Next Article in Journal
Chinese Traditional Musical Instrument Evaluation Based on a Smart Microphone Array Sensor
Previous Article in Journal
Position Measurement Based on Fisheye Imaging
Open AccessExtended Abstract

P3HT Processing Study for In-Liquid EGOFET Biosensors: Effects of the Solvent and the Surface

1
Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
2
Istituto Italiano di Tecnologia, Center for Sustainable Future Technologies, Via Livorno 60, 10144 Torino, Italy
3
Istituto dei Materiali per l’Elettronica ed il Magnetismo, IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy
*
Authors to whom correspondence should be addressed.
Presented at the 7th International Symposium on Sensor Science, Napoli, Italy, 9–11 May 2019.
Proceedings 2019, 15(1), 39; https://doi.org/10.3390/proceedings2019015039
Published: 15 August 2019
(This article belongs to the Proceedings of International Symposium on Sensor Science)
PDF [607 KB, uploaded 15 August 2019]

Abstract

In-liquid biosensing is the new frontier of cells real time monitoring and biomarkers detection. In order to improve the stability and electrical properties of an Electrolyte Gated Organic Field Effect Transistor (EGOFET) biosensor, in this study we investigate the effect of the solvent and of the substrate modification on thin films of organic semiconductor Poly(3-hexylthiophene) (P3HT). The studied surface is the relevant interface between the P3HT and the electrolyte acting as gate dielectric for in-liquid detection of an analyte. AFM and XPS characterizations were employed to study the effect of two solvents (toluene and 1,2-dichlorobenzene) and of the adhesion promoter (Ti prime) on the morphological structure and electronic properties of P3HT film. Combining the results from the surface characterizations with electrical measurements, we investigate the changes on the EGOFET performances and stability in DI water with an Ag/AgCl gate electrode.
Keywords: biosensor; bioelectronics; EGOFET biosensor; bioelectronics; EGOFET
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Parmeggiani, M.; Verna, A.; Ballesio, A.; Cocuzza, M.; Piatti, E.; Fra, V.; Pirri, C.F.; Marasso, S.L. P3HT Processing Study for In-Liquid EGOFET Biosensors: Effects of the Solvent and the Surface. Proceedings 2019, 15, 39.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Proceedings EISSN 2504-3900 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top