Abstract
The fundamentals aspects of the key physics underlying the optical behavior of magneto-plasmonic nanoantennas are briefly introduced. A survey of applications to a variety of emerging technologies is presented as an example of their broad scientific and technological perspectives.
1. Introduction
Plasmons play a large role in the optical properties of metals. The rapidly developing field of magneto-plasmonics merges the concepts from plasmonics and magnetism to realize novel and unexpected phenomena and functionalities for the manipulation of light at the nanoscale. Magneto-plasmonics combines strong local enhancements of electromagnetic fields in surface plasmon excitations with magneto-optically active ferromagnetic materials. Owing to the intertwined optical and magneto-optical properties, magneto-plasmonics may offer a smart toolbox for actively magnetically tunable optical ultrathin surfaces and metasurfaces.
2. Content
Here we review fundamentals aspects of the underlying physics [,,] and recent advances in the research on magneto-plasmonic nanoantennas and two-dimensional magneto-plasmonic crystals [4-16]. From the one side, they contributed to broaden the understanding and control of optics at the nanoscale. From the other side, magneto-plasmonic nanoantennas and surfaces have already shown a clear path towards applications to variety of emerging technologies as, e.g., ultrasensitive molecular sensing and ultrathin optical devices. A survey of applications to a variety of emerging technologies are presented as an example of the broad scientific and technological perspectives of magneto-plasmonic antennas and crystals, namely:
- -
- magneto-plasmonic nanoantennas for ultra-sensitive and label-free molecular detection [,,,,];
- -
- ultra-thin 2D chiroptical surfaces, built on magneto-plasmonic bimetallic meta-atoms where chiral light transmission is modulated by the externally applied magnetic field [];
- -
- 2D magneto-plasmonic crystals, which support collective modes (surface lattice resonances) or surface plasmon polariton modes displaying a two-dimensional photonic band structure that can be engineered to obtain tailored and enhanced magneto-optical response [,,,,];
- -
- thermo-plasmonics based on bimetallic magneto-plasmonic nanoantennas, for harvesting electromagnetic radiation energy and convert it into heat, which can be used to finely tune the magnetization reversal in networks of interacting nanomagnets [].
Challenges and future work will be briefly discussed.
Funding
I acknowledge financial support by the EU Horizon2020 Research and Innovation Programme under Grant agreement No. 737709 (FEMTOTERABYTE) and by the Spanish Ministry of Economy and Competitiveness under the Maria de Maeztu Units of Excellence Programme (MDM-2016-0618) and the Project n. FIS2015-64519-R (MINECO/FEDER)].
Conflicts of Interest
The authors declare no conflict of interest.
References
- Chen, J.; Albella, P.; Pirzadeh, Z.; Alonso-González, P.; Huth, F.; Bonetti, S.; Bonanni, V.; Åkerman, J.; Nogués, J.; Vavassori, P.; et al. Plasmonic Nickel Nanoantennas. Small 2011, 7, 2341. [Google Scholar] [CrossRef] [PubMed]
- Maccaferri, N.; Berger, A.; Bonetti, S.; Bonanni, V.; Kataja, M.; van Dijken, S.; Nogués, J.; Åkerman, J.; Pirzadeh, Z.; Dmitriev, A.; et al. Plasmonic Phase Tuning of Magneto-Optics in Ferromagnetic Nanostructures. Phys. Rev. Lett. 2013, 111, 167401. [Google Scholar] [CrossRef] [PubMed]
- Maccaferri, N.; González-Díaz, J.B.; Bonetti, S.; Berger, A.; Kataja, M.; van Dijken, S.; Nogués, J.; Bonanni, V.; Pirzadeh, Z.; Dmitriev, A.; et al. Polarizability and magnetoplasmonic properties of magnetic general ellipsoids. Opt. Express 2013, 21, 9875. [Google Scholar] [CrossRef] [PubMed]
- Bonanni, V.; Bonetti, S.; Pakizeh, T.; Pirzadeh, Z.; Chen, J.; Nogues, J.; Vavassori, P.; Hillenbrand, R.; Åkerman, J.; Dmitriev, A. Designer Magnetoplasmonics with Nickel Nanoferromagnets. Nano Lett. 2011, 11, 5333. [Google Scholar] [CrossRef]
- Maccaferri, N.; Gregorczyk, K. E.; de Oliveira, T.V.A.G.; Kataja, M.; van Dijken, S.; Pirzadeh, Z.; Dmitriev, A.; Åkerman, J.; Knez, M.; Vavassori, P. Ultrasensitive and label-free molecular-level detection enabled by light phase control in magnetoplasmonic nanoantennas. Nat. Commun. 2015, 6, 6150. [Google Scholar] [CrossRef]
- Zubritskaya, I.; Lodewijks, K.; Maccaferri, N.; Mekonnen, A.; Dumas, R. K.; Åkerman, J.; Vavassori, P.; Dmitriev, A. Active Magnetoplasmonic Ruler. Nano Lett. 2015, 15, 3204. [Google Scholar] [CrossRef]
- Verre, R.; Maccaferri, N.; Fleischer, K.; Svedendahl, M.; Odebo Länk, N.; Dmitriev, A.; Vavassori, P.; Shvetsc, I. V.; Käll, M. Polarization conversion-based molecular sensing using anisotropic plasmonic metasurfaces. Nanoscale 2016, 8, 10576. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Lopez-Ortega, A.; Aranda-Ramos, A.; Tajada, J. L.; Sort, J.; Nogues, C.; Vavassori, P.; Nogues, J.; Sepulveda, B. Simultaneous Local Heating/Thermometry Based on Plasmonic Magnetochromic Nanoheaters. Small 2018, 14, 1800868. [Google Scholar] [CrossRef] [PubMed]
- Zubritskaya, I.; Maccaferri, N.; Inchausti Ezeiza, X.; Vavassori, P.; Dmitriev, A. Magnetic control of the chiroptical plasmonic surfaces. Nano Lett. 2018, 18, 302. [Google Scholar] [CrossRef] [PubMed]
- Lodewijks, K.; Maccaferri, N.; Pakizeh, T.; Dumas, R. K.; Zubritskaya, I.; Åkerman, J.; Vavassori, P.; Dmitriev, A. Magnetoplasmonic design rules for active magneto-optics. Nano Lett. 2014, 14, 7207. [Google Scholar] [CrossRef] [PubMed]
- Maccaferri, N.; Bergamini, L.; Pancaldi, M.; Schmidt, M.K.; Kataja, M.; van Dijken, S.; Zabala, N.; Aizpurua, J.; Vavassori, P. Anisotropic Nanoantenna-Based Magnetoplasmonic Crystals for Highly Enhanced and Tunable Magneto-Optical Activity. Nano Lett. 2016, 16, 2533. [Google Scholar] [CrossRef] [PubMed]
- Kataja, M.; Pourjamal, S.; Maccaferri, N.; Vavassori, P.; Hakala, T. K.; Huttunen, M. J.; Törmä, P.; van Dijken, S. Hybrid plasmonic lattices with tunable magnetooptical activity. Opt. Express 2016, 24, 3652. [Google Scholar] [CrossRef] [PubMed]
- Maccaferri, N.; Xabier Inchausti, X.; García-Martín, A.; Cuevas, J. C.; Tripathy, D.; Adeyeye, A. O.; Vavassori, P. Resonant Enhancement of Magneto-Optical Activity Induced by Surface Plasmon Polariton Modes Coupling in 2D Magnetoplasmonic Crystals. ACS Photonics 2015, 2, 1769. [Google Scholar] [CrossRef]
- López-Ortega, A.; Takahashi, M.; Maenosono, S.; Vavassori, P. Plasmon Induced Magneto-Optical Enhancement in Metallic Ag/FeCo Core/Shell Nanoparticles Synthesized by Colloidal Chemistry. Nanoscale 2018, 10, 18672. [Google Scholar] [CrossRef] [PubMed]
- López-Ortega, A.; Zapata-Herrera, M.; Maccaferri, N.; Pancaldi, M.; Garcia, M.; Chuvilin, A.; Vavassori, P. Magnetoplasmonics in nanocavities: Dark plasmons enhance magneto-optics beyond the intrinsic limit of magnetoplasmonic nanoantennas. Nat. Nanotechnol.
- Pancaldi, M.; Leo, N.; Vavassori, P. Selective and fast plasmon-assisted photo-heating of nanomagnets. Nanoscale 2019, 11, 7656. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).