You are currently viewing a new version of our website. To view the old version click .
Proceedings
  • Abstract
  • Open Access

9 January 2018

Functionals of Harmonics Functions †

,
and
1
Departamento de Física Aplicada I, E.P.S., Universidad de Sevilla, Virgen de África 7, 41011 Sevilla, Spain
2
Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, 18071 Granada, Spain
3
Grupo Interdisciplinar de Sistemas Complejos (GISC), Departamento de Matemáticas, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganes, Spain
4
Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50009 Zaragoza, Spain
This article belongs to the Proceedings The First International Conference on Symmetry
Let C T s , with T > 0 , be the set of continuous, T-periodic functions f : R R s , and let Γ : C T s R be a real functional on C T s . If Γ is n times Fréchet differentiable on C T s , then it has an n-th order Taylor expansion around 0 (see e.g., [1]). Such a Taylor expansion can be obtained as the n-th order truncation of the series
Γ [ f ] = n 1 = 0 n s = 0 c n ( t 11 , , t 1 n 1 , , t s 1 , , t s n s ) × f 1 ( t 11 ) f 1 ( t 1 n 1 ) f s ( t s 1 ) f s ( t s n s ) ,
where n = ( n 1 , , n s ) and we have introduced the notation
Ω ( t 1 , , t r ) = 1 T r 0 T d t 1 0 T d t r Ω ( t 1 , , t r ) .
The kernels c n 1 , , n s ( t 11 , , t s n s ) are all real, T-periodic, and symmetric in all their arguments.
In this contribution we will prove the following theorem.
Theorem 1.
Let Γ be a functional with Taylor series (1), and take
f ( t ) = ϵ 1 cos ( q 1 ω t + ϕ 1 ) , , ϵ s cos ( q s ω t + ϕ s ) ,
where q ( q 1 , , q s ) N s is such that gcd ( q 1 , , q s ) = 1 and ω = 2 π / T . Then,
Γ [ f ] = C 0 ( ϵ ) + x S + ϵ 1 | x 1 | ϵ s | x s | C x ( ϵ ) cos x · ϕ + θ x ( ϵ ) ,
where, ϕ ( ϕ 1 , , ϕ s ) , ϵ ( ϵ 1 , , ϵ s ) , and functions C x ( ϵ ) and θ x ( ϵ ) do not depend on ϕ and are even in each ϵ i , i = 1 , , s , for every x S + . x S + is the set of vectors x whose leftmost nonzero component is positive.
In the special case when Γ is invariant under time-shift, i.e., Γ [ f ( t + τ ) ] = Γ [ f ( t ) ] for all 0 < τ < T , we recover the results in [2]
Γ [ f ] = C 0 ( ϵ ) + x D + ϵ 1 | x 1 | ϵ s | x s | C x ( ϵ ) cos x · ϕ + θ x ( ϵ ) ,
where D + denote the set of nonzero solutions of the Diophantine equation q · x = q 1 x 1 + + q s x s = 0 , whose leftmost nonzero component is positive.

Acknowledgments

We acknowledge financial support from the MINECO of Spain through FIS2014-54497-P (N.R.Q.) and MTM2015-65888-C4-1-P (R.A.N.).

References

  1. Wouk, A. Course of Applied Functional Analysis; John Wiley & Sons: New York, NY, USA, 1979. [Google Scholar]
  2. Cuesta, J.A.; Quintero, N.R.; Alvarez-Nodarse, R. Time-shift invariance determines the functional shape of the current in dissipative rocking ratchets. Phys. Rev. X 2013, 3, 041014. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.