A Low Cost Approach to Disturbed Soil Detection Using Low Altitude Digital Imagery from an Unmanned Aerial Vehicle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. UAV Platform and Data Capture
2.3. Video Processing
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ruffell, A.; Pringle, J.K.; Forbes, S. Search protocols for hidden forensic objects beneath floors and within walls. Forensic Sci. Int. 2014, 237, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Preuß, J.; Strehler, M.; Dressler, J.; Riße, M.; Anders, S.; Madea, B. Dumping after homicide using setting in concrete and/or sealing with bricks—Six case reports. Forensic Sci. Int. 2006, 159, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Hunter, J.; Cox, M. Forensic Archaeology: Advances in Theory and Practice; Routledge: Abingdon, UK, 2005; ISBN 0415273110. [Google Scholar]
- Boyd, R.M. Buried Body Cases. FBI Law Enforc. Bull. 1979, 48, 1–7. [Google Scholar]
- Harrison, M.; Donnelly, L.J. Locating Concealed Homicide Victims: Developing the Role of Geoforensics. In Criminal and Environmental Soil Forensics; Springer: Dordrecht, The Netherlands, 2009; pp. 197–219. [Google Scholar]
- France, D.L.; Griffin, T.J.; Swanburg, J.G.; Lindemann, J.W.; Clark Davenport, G.; Trammell, V.; Armbrust, C.T.; Kondratieff, B.; Nelson, A.; Castellano, K.; et al. A Multidisciplinary Approach to the Detection of Clandestine Graves. J. Forensic Sci. 1992, 37, 1445–1458. [Google Scholar] [CrossRef]
- Owsley, D.W. Techniques for Locating Burials, with Emphasis on the Probe. J. Forensic Sci. 1995, 40, 735–740. [Google Scholar] [CrossRef]
- Heron, C.; Hunter, J.; Knupfer, G.; Martin, A.; Pollard, M. Studies in Crime: An Introduction to Forensic Archaeology; Routledge: Abingdon, UK, 2013. [Google Scholar]
- Killam, E.W. The Detection of Human Remains; Charles C Thomas Publisher, Ltd.: Springfield, MA, USA, 2004; ISBN 9780398074838. [Google Scholar]
- Rebmann, A.; David, E. Cadaver Dog Handbook: Forensic Training and Tactics for the Recovery of Human Remains, 1st ed.; CRC Press: Boca Raton, FL, USA, 2012; ISBN 9781466519978. [Google Scholar]
- Ruffell, A. Searching for the IRA “Disappeared”: Ground-penetrating Radar Investigation of a Churchyard Burial Site, Northern Ireland. J. Forensic Sci. 2005, 50, 414–425. [Google Scholar] [CrossRef]
- Larson, D.O.; Vass, A.A.; Wise, M. Advanced Scientific Methods and Procedures in the Forensic Investigation of Clandestine Graves. J. Contemp. Crim. Justice 2011, 27, 149–182. [Google Scholar] [CrossRef]
- Dupras, T.; Schultz, J.; Wheeler, S.; Williams, L.; Wrona, R.J.; Wheeler, S.M.; Williams, L.J. Forensic Recovery of Human Remains, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2011; ISBN 978-1-4398-5030-5. [Google Scholar]
- Jackson, A.R.W.; Jackson, J.M. Forensic Science; Pearson Prentice Hall: Gosport, UK, 2008; ISBN 0131998803. [Google Scholar]
- Schultz, J.J. Using Ground-Penetrating Radar to Locate Clandestine Graves of Homicide Victims Forming Forensic Archaeology Partnerships with Law Enforcement. Homicide Stud. 2007, 11, 15–29. [Google Scholar] [CrossRef]
- Schultz, J.J.; Collins, M.E.; Falsetti, A.B. Sequential Monitoring of Burials Containing Large Pig Cadavers Using Ground-Penetrating Radar. J. Forensic Sci. 2006, 51, 607–616. [Google Scholar] [CrossRef]
- Pringle, J.K.; Jervis, J.; Cassella, J.P.; Cassidy, N.J. Time-Lapse Geophysical Investigations over a Simulated Urban Clandestine Grave. J. Forensic Sci. 2008, 53, 1405–1416. [Google Scholar] [CrossRef]
- Pringle, J.K.; Ruffell, A.; Jervis, J.R.; Donnelly, L.; Mckinley, J.; Hansen, J.; Morgan, R.; Pirrie, D.; Harrison, M. The use of geoscience methods for terrestrial forensic searches. Earth Sci. Rev. 2012, 144, 108–123. [Google Scholar] [CrossRef]
- Kalacska, M.E.; Bell, L.S.; Arturo Sanchez-Azofeifa, G.; Caelli, T. The Application of Remote Sensing for Detecting Mass Graves: An Experimental Animal Case Study from Costa Rica. J. Forensic Sci. 2009, 54, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Blau, S.; Sterenberg, J.; Weeden, P.; Urzedo, F.; Wright, R.; Watson, C. Exploring non-invasive approaches to assist in the detection of clandestine human burials: Developing a way forward. Forensic Sci. Res. 2018, 3, 320–342. [Google Scholar] [CrossRef]
- Bryce Murray, B.; Derek, T.; Anderson, D.T.; Daniel, J.; Wescott, D.J.; Robert Moorhead, R.; Melissa, F.; Anderson, M.F. Survey and Insights into Unmanned Aerial-Vehicle-Based Detection and Documentation of Clandestine Graves and Human Remains. Hum. Biol. 2018, 90, 45–61. [Google Scholar] [CrossRef] [PubMed]
- Konecny, G. Geoinformation; CRC Press: Boca Raton, FL, USA, 2002; ISBN 9781466574632. [Google Scholar]
- Ruffell, A.; Mckinley, J. Forensic geoscience: Applications of geology, geomorphology and geophysics to criminal investigations. Earth Sci. Rev. 2005, 69, 235–247. [Google Scholar] [CrossRef]
- Brilis, G.M.; Gerlach, C.L.; Van Waasbergen, R.J. Remote Sensing Tools Assist in Environmental Forensics. Part I: Traditional Methods. J. Environ. Forensics 2000, 1, 63–67. [Google Scholar] [CrossRef]
- Kalacska, M.; Bell, L.S. Remote Sensing as a Tool for the Detection of Clandestine Mass Graves. Can. Soc. Forensic Sci. J. 2006, 39, 1–13. [Google Scholar] [CrossRef]
- Ceraudo, G. Aerial Photography in Archaeology. In Good Practice in Archaeological Diagnostics: Non-Invasive Survey of Complex Archaeological Sites; Springer: New York, NY, USA, 2013; pp. 11–30. [Google Scholar]
- Moriarty, C.; Cowley, D.C.; Wade, T.; Nichol, C.J. Deploying multispectral remote sensing for multi-temporal analysis of archaeological crop stress at Ravenshall, Fife, Scotland. Archaeol. Prospect. 2019, 26, 33–46. [Google Scholar] [CrossRef]
- Agudo, P.; Pajas, J.; Pérez-Cabello, F.; Redón, J.; Lebrón, B.; Agudo, P.U.; Pajas, J.A.; Pérez-Cabello, F.; Redón, J.V.; Lebrón, B.E. The Potential of Drones and Sensors to Enhance Detection of Archaeological Cropmarks: A Comparative Study between Multi-Spectral and Thermal Imagery. Drones 2018, 2, 29. [Google Scholar] [CrossRef]
- Verhoeven, G.J. Imaging the invisible using modified digital still cameras for straightforward and low-cost archaeological near-infrared photography. J. Archaeol. Sci. 2008, 35, 3087–3100. [Google Scholar] [CrossRef]
- Verhoeven, G.J. Providing an archaeological bird’s-eye view—An overall picture of ground-based means to execute low-altitude aerial photography (LAAP) in Archaeology. Archaeol. Prospect. 2009, 16, 233–249. [Google Scholar] [CrossRef]
- Verhoeven, G.J. Near-Infrared Aerial Crop Mark Archaeology: From its Historical Use to Current Digital Implementations. J. Archaeol. Method Theory 2012, 19, 132–160. [Google Scholar] [CrossRef]
- Pringle, J.K.; Jervis, J.R.; Hansen, J.D.; Jones, G.M.; Cassidy, N.J.; Cassella, J.P. Geophysical Monitoring of Simulated Clandestine Graves Using Electrical and Ground-Penetrating Radar Methods: 0–3 Years After Burial. J. Forensic Sci. 2012, 57, 1467–1486. [Google Scholar] [CrossRef] [PubMed]
- Robinson, E.M. Chapter 9—Special Photography Situations. In Crime Scene Photography, 3rd ed.; Robinson, E.M., Ed.; Academic Press: San Diego, CA, USA, 2016; pp. 455–586. ISBN 978-0-12-802764-6. [Google Scholar]
- Urbanová, P.; Jurda, M.; Vojtíšek, T.; Krajsa, J. Using drone-mounted cameras for on-site body documentation: 3D mapping and active survey. Forensic Sci. Int. 2017, 281, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Evers, R.; Masters, P. The application of low-altitude near-infrared aerial photography for detecting clandestine burials using a UAV and low-cost unmodified digital camera. Forensic Sci. Int. 2018, 289, 408–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chisum, W.J.; Turvey, B.E. Crime Reconstruction, 2nd ed.; Academic Press/Elsevier: Waltham, MA, USA, 2011; ISBN 9780123864604. [Google Scholar]
- Morgan, R.M.; Bull, P.A. The philosophy, nature and practice of forensic sediment analysis. Prog. Phys. Geogr. Earth Environ. 2007, 31, 43–58. [Google Scholar] [CrossRef]
- DJI. Available online: https://www.dji.com/uk/flame-wheel-arf (accessed on 21 February 2019).
- Civil Aviation Authority. Available online: https://www.caa.co.uk/home/ (accessed on 21 February 2019).
- Lab Color—MATLAB & Simulink. Available online: https://uk.mathworks.com/discovery/lab-color.html (accessed on 25 February 2019).
- Ndna, M.; Tss, D. Use of Unmanned Aerial Vehicles in Crime Scene Investigations—Novel Concept of Crime Scene Investigations. Forensic Res. Criminol. Int. J. 2017, 4, 00094. [Google Scholar] [CrossRef]
- Bentley, J.M. Policing the Police: Balancing the Right to Privacy against the Beneficial Use of Drone Technology. Hastings Law J. 2018, 70, 249–296. [Google Scholar]
- Rossmo, D.K. Geographic Profiling; CRC Press: Boca Raton, FL, USA, 2000; ISBN 978-0-8493-8129-4. [Google Scholar]
- SkyRanger UAS|Aeryon. Available online: https://www.aeryon.com/skyranger/ (accessed on 9 April 2019).
- Houck, M.M.; Crispino, F.; McAdam, T.; Houck, M.M.; Crispino, F.; McAdam, T. Crime Scene Reconstruction. In The Science of Crime Scenes; Academic Press: Waltham, MA, USA, 2018; pp. 341–344. ISBN 978-0-12-849878-1. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parrott, E.; Panter, H.; Morrissey, J.; Bezombes, F. A Low Cost Approach to Disturbed Soil Detection Using Low Altitude Digital Imagery from an Unmanned Aerial Vehicle. Drones 2019, 3, 50. https://doi.org/10.3390/drones3020050
Parrott E, Panter H, Morrissey J, Bezombes F. A Low Cost Approach to Disturbed Soil Detection Using Low Altitude Digital Imagery from an Unmanned Aerial Vehicle. Drones. 2019; 3(2):50. https://doi.org/10.3390/drones3020050
Chicago/Turabian StyleParrott, Elizabeth, Heather Panter, Joanne Morrissey, and Frederic Bezombes. 2019. "A Low Cost Approach to Disturbed Soil Detection Using Low Altitude Digital Imagery from an Unmanned Aerial Vehicle" Drones 3, no. 2: 50. https://doi.org/10.3390/drones3020050
APA StyleParrott, E., Panter, H., Morrissey, J., & Bezombes, F. (2019). A Low Cost Approach to Disturbed Soil Detection Using Low Altitude Digital Imagery from an Unmanned Aerial Vehicle. Drones, 3(2), 50. https://doi.org/10.3390/drones3020050