Optimization of Lightweight Axles for an Innovative Carving Skateboard Based on Carbon Fiber Placement †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analysis of the Original Trailing Arm
2.2. FRP-Appropriate Design
2.3. Optimization of the FRP-Shell Structure
- material: CFRP (isotropic, as only location of material is needed), 2 mm max. thickness
- load cases: equal to analysis of original trailing arm; symmetric application (to z-axis) of forces to ensure the use on both sides of the longboard
- optimization constraint: Displacement at bearing housing of wheel axis <1.5 mm
- objective: minimize mass
2.4. Design of the TFP-Pattern
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- Crothers, P.J.; Drechsler, K.; Feltin, D.; Herszberg, I.; Kruckenberg, T. Tailored fibre placement to minimise stress concentrations. Compos. Part A Appl. Sci. Manuf. 1997, 28, 619–625. [Google Scholar] [CrossRef]
- Mattheij, P.; Gliesche, K.; Feltin, D. Tailored Fiber Placement—Mechanical Properties and Applications. J. Reinf. Plast. Compos. 1998, 17, 774–786. [Google Scholar] [CrossRef]
- Temmen, H.; Degenhardt, R.; Raible, T. Tailored fibre placement optimisation tool. In Proceedings of the 25th International Congress Aeronautical Science (ICAS), Hamburg, Germany, 3–8 September 2006; Volume 4, pp. 2462–2471. [Google Scholar]
- Spickenheuer, A. Zur Fertigungsgerechten Auslegung von Faser-Kunststoff-Verbundbauteilen für den Extremen Leichtbau auf Basis des Variabelaxialen Fadenablageverfahrens Tailored Fiber Placement. Ph.D. Thesis, Technische Universität Dresden, Dresden, Germany, 2014. [Google Scholar]
Share | Number of Pcs. | Weight in g | |
---|---|---|---|
StreetCarver | Longboard | ||
Deck | 1 | 2400 | 2900 |
Truck | 2 | 1640 | 430 |
Thereof trailing arm | 4 | 318 | - |
Wheel | 4 | 570 | 205 |
Total | 7960 | 4580 |
Point of Application | Direction | Force [N] |
---|---|---|
bearing wheel | X | −624 |
Y | −1695 | |
Z | −313 | |
bearing wishbone | X | −1354 |
Y | 3390 | |
Z | −5337 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fleischmann, M.; Ehemann, C.; Kaufmann, J.; Cebulla, H. Optimization of Lightweight Axles for an Innovative Carving Skateboard Based on Carbon Fiber Placement. Proceedings 2018, 2, 253. https://doi.org/10.3390/proceedings2060253
Fleischmann M, Ehemann C, Kaufmann J, Cebulla H. Optimization of Lightweight Axles for an Innovative Carving Skateboard Based on Carbon Fiber Placement. Proceedings. 2018; 2(6):253. https://doi.org/10.3390/proceedings2060253
Chicago/Turabian StyleFleischmann, Marc, Conrad Ehemann, Jörg Kaufmann, and Holger Cebulla. 2018. "Optimization of Lightweight Axles for an Innovative Carving Skateboard Based on Carbon Fiber Placement" Proceedings 2, no. 6: 253. https://doi.org/10.3390/proceedings2060253
APA StyleFleischmann, M., Ehemann, C., Kaufmann, J., & Cebulla, H. (2018). Optimization of Lightweight Axles for an Innovative Carving Skateboard Based on Carbon Fiber Placement. Proceedings, 2(6), 253. https://doi.org/10.3390/proceedings2060253