Modular Ceramic-Polymeric Device for Analysis of Selected Elements in Liquid Using Microplasma †
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Webb, M.R.; Andrade, F.J.; Gamez, G.; Crindle, R.M.; Hieftje, G.M. Spectroscopic and electrical studies of a solution-cathode glow discharge. J. Anal. At. Spectrom. 2005, 20, 1218–1225. [Google Scholar] [CrossRef]
- Kita, J.; Engelbrecht, A.; Schubert, F.; Groß, A.; Rettig, F.; Moos, R. Some practical points to consider with respect to thermal conductivity and electrical resistivity of ceramic substrates for high-temperature gas sensors. Sens. Actuator B-Chem. 2015, 213, 541–546. [Google Scholar] [CrossRef]
- Jamroz, P.; Greda, K.; Pohl, P. Development of direct-current, atmospheric-pressure, glow discharges generated in contact with flowing electrolyte solutions for elemental analysis by optical emission spectrometry. Trends Anal. Chem. 2012, 41, 105–121. [Google Scholar] [CrossRef]
- Schwartz, A.J.; Ray, S.J.; Chan, G.C.Y.; Hieftje, G.M. Spatially resolved measurements to improve analytical performance of solution-cathode glow discharge optical-emission spectrometry. Spectrochim. Acta B 2016, 125, 168–176. [Google Scholar] [CrossRef]
- Kim, H.J.; Lee, J.H.; Kim, M.Y.; Cserfalvi, T.; Mezei, P. Development of open-air type electrolyte-as-cathode glow discharge-atomic emission spectrometry for determination of trace metals in water. Spectrochim. Acta B 2000, 55, 823–831. [Google Scholar] [CrossRef]
- Cserfalvi, T.; Mezei, P. Direct solution analysis by glow discharge: Electrolyte cathode discharge spectrometry. J. Anal. At. Spectrom. 1994, 9, 345–349. [Google Scholar] [CrossRef]
DLs [mg/L] | ||||
---|---|---|---|---|
Zn 213.9 nm | Cd 228.8 nm | |||
Fluid Flow Rate (mL/min) | 1.0 mm | 1.5 mm | 1.0 mm | 1.5 mm |
1 | 0.42 | 0.14 | 0.14 | 0.053 |
2 | 0.30 | 0.25 | 0.094 | 0.16 |
3 | 0.25 | 0.26 | 0.073 | 0.097 |
4 | 0.16 | 0.22 | 0.069 | 0.053 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matusiak, T.; Macioszczyk, J.; Świderski, K.; Jamróz, P.; Pohl, P.; Golonka, L. Modular Ceramic-Polymeric Device for Analysis of Selected Elements in Liquid Using Microplasma. Proceedings 2018, 2, 822. https://doi.org/10.3390/proceedings2130822
Matusiak T, Macioszczyk J, Świderski K, Jamróz P, Pohl P, Golonka L. Modular Ceramic-Polymeric Device for Analysis of Selected Elements in Liquid Using Microplasma. Proceedings. 2018; 2(13):822. https://doi.org/10.3390/proceedings2130822
Chicago/Turabian StyleMatusiak, Tomasz, Jan Macioszczyk, Krzysztof Świderski, Piotr Jamróz, Paweł Pohl, and Leszek Golonka. 2018. "Modular Ceramic-Polymeric Device for Analysis of Selected Elements in Liquid Using Microplasma" Proceedings 2, no. 13: 822. https://doi.org/10.3390/proceedings2130822
APA StyleMatusiak, T., Macioszczyk, J., Świderski, K., Jamróz, P., Pohl, P., & Golonka, L. (2018). Modular Ceramic-Polymeric Device for Analysis of Selected Elements in Liquid Using Microplasma. Proceedings, 2(13), 822. https://doi.org/10.3390/proceedings2130822