Next Article in Journal
Sparse Representation Based Inpainting for the Restoration of Document Images Affected by Bleed-Through
Previous Article in Journal
Potassium Channel Gating Mechanism Modeled by Harmonic Oscillators
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Abstract

Functionals of Harmonics Functions †

by
Niurka R. Quintero
1,2,*,
José A. Cuesta
3,4 and
Renato Alvarez-Nodarse
5
1
Departamento de Física Aplicada I, E.P.S., Universidad de Sevilla, Virgen de África 7, 41011 Sevilla, Spain
2
Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, 18071 Granada, Spain
3
Grupo Interdisciplinar de Sistemas Complejos (GISC), Departamento de Matemáticas, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganes, Spain
4
Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50009 Zaragoza, Spain
5
Departamento de Análisis Matemático, Universidad de Sevilla, Apdo 1160, 41080 Sevilla, Spain
*
Author to whom correspondence should be addressed.
Presented at Symmetry 2017—The First International Conference on Symmetry, Barcelona, Spain, 16–18 October 2017.
Proceedings 2018, 2(1), 17; https://doi.org/10.3390/proceedings2010017
Published: 9 January 2018
(This article belongs to the Proceedings of The First International Conference on Symmetry)
Let C T s , with T > 0 , be the set of continuous, T-periodic functions f : R R s , and let Γ : C T s R be a real functional on C T s . If Γ is n times Fréchet differentiable on C T s , then it has an n-th order Taylor expansion around 0 (see e.g., [1]). Such a Taylor expansion can be obtained as the n-th order truncation of the series
Γ [ f ] = n 1 = 0 n s = 0 c n ( t 11 , , t 1 n 1 , , t s 1 , , t s n s ) × f 1 ( t 11 ) f 1 ( t 1 n 1 ) f s ( t s 1 ) f s ( t s n s ) ,
where n = ( n 1 , , n s ) and we have introduced the notation
Ω ( t 1 , , t r ) = 1 T r 0 T d t 1 0 T d t r Ω ( t 1 , , t r ) .
The kernels c n 1 , , n s ( t 11 , , t s n s ) are all real, T-periodic, and symmetric in all their arguments.
In this contribution we will prove the following theorem.
Theorem 1.
Let Γ be a functional with Taylor series (1), and take
f ( t ) = ϵ 1 cos ( q 1 ω t + ϕ 1 ) , , ϵ s cos ( q s ω t + ϕ s ) ,
where q ( q 1 , , q s ) N s is such that gcd ( q 1 , , q s ) = 1 and ω = 2 π / T . Then,
Γ [ f ] = C 0 ( ϵ ) + x S + ϵ 1 | x 1 | ϵ s | x s | C x ( ϵ ) cos x · ϕ + θ x ( ϵ ) ,
where, ϕ ( ϕ 1 , , ϕ s ) , ϵ ( ϵ 1 , , ϵ s ) , and functions C x ( ϵ ) and θ x ( ϵ ) do not depend on ϕ and are even in each ϵ i , i = 1 , , s , for every x S + . x S + is the set of vectors x whose leftmost nonzero component is positive.
In the special case when Γ is invariant under time-shift, i.e., Γ [ f ( t + τ ) ] = Γ [ f ( t ) ] for all 0 < τ < T , we recover the results in [2]
Γ [ f ] = C 0 ( ϵ ) + x D + ϵ 1 | x 1 | ϵ s | x s | C x ( ϵ ) cos x · ϕ + θ x ( ϵ ) ,
where D + denote the set of nonzero solutions of the Diophantine equation q · x = q 1 x 1 + + q s x s = 0 , whose leftmost nonzero component is positive.

Acknowledgments

We acknowledge financial support from the MINECO of Spain through FIS2014-54497-P (N.R.Q.) and MTM2015-65888-C4-1-P (R.A.N.).

References

  1. Wouk, A. Course of Applied Functional Analysis; John Wiley & Sons: New York, NY, USA, 1979. [Google Scholar]
  2. Cuesta, J.A.; Quintero, N.R.; Alvarez-Nodarse, R. Time-shift invariance determines the functional shape of the current in dissipative rocking ratchets. Phys. Rev. X 2013, 3, 041014. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Quintero, N.R.; Cuesta, J.A.; Alvarez-Nodarse, R. Functionals of Harmonics Functions. Proceedings 2018, 2, 17. https://doi.org/10.3390/proceedings2010017

AMA Style

Quintero NR, Cuesta JA, Alvarez-Nodarse R. Functionals of Harmonics Functions. Proceedings. 2018; 2(1):17. https://doi.org/10.3390/proceedings2010017

Chicago/Turabian Style

Quintero, Niurka R., José A. Cuesta, and Renato Alvarez-Nodarse. 2018. "Functionals of Harmonics Functions" Proceedings 2, no. 1: 17. https://doi.org/10.3390/proceedings2010017

APA Style

Quintero, N. R., Cuesta, J. A., & Alvarez-Nodarse, R. (2018). Functionals of Harmonics Functions. Proceedings, 2(1), 17. https://doi.org/10.3390/proceedings2010017

Article Metrics

Back to TopTop