Magneto-Plasmonic Nanostructures and Crystals
Abstract
:1. Introduction
2. Content
- -
- -
- ultra-thin 2D chiroptical surfaces, built on magneto-plasmonic bimetallic meta-atoms where chiral light transmission is modulated by the externally applied magnetic field [9];
- -
- -
- thermo-plasmonics based on bimetallic magneto-plasmonic nanoantennas, for harvesting electromagnetic radiation energy and convert it into heat, which can be used to finely tune the magnetization reversal in networks of interacting nanomagnets [16].
Funding
Conflicts of Interest
References
- Chen, J.; Albella, P.; Pirzadeh, Z.; Alonso-González, P.; Huth, F.; Bonetti, S.; Bonanni, V.; Åkerman, J.; Nogués, J.; Vavassori, P.; et al. Plasmonic Nickel Nanoantennas. Small 2011, 7, 2341. [Google Scholar] [CrossRef] [PubMed]
- Maccaferri, N.; Berger, A.; Bonetti, S.; Bonanni, V.; Kataja, M.; van Dijken, S.; Nogués, J.; Åkerman, J.; Pirzadeh, Z.; Dmitriev, A.; et al. Plasmonic Phase Tuning of Magneto-Optics in Ferromagnetic Nanostructures. Phys. Rev. Lett. 2013, 111, 167401. [Google Scholar] [CrossRef] [PubMed]
- Maccaferri, N.; González-Díaz, J.B.; Bonetti, S.; Berger, A.; Kataja, M.; van Dijken, S.; Nogués, J.; Bonanni, V.; Pirzadeh, Z.; Dmitriev, A.; et al. Polarizability and magnetoplasmonic properties of magnetic general ellipsoids. Opt. Express 2013, 21, 9875. [Google Scholar] [CrossRef] [PubMed]
- Bonanni, V.; Bonetti, S.; Pakizeh, T.; Pirzadeh, Z.; Chen, J.; Nogues, J.; Vavassori, P.; Hillenbrand, R.; Åkerman, J.; Dmitriev, A. Designer Magnetoplasmonics with Nickel Nanoferromagnets. Nano Lett. 2011, 11, 5333. [Google Scholar] [CrossRef]
- Maccaferri, N.; Gregorczyk, K. E.; de Oliveira, T.V.A.G.; Kataja, M.; van Dijken, S.; Pirzadeh, Z.; Dmitriev, A.; Åkerman, J.; Knez, M.; Vavassori, P. Ultrasensitive and label-free molecular-level detection enabled by light phase control in magnetoplasmonic nanoantennas. Nat. Commun. 2015, 6, 6150. [Google Scholar] [CrossRef]
- Zubritskaya, I.; Lodewijks, K.; Maccaferri, N.; Mekonnen, A.; Dumas, R. K.; Åkerman, J.; Vavassori, P.; Dmitriev, A. Active Magnetoplasmonic Ruler. Nano Lett. 2015, 15, 3204. [Google Scholar] [CrossRef]
- Verre, R.; Maccaferri, N.; Fleischer, K.; Svedendahl, M.; Odebo Länk, N.; Dmitriev, A.; Vavassori, P.; Shvetsc, I. V.; Käll, M. Polarization conversion-based molecular sensing using anisotropic plasmonic metasurfaces. Nanoscale 2016, 8, 10576. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Lopez-Ortega, A.; Aranda-Ramos, A.; Tajada, J. L.; Sort, J.; Nogues, C.; Vavassori, P.; Nogues, J.; Sepulveda, B. Simultaneous Local Heating/Thermometry Based on Plasmonic Magnetochromic Nanoheaters. Small 2018, 14, 1800868. [Google Scholar] [CrossRef] [PubMed]
- Zubritskaya, I.; Maccaferri, N.; Inchausti Ezeiza, X.; Vavassori, P.; Dmitriev, A. Magnetic control of the chiroptical plasmonic surfaces. Nano Lett. 2018, 18, 302. [Google Scholar] [CrossRef] [PubMed]
- Lodewijks, K.; Maccaferri, N.; Pakizeh, T.; Dumas, R. K.; Zubritskaya, I.; Åkerman, J.; Vavassori, P.; Dmitriev, A. Magnetoplasmonic design rules for active magneto-optics. Nano Lett. 2014, 14, 7207. [Google Scholar] [CrossRef] [PubMed]
- Maccaferri, N.; Bergamini, L.; Pancaldi, M.; Schmidt, M.K.; Kataja, M.; van Dijken, S.; Zabala, N.; Aizpurua, J.; Vavassori, P. Anisotropic Nanoantenna-Based Magnetoplasmonic Crystals for Highly Enhanced and Tunable Magneto-Optical Activity. Nano Lett. 2016, 16, 2533. [Google Scholar] [CrossRef] [PubMed]
- Kataja, M.; Pourjamal, S.; Maccaferri, N.; Vavassori, P.; Hakala, T. K.; Huttunen, M. J.; Törmä, P.; van Dijken, S. Hybrid plasmonic lattices with tunable magnetooptical activity. Opt. Express 2016, 24, 3652. [Google Scholar] [CrossRef] [PubMed]
- Maccaferri, N.; Xabier Inchausti, X.; García-Martín, A.; Cuevas, J. C.; Tripathy, D.; Adeyeye, A. O.; Vavassori, P. Resonant Enhancement of Magneto-Optical Activity Induced by Surface Plasmon Polariton Modes Coupling in 2D Magnetoplasmonic Crystals. ACS Photonics 2015, 2, 1769. [Google Scholar] [CrossRef]
- López-Ortega, A.; Takahashi, M.; Maenosono, S.; Vavassori, P. Plasmon Induced Magneto-Optical Enhancement in Metallic Ag/FeCo Core/Shell Nanoparticles Synthesized by Colloidal Chemistry. Nanoscale 2018, 10, 18672. [Google Scholar] [CrossRef] [PubMed]
- López-Ortega, A.; Zapata-Herrera, M.; Maccaferri, N.; Pancaldi, M.; Garcia, M.; Chuvilin, A.; Vavassori, P. Magnetoplasmonics in nanocavities: Dark plasmons enhance magneto-optics beyond the intrinsic limit of magnetoplasmonic nanoantennas. Nat. Nanotechnol.
- Pancaldi, M.; Leo, N.; Vavassori, P. Selective and fast plasmon-assisted photo-heating of nanomagnets. Nanoscale 2019, 11, 7656. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vavassori, P. Magneto-Plasmonic Nanostructures and Crystals. Proceedings 2019, 26, 2. https://doi.org/10.3390/proceedings2019026002
Vavassori P. Magneto-Plasmonic Nanostructures and Crystals. Proceedings. 2019; 26(1):2. https://doi.org/10.3390/proceedings2019026002
Chicago/Turabian StyleVavassori, P. 2019. "Magneto-Plasmonic Nanostructures and Crystals" Proceedings 26, no. 1: 2. https://doi.org/10.3390/proceedings2019026002
APA StyleVavassori, P. (2019). Magneto-Plasmonic Nanostructures and Crystals. Proceedings, 26(1), 2. https://doi.org/10.3390/proceedings2019026002