Antibiotic Resistance Genes Dynamics at the Different Stages of the Biological Process in a Full-Scale Wastewater Treatment Plant †
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Kumar, A.; Pal, D. Antibiotic resistance and wastewater: Correlation, impact and critical human health challenges. J. Environ. Chem. Eng. 2018, 6, 52–58. [Google Scholar] [CrossRef]
- Lin, A.Y.-C.; Yu, T.-H.; Lateef, S.K. Removal of pharmaceuticals in secondary wastewater treatment processes in Taiwan. J. Hazard. Mater. 2009, 167, 1163–1169. [Google Scholar] [CrossRef] [PubMed]
- Batt, A.L.; Kim, S.; Aga, D.S. Comparison of the occurrence of antibiotics in four full-scale wastewater treatment plants with varying designs and operations. Chemosphere 2007, 68, 428–435. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Zhang, T. Mass flows and removal of antibiotics in two municipal wastewater treatment plants. Chemosphere 2011, 83, 1284–1289. [Google Scholar] [CrossRef] [PubMed]
- Watkinson, A.J.; Murby, E.J.; Costanzo, S.D. Removal of antibiotics in conventional and advanced wastewater treatment: Implications for environmental discharge and wastewater recycling. Water Res. 2007, 41, 4164–4176. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Shen, W.; Yan, L.; Wang, X.-H.; Xu, H. Stepwise impact of urban wastewater treatment on the bacterial community structure, antibiotic contents, and prevalence of antimicrobial resistance. Environ. Pollut. 2017, 231, 1578–1585. [Google Scholar] [CrossRef] [PubMed]
- Ben, W.; Wang, J.; Cao, R.; Yang, M.; Zhang, Y.; Qiang, Z. Distribution of antibiotic resistance in the effluents of ten municipal wastewater treatment plants in China and the effect of treatment processes. Chemosphere 2017, 172, 392–398. [Google Scholar] [CrossRef]
- Neudorf, K.D.; Huang, Y.N.; Ragush, C.M.; Yost, C.K.; Jamieson, R.C.; Truelstrup Hansen, L. Antibiotic resistance genes in municipal wastewater treatment systems and receiving waters in Arctic Canada. Sci. Total Environ. 2017, 598, 1085–1094. [Google Scholar] [CrossRef]
- Di Cesare, A.; Eckert, E.M.; D’Urso, S.; Bertoni, R.; Gillan, D.C.; Wattiez, R.; Corno, G. Co-occurrence of integrase 1, antibiotic and heavy metal resistance genes in municipal wastewater treatment plants. Water Res. 2016, 94, 208–214. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, M. Occurrence and removal of antibiotic resistance genes in municipal wastewater and rural domestic sewage treatment systems in eastern China. Environ. Int. 2013, 55, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Kerrn, M.B.; Klemmensen, T.; Frimodt-Möller, N.; Espersen, F. Susceptibility of Danish Escherichia coli strains isolated from urinary tract infections and bacteraemia, and distribution of sul genes conferring sulphonamide resistance. J. Antimicrob. Chemother. 2002, 50, 513–516. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Yu, Z.; Michel, F.C., Jr.; Wittum, T.; Morrison, M. Development and application of real-time PCR assays for quantification of erm genes conferring resistance to macrolides-lincosamides-streptogramin B in livestock manure and manure management systems. Appl. Environ. Microbiol. 2007, 73, 4407–4416. [Google Scholar] [CrossRef]
- EMBOSS Transeq. Available online: https://www.ebi.ac.uk/Tools/st/emboss_transeq/ (accessed on 15 February 2018).
- Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011, 7, 539. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Jeon, J.H.; Shin, J.; Jang, H.M.; Kim, S.; Song, M.S.; Kim, Y.M. Quantitative and qualitative changes in antibiotic resistance genes after passing through treatment processes in municipal wastewater treatment plants. Sci. Total Environ. 2017, 605–606, 906–914. [Google Scholar] [CrossRef] [PubMed]
- Fahrenfeld, N.; Ma, Y.; O’Brien, M.; Pruden, A. Reclaimed water as a reservoir of antibiotic resistance genes: Distribution system and irrigation implications. Front. Microbiol. 2013, 4, 130. [Google Scholar] [CrossRef] [PubMed]
- Szczepanowski, R.; Linke, B.; Krahn, I.; Gartemann, K.-H.; Gützkow, T.; Eichler, W.; Pühler, A.; Schlüter, A. Detection of 140 clinically relevant antibiotic-resistance genes in the plasmid metagenome of wastewater treatment plant bacteria showing reduced susceptibility to selected antibiotics. Microbiology 2009, 155, 2306–2319. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Ren, H.; Geng, J.; Zhang, Y.; Xu, K.; Ding, L. Occurrence and abundance of tetracycline, sulfonamide resistance genes, and class 1 integron in five wastewater treatment plants. Environ. Sci. Pollut. Res. 2014, 21, 7276–7284. [Google Scholar] [CrossRef] [PubMed]
- Lupan, I.; Carpa, R.; Oltean, A.; Kelemen, B.S.; Popescu, O. Release of antibiotic resistant bacteria by a waste treatment plant from Romania. Microbes Environ. 2017, 32, 219–225. [Google Scholar] [CrossRef] [PubMed]
Genotype | Gene Similarity | Microorganism Carrying the Closest Relative ermB Gene | GenBank Code |
---|---|---|---|
1 | 100% | Streptococcus pneumoniae ICESpnIC1 | HG799494 |
Nocardia farcinica CNM20080087 | KM194594 | ||
Streptococcus agalactiae GBS6 | CP007572 | ||
Staphylococcus aureus SA268 | CP006630 | ||
Clostridium difficile transposon Tn6218 | HG002387 | ||
Listeria monocytogenes LM78 | JX535233 | ||
Enterococcus faecium e82 | JN899594 | ||
Enterococcus faecalis plasmid pLG2 | NG_041215 | ||
Lactococcus garvieae plasmid pKL0018 | AB290882 | ||
Streptococcus uberis | EF540938 | ||
Bacillus cereus 363 | AF480455 | ||
Streptococcus agalactiae KMP104 | DQ355148 | ||
Staphylococcus lentus | SLU35228 | ||
2 | 99% | Streptococcus pneumoniae NT_110_5 | CP007593 |
Streptococcus pyogenes HKU360 | CP009612 | ||
Enterococcus faecium Aus0085 plasmid p3 | CP006623 | ||
Streptococcus oligofermentans AS 1.3089 | CP004409 | ||
Streptococcus suis D12 | CP002644 | ||
Staphylococcus pseudintermedius C2597 | JF909978 | ||
Streptococcus uberis FSL Z3-097 | EF539836 | ||
Pediococcus acidilactici plasmid pEOC01 | DQ220741 | ||
Lactobacillus johnsonii G41 PEP-PTS | DQ518904 | ||
Streptococcus cristatus transposon Tn6002 | AY898750 | ||
Streptococcus hyointestinalis | AY278215 | ||
Lactobacillus fermentum | NG_034736 | ||
Peptoclostridium difficile 630 | CP010905 | ||
Campylobacter jejuni C179b | KF864551 | ||
Escherichia coli ECONIH1 plasmid pECO-824 | CP009860 | ||
Campylobacter coli SH-CCD11C365 | KC876752 | ||
Enterococcus thailandicus W3 plasmid pW3 | NG_041564 | ||
Lactobacillus plantarum plasmid pLFE1 | FJ374272 | ||
3 | 99% | Bacteroides uniformis transposon WH207 | AY345595 |
Enterococcus faecium plasmid pXD5 | KJ645709 | ||
Staphylococcus hyicus plasmid pSTE1 | HE662694 | ||
Staphylococcus aureus SA7037 plasmid pV7037 | NG_041616 | ||
Enterococcus faecalis plasmid pTW9 | AB563188 | ||
Lactococcus garvieae plasmid pKL0018 | AB290882 | ||
Streptococcus suis 2-22 | EU047808 | ||
Streptococcus uberis FSL Z3-102 | EF539835 | ||
Arcanobacterium pyogenes | AY334073 | ||
Staphylococcus intermedius MLS-17 | AF239773 | ||
Enterococcus hirae | AF406971 | ||
Campylobacter jejuni C179b | KF864551 |
Genotype | Gene Similarity | Microorganism Carrying the Closest Relative Ermf Gene | GenBank Code |
---|---|---|---|
1 | 100% | Bacteroides ovatus MN11 | HE999703 |
2 | 100% | Riemerella anatipestifer RA-CH-1 | CP003787 |
Bacteroides salanitronis DSM 18170 | CP002530 | ||
Bibersteinia trehalosi USDA-ARS-USMARC-189 | CP006955 | ||
Barnesiella viscericola DSM 18177 | CP007034 | ||
Capnocytophaga sputigena Be58 | JQ707297 | ||
Bacteroides thetaiotaomicron transposon CTnDOT | AJ311171 | ||
3 | 97% | Bacteroides salanitronis DSM 18170 | CP002530 |
Bibersteinia trehalosi USDA-ARS-USMARC-189 | CP006955 | ||
Barnesiella viscericola DSM 18177 | CP007034 | ||
Bacteroides ovatus MN11 | HE999703 | ||
Capnocytophaga sputigena Be58 | JQ707297 | ||
Bacteroides thetaiotaomicron transposon CTnDOT | AJ311171 |
Genotype | Gene Similarity | Microorganism Carrying the Closest Relative sul1 Gene | GenBank Code |
---|---|---|---|
1 | 100% | Aeromonas hydrophila AL06-06 | CP010947 |
Vibrio parahaemolyticus V36 plasmid pVPH1 | KP688397 | ||
Acinetobacter baumannii AB_NCGM 346 | LC030435 | ||
Escherichia coli 6409 plasmid p6409 | CP010373 | ||
Pseudomonas aeruginosa NCGM257 | AP014651 | ||
Klebsiella pneumoniae ATCC BAA-2146 plasmid pNDM-US-2 | KJ588779 | ||
Serratia marcescens 11663 plasmid p11663 | AP014611 | ||
Salmonella enterica plasmid pSBLT | LN794247 | ||
Vibrio cholerae plasmid pRJ354C | KP076293 | ||
Proteus mirabilis PEL | KF856624 | ||
Enterobacter cloacae 34983 plasmid p34983 | CP010378 | ||
Pantoea sp. PSNIH1 plasmid pPSP-a3e | CP009883 | ||
Proteus mirabilis PmC162 | KJ186154 | ||
Stenotrophomonas maltophilia GZP-Sm1 | KM649682 | ||
Klebsiella oxytoca MS5279 plasmid pKOI-34 | AB715422 | ||
Aeromonas salmonicida 2004-05MF26 plasmid pSN254b | KJ909290 | ||
Nocardia nova CNM20121076 | KM194585 | ||
2 | 99% | Aeromonas hydrophila AL06-06 | CP010947 |
Vibrio parahaemolyticus V36 plasmid pVPH1 | KP688397 | ||
Acinetobacter baumannii AB_NCGM 346 | LC030435 | ||
Escherichia coli O157:H16 strain Santai | CP007592 | ||
Pseudomonas aeruginosa NCGM257 | AP014651 | ||
Klebsiella pneumoniae ATCC BAA-2146 plasmid pNDM-US-2 | KJ588779 | ||
Serratia marcescens 11663 plasmid p11663 | AP014611 | ||
Salmonella enterica plasmid pSBLT | LN794247 | ||
Vibrio cholerae plasmid pRJ354C | KP076293 | ||
Proteus mirabilis PmCHE | KJ439039 | ||
Stenotrophomonas maltophilia GZP-Sm1 | KM649682 | ||
Klebsiella oxytoca MS5279 plasmid pKOI-34 | AB715422 | ||
Aeromonas salmonicida 2004-05MF26 plasmid pSN254b | KJ909290 | ||
Nocardia nova CNM20121076 | KM194585 |
Genotype | Gene Similarity | Microorganism Carrying the Closest Relative int1 Gene | GenBank Code |
---|---|---|---|
1 | 100% | Aeromonas hydrophila sAL06-06 | CP010947 |
Klebsiella pneumoniae Kpn-3002cz plasmid pS-300cz | KJ958927 | ||
Vibrio parahaemolyticus V36 plasmid pVPH1 | KP688397 | ||
Acinetobacter baumannii | LC030435 | ||
Escherichia coli 6409 plasmid p6409 | CP010373 | ||
Pseudomonas aeruginosa NCGM257 | AP014651 | ||
Achromobacter xylosoxidans A22732 plasmid pA22732-IMP | KJ588780 | ||
Klebsiella pneumoniae ATCC BAA-2146 plasmid pNDM-US-2 | KJ588779 | ||
Serratia marcescens 11663 plasmid p11663 | AP014611 | ||
Salmonella enterica plasmid incHI2 | LN794248 | ||
Acinetobacter baumannii A1 | CP010781 | ||
Vibrio cholerae plasmid pRJ354C | KP076293 | ||
Proteus mirabilis PEL | KF856624 | ||
Enterobacter cloacae 34983 plasmid p34983 | CP010378 | ||
Serratia marcescens A4Y201 plasmid pG5A4Y201 | KJ541069 | ||
Klebsiella oxytoca MS5279 plasmid pKOI-34 | AB715422 | ||
Nocardia veterana CNM20120791 | KM194583 | ||
Shigella flexneri Shi06HN006 | CP004057 | ||
Proteus mirabilis PmCHE | KJ439039 | ||
Klebsiella pneumoniae blaNDM-1 plasmid 1 | CP009116 | ||
2 | 99% | Bacteroides salanitronis DSM 18170 | CP002530 |
Bibersteinia trehalosi USDA-ARS-USMARC-189 | CP006955 | ||
Barnesiella viscericola DSM 18177 | CP007034 | ||
Bacteroides ovatus MN11 | HE999703 | ||
Bibersteinia trehalosi USDA-ARS-USMARC-192 | CP003745 | ||
Capnocytophaga sputigena Be58 | JQ707297 | ||
Bacteroides thetaiotaomicron transposon CTnDOT | AJ311171 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zerva, I.; Alexandropoulou, I.; Panopoulou, M.; Melidis, P.; Ntougias, S. Antibiotic Resistance Genes Dynamics at the Different Stages of the Biological Process in a Full-Scale Wastewater Treatment Plant. Proceedings 2018, 2, 650. https://doi.org/10.3390/proceedings2110650
Zerva I, Alexandropoulou I, Panopoulou M, Melidis P, Ntougias S. Antibiotic Resistance Genes Dynamics at the Different Stages of the Biological Process in a Full-Scale Wastewater Treatment Plant. Proceedings. 2018; 2(11):650. https://doi.org/10.3390/proceedings2110650
Chicago/Turabian StyleZerva, Ioanna, Ioanna Alexandropoulou, Maria Panopoulou, Paraschos Melidis, and Spyridon Ntougias. 2018. "Antibiotic Resistance Genes Dynamics at the Different Stages of the Biological Process in a Full-Scale Wastewater Treatment Plant" Proceedings 2, no. 11: 650. https://doi.org/10.3390/proceedings2110650
APA StyleZerva, I., Alexandropoulou, I., Panopoulou, M., Melidis, P., & Ntougias, S. (2018). Antibiotic Resistance Genes Dynamics at the Different Stages of the Biological Process in a Full-Scale Wastewater Treatment Plant. Proceedings, 2(11), 650. https://doi.org/10.3390/proceedings2110650