; Radotra, A.; Gowrishankar, S.; Metcalfe, C.; Muzaffar, J.; Smith, M.E.; Monksfield, P.; Bance, M. Outcomes following cochlear implantation with eluting electrodes: A systematic review. Laryngoscope Investig. Otolaryngol. 2024, 9, e1263. [Google Scholar] [CrossRef]
- Swords, C.; Ghedia, R.; Blanchford, H.; Arwyn–Jones, J.; Heward, E.; Milinis, K.; Hardman, J.; Smith, M.E.; Bance, M.; Muzaffar, J.; et al. Socioeconomic and ethnic disparities associated with access to cochlear implantation for severe-to-profound hearing loss: A multicentre observational study of UK adults. PLoS Med. 2024, 21, e1004296. [Google Scholar] [CrossRef]
- Marinelli, J.P.; Nassiri, A.M.; Lohse, C.M.; Driscoll, C.L.W.; Neff, B.A.; Carlson, M.L. Effect of a Global Pandemic on Adult and Pediatric Cochlear Implantation across the United States. Otol. Neurotol. 2023, 44, 148–152. [Google Scholar] [CrossRef]
- Noij, K.S.; Huang, E.Y.; Walsh, J.; Creighton, F.X.; Galaiya, D.; Bowditch, S.P.; Stewart, C.M.; Jenks, C.M. Trends in Timing and Provision of Pediatric Cochlear Implant Care During COVID-19. OTO Open 2023, 7, e37. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shawkey, E.C.; Johns, J.D.; Kocharyan, A.; Corle, B.; Woolf, E.; Parks, A.; Briggs, S.E. Recent Advances in Cochlear Implantation. J. Otorhinolaryngol. Hear. Balance Med. 2025, 6, 9. https://doi.org/10.3390/ohbm6010009
Shawkey EC, Johns JD, Kocharyan A, Corle B, Woolf E, Parks A, Briggs SE. Recent Advances in Cochlear Implantation. Journal of Otorhinolaryngology, Hearing and Balance Medicine. 2025; 6(1):9. https://doi.org/10.3390/ohbm6010009
Chicago/Turabian StyleShawkey, Eric C., J. Dixon Johns, Armine Kocharyan, Breanna Corle, Emma Woolf, Abbie Parks, and Selena E. Briggs. 2025. "Recent Advances in Cochlear Implantation" Journal of Otorhinolaryngology, Hearing and Balance Medicine 6, no. 1: 9. https://doi.org/10.3390/ohbm6010009
APA StyleShawkey, E. C., Johns, J. D., Kocharyan, A., Corle, B., Woolf, E., Parks, A., & Briggs, S. E. (2025). Recent Advances in Cochlear Implantation. Journal of Otorhinolaryngology, Hearing and Balance Medicine, 6(1), 9. https://doi.org/10.3390/ohbm6010009