Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = EGOFET

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
46 pages, 3258 KiB  
Review
Organic Bioelectronics in Microphysiological Systems: Bridging the Gap Between Biological Systems and Electronic Technologies
by Pauline Coquart, Andrea El Haddad, Dimitrios A. Koutsouras and Johanna Bolander
Biosensors 2025, 15(4), 253; https://doi.org/10.3390/bios15040253 - 16 Apr 2025
Viewed by 1826
Abstract
The growing burden of degenerative, cardiovascular, neurodegenerative, and cancerous diseases necessitates innovative approaches to improve our pathophysiological understanding and ability to modulate biological processes. Organic bioelectronics has emerged as a powerful tool in this pursuit, offering a unique ability to interact with biology [...] Read more.
The growing burden of degenerative, cardiovascular, neurodegenerative, and cancerous diseases necessitates innovative approaches to improve our pathophysiological understanding and ability to modulate biological processes. Organic bioelectronics has emerged as a powerful tool in this pursuit, offering a unique ability to interact with biology due to the mixed ionic–electronic conduction and tissue-mimetic mechanical properties of conducting polymers (CPs). These materials enable seamless integration with biological systems across different levels of complexity, from monolayers to complex 3D models, microfluidic chips, and even clinical applications. CPs can be processed into diverse formats, including thin films, hydrogels, 3D scaffolds, and electrospun fibers, allowing the fabrication of advanced bioelectronic devices such as multi-electrode arrays, transistors (EGOFETs, OECTs), ion pumps, and photoactuators. This review examines the integration of CP-based bioelectronics in vivo and in in vitro microphysiological systems, focusing on their ability to monitor key biological events, including electrical activity, metabolic changes, and biomarker concentrations, as well as their potential for electrical, mechanical, and chemical stimulation. We highlight the versatility and biocompatibility of CPs and their role in advancing personalized medicine and regenerative therapies and discuss future directions for organic bioelectronics to bridge the gap between biological systems and electronic technologies. Full article
Show Figures

Figure 1

2 pages, 660 KiB  
Abstract
Merging Surface Plasmon Optical Detection with Electronic Sensing
by Wolfgang Knoll
Proceedings 2024, 97(1), 196; https://doi.org/10.3390/proceedings2024097196 - 19 Apr 2024
Viewed by 3489
Abstract
In one of the “classical” configurations of electrolyte-gated field effect transistors (EGOFETs) for biosensing, the planar gate electrode is functionalized by (a monolayer of) receptors, to which the analyte molecules of interest bind from the analyte solution, thereby modifying the gate potential, which [...] Read more.
In one of the “classical” configurations of electrolyte-gated field effect transistors (EGOFETs) for biosensing, the planar gate electrode is functionalized by (a monolayer of) receptors, to which the analyte molecules of interest bind from the analyte solution, thereby modifying the gate potential, which in turn modifies the source drain current as the sensor output signal [...] Full article
(This article belongs to the Proceedings of XXXV EUROSENSORS Conference)
Show Figures

Figure 1

14 pages, 2921 KiB  
Article
Quantitative Detection of the Influenza a Virus by an EGOFET-Based Portable Device
by Elena Y. Poimanova, Elena G. Zavyalova, Elena A. Kretova, Anton A. Abramov, Askold A. Trul, Oleg V. Borshchev, Anna K. Keshek, Sergey A. Ponomarenko and Elena V. Agina
Chemosensors 2023, 11(8), 464; https://doi.org/10.3390/chemosensors11080464 - 17 Aug 2023
Cited by 9 | Viewed by 2105
Abstract
Elaboration of biosensors on the base of organic transistors with embedded biomolecules which can operate in an aqueous environment is of paramount importance. Electrolyte-gated organic field-effect transistors demonstrate high sensitivity in detection of various analytes. In this paper, we demonstrated the possibility of [...] Read more.
Elaboration of biosensors on the base of organic transistors with embedded biomolecules which can operate in an aqueous environment is of paramount importance. Electrolyte-gated organic field-effect transistors demonstrate high sensitivity in detection of various analytes. In this paper, we demonstrated the possibility of quantitative fast specific determination of virus particles by an aptasensor based on EGOFET. The sensitivity and selectivity of the devices were examined with the influenza A virus as well as with control bioliquids like influenza B, Newcastle disease viruses or allantoic fluid with different dilutions. The influence of the semiconducting layer thickness on EGOFETs sensory properties is discussed. The fabrication of a multi-flow cell that simultaneously registers the responses from several devices on the same substrate and the creation of a multi-sensor flow device are reported. The responses of the elaborated bioelectronic platform to the influenza A virus obtained with application of the portable multi-flow mode are well correlated with the responses obtained in the laboratory stationary mode. Full article
(This article belongs to the Special Issue Chemosensors in Biological Challenges)
Show Figures

Graphical abstract

13 pages, 1312 KiB  
Article
Applying of C8-BTBT-Based EGOFETs at Different pH Values of the Electrolyte
by Polina A. Shaposhnik, Elena Y. Poimanova, Anton A. Abramov, Askold A. Trul, Daniil S. Anisimov, Elena A. Kretova, Elena V. Agina and Sergey A. Ponomarenko
Chemosensors 2023, 11(2), 74; https://doi.org/10.3390/chemosensors11020074 - 17 Jan 2023
Cited by 3 | Viewed by 3208
Abstract
Electrolyte-gated organic field-effect transistors (EGOFETs) is a popular platform for numerous sensing and biosensing applications in aqueous media. In this work, the variation of electrical characteristics of EGOFETs based on small-molecule organic semiconductor C8-BTBT and polystyrene blend in water solutions at different pH [...] Read more.
Electrolyte-gated organic field-effect transistors (EGOFETs) is a popular platform for numerous sensing and biosensing applications in aqueous media. In this work, the variation of electrical characteristics of EGOFETs based on small-molecule organic semiconductor C8-BTBT and polystyrene blend in water solutions at different pH values was investigated. A positive shift of the threshold voltage with near-Nernstian pH sensitivity was demonstrated in the pH range from 4.9 to 2.8, while no measurable pH dependence in the range from 4.9 to 8.6 pH was registered. These results indicate chemical doping of the molecules of organic semiconductors by protons from the electrolyte in the acidic region. In order to check the applicability of the EGOFETs in a flow mode, a flow chamber was designed and assembled. The preliminary results obtained in the flow mode measurements showed a fast response to pH variation. Full article
Show Figures

Figure 1

10 pages, 1843 KiB  
Article
Direct Comparison of the Effect of Processing Conditions in Electrolyte-Gated and Bottom-Gated TIPS-Pentacene Transistors
by Nicolò Lago, Marco Buonomo, Federico Prescimone, Stefano Toffanin, Michele Muccini and Andrea Cester
Electron. Mater. 2022, 3(4), 281-290; https://doi.org/10.3390/electronicmat3040024 - 27 Sep 2022
Cited by 1 | Viewed by 2682
Abstract
Among the plethora of soluble and easy processable organic semiconductors, 6,13-Bis(triisopropylsilylethynyl)pentacene (TIPS-P5) is one of the most promising materials for next-generation flexible electronics. However, based on the information reported in the literature, it is difficult to exploit in field-effect transistors the high-performance characteristics [...] Read more.
Among the plethora of soluble and easy processable organic semiconductors, 6,13-Bis(triisopropylsilylethynyl)pentacene (TIPS-P5) is one of the most promising materials for next-generation flexible electronics. However, based on the information reported in the literature, it is difficult to exploit in field-effect transistors the high-performance characteristics of this material. This article correlates the HMDS functionalization of the silicon substrate with the electrical characteristics of TIPS-P5-based bottom gate organic field-effect transistors (OFETs) and electrolyte-gated organic field-effect transistors (EGOFETs) fabricated over the same platform. TIPS-P5 transistors with a double-gate architecture were fabricated by simple drop-casting on Si/SiO2 substrates, and the substrates were either functionalized with hexamethyldisilazane (HMDS) or left untreated. The same devices were characterized both as standard bottom-gate transistors and as (top-gate) electrolyte-gated transistors, and the results with and without HMDS treatment were compared. It is shown that the functionalization of the silicon substrate negatively influences EGOFETs performance, while it is beneficial for bottom-gate OFETs. Different device architectures (e.g., bottom-gate vs. top-gate) require specific evaluation of the fabrication protocols starting from the effect of the HMDS functionalization to maximize the electrical characteristics of TIPS-P5-based devices. Full article
(This article belongs to the Special Issue Feature Papers of Electronic Materials II)
Show Figures

Figure 1

15 pages, 3173 KiB  
Article
Design of a Portable Microfluidic Platform for EGOT-Based in Liquid Biosensing
by Matteo Segantini, Matteo Parmeggiani, Alberto Ballesio, Gianluca Palmara, Francesca Frascella, Simone Luigi Marasso and Matteo Cocuzza
Sensors 2022, 22(3), 969; https://doi.org/10.3390/s22030969 - 26 Jan 2022
Cited by 11 | Viewed by 3671
Abstract
In biosensing applications, the exploitation of organic transistors gated via a liquid electrolyte has increased in the last years thanks to their enormous advantages in terms of sensitivity, low cost and power consumption. However, a practical aspect limiting the use of these devices [...] Read more.
In biosensing applications, the exploitation of organic transistors gated via a liquid electrolyte has increased in the last years thanks to their enormous advantages in terms of sensitivity, low cost and power consumption. However, a practical aspect limiting the use of these devices in real applications is the contamination of the organic material, which represents an obstacle for the realization of a portable sensing platform based on electrolyte-gated organic transistors (EGOTs). In this work, a novel contamination-free microfluidic platform allowing differential measurements is presented and validated through finite element modeling simulations. The proposed design allows the exposure of the sensing electrode without contaminating the EGOT device during the whole sensing tests protocol. Furthermore, the platform is exploited to perform the detection of bovine serum albumin (BSA) as a validation test for the introduced differential protocol, demonstrating the capability to detect BSA at 1 pM concentration. The lack of contamination and the differential measurements provided in this work can be the first steps towards the realization of a reliable EGOT-based portable sensing instrument. Full article
Show Figures

Graphical abstract

15 pages, 2299 KiB  
Article
Modeling the Double Layer Capacitance Effect in Electrolyte Gated FETs with Gel and Aqueous Electrolytes
by Roslyn S. Massey and Ravi Prakash
Micromachines 2021, 12(12), 1569; https://doi.org/10.3390/mi12121569 - 17 Dec 2021
Cited by 8 | Viewed by 3560
Abstract
Potential implementation of bio-gel Electrolyte Double Layer capacitors (bio-gel EDLCs) and electrolyte-gated FET biosensors, two commonly reported configurations of bio-electrolytic electronic devices, requires a robust analysis of their complex internal capacitive behavior. Presently there is neither enough of the parameter extraction literature, nor [...] Read more.
Potential implementation of bio-gel Electrolyte Double Layer capacitors (bio-gel EDLCs) and electrolyte-gated FET biosensors, two commonly reported configurations of bio-electrolytic electronic devices, requires a robust analysis of their complex internal capacitive behavior. Presently there is neither enough of the parameter extraction literature, nor an effective simulation model to represent the transient behavior of these systems. Our work aims to supplement present transient thin film transistor modelling techniques with the reported parameter extraction method, to accurately model both bio-gel EDLC and the aqueous electrolyte gated FET devices. Our parameter extraction method was tested with capacitors analogous to polymer-electrolyte gated FETs, electrolyte gated Field effect transistor (EGOFET) and Organic Electrolyte Gated Field Effect Transistor (OEGFET) capacitance stacks. Our method predicts the input/output electrical behavior of bio-gel EDLC and EGOFET devices far more accurately than conventional DLC techniques, with less than 5% error. It is also more effective in capturing the characteristic aqueous electrolyte charging behavior and maximum charging capability which are unique to these systems, than the conventional DLC Zubieta and the Two branch models. We believe this significant improvement in device simulation is a pivotal step towards further integration and commercial implementation of organic bio-electrolyte devices. The effective reproduction of the transient response of the OEGFET equivalent system also predicts the transient capacitive effects observed in our previously reported label-free OEGFET biosensor devices. This is the first parameter extraction method specifically designed for electrical parameter-based modelling of organic bio-electrolytic capacitor devices. Full article
Show Figures

Figure 1

4 pages, 365 KiB  
Proceeding Paper
Driving Electrolyte-Gated Organic Field-Effect Transistors with Redox Reactions
by Benoit Piro, Jérémy le Gall, Roberta Brayner, Giorgio Mattana and Vincent Noël
Proceedings 2020, 60(1), 31; https://doi.org/10.3390/IECB2020-07049 - 2 Nov 2020
Viewed by 1446
Abstract
Organic electrochemical transistors (OECTs) are now well-known, robust and efficient as amplification devices for redox reactions, typically biologically ones. In contrast, electrolyte-gated organic field-effect transistors (EGOFETs) have never been described for that kind of application because field-effect transistors are known as capacitive coupled [...] Read more.
Organic electrochemical transistors (OECTs) are now well-known, robust and efficient as amplification devices for redox reactions, typically biologically ones. In contrast, electrolyte-gated organic field-effect transistors (EGOFETs) have never been described for that kind of application because field-effect transistors are known as capacitive coupled devices, i.e., driven by changes in capacitance at the electrolyte/gate or electrolyte/semiconductor interface. For such a kind of transistors, any current flowing at the gate electrode is seen as a drawback. However, we demonstrate in this paper that not only the gate potential can trigger the source-drain current of EGOFETs, which is the generally accepted mode of operation, but that the current flowing at the gate can also be used. Because EGOFETs can work directly in water, and as an example of application, we demonstrate the possibility to monitor microalgae photosynthesis through the direct measurement of photosynthetic O2 production within the transistor’s electrolyte, thanks to its electroreduction on the EGOFET’s gate. This paves the way for the use of EGOFETs for environmental monitoring. Full article
(This article belongs to the Proceedings of The 1st International Electronic Conference on Biosensors)
Show Figures

Figure 1

12 pages, 4581 KiB  
Article
P3HT Processing Study for In-Liquid EGOFET Biosensors: Effects of the Solvent and the Surface
by Matteo Parmeggiani, Alessio Verna, Alberto Ballesio, Matteo Cocuzza, Erik Piatti, Vittorio Fra, Candido Fabrizio Pirri and Simone Luigi Marasso
Sensors 2019, 19(20), 4497; https://doi.org/10.3390/s19204497 - 17 Oct 2019
Cited by 11 | Viewed by 5686
Abstract
In-liquid biosensing is the new frontier of health and environment monitoring. A growing number of analytes and biomarkers of interest correlated to different diseases have been found, and the miniaturized devices belonging to the class of biosensors represent an accurate and cost-effective solution [...] Read more.
In-liquid biosensing is the new frontier of health and environment monitoring. A growing number of analytes and biomarkers of interest correlated to different diseases have been found, and the miniaturized devices belonging to the class of biosensors represent an accurate and cost-effective solution to obtaining their recognition. In this study, we investigate the effect of the solvent and of the substrate modification on thin films of organic semiconductor Poly(3-hexylthiophene) (P3HT) in order to improve the stability and electrical properties of an Electrolyte Gated Organic Field Effect Transistor (EGOFET) biosensor. The studied surface is the relevant interface between the P3HT and the electrolyte acting as gate dielectric for in-liquid detection of an analyte. Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS) characterizations were employed to study the effect of two solvents (toluene and 1,2-dichlorobenzene) and of a commercial adhesion promoter (Ti Prime) on the morphological structure and electronic properties of P3HT film. Combining the results from these surface characterizations with electrical measurements, we investigate the changes on the EGOFET performances and stability in deionized (DI) water with an Ag/AgCl gate electrode. Full article
Show Figures

Figure 1

5 pages, 603 KiB  
Proceeding Paper
P3HT Processing Study for In-Liquid EGOFET Biosensors: Effects of the Solvent and the Surface
by Matteo Parmeggiani, Alessio Verna, Alberto Ballesio, Matteo Cocuzza, Erik Piatti, Vittorio Fra, Candido Fabrizio Pirri and Simone Luigi Marasso
Proceedings 2019, 15(1), 39; https://doi.org/10.3390/proceedings2019015039 - 15 Aug 2019
Cited by 2 | Viewed by 1897
Abstract
In-liquid biosensing is the new frontier of cells real time monitoring and biomarkers detection. In order to improve the stability and electrical properties of an Electrolyte Gated Organic Field Effect Transistor (EGOFET) biosensor, in this study we investigate the effect of the solvent [...] Read more.
In-liquid biosensing is the new frontier of cells real time monitoring and biomarkers detection. In order to improve the stability and electrical properties of an Electrolyte Gated Organic Field Effect Transistor (EGOFET) biosensor, in this study we investigate the effect of the solvent and of the substrate modification on thin films of organic semiconductor Poly(3-hexylthiophene) (P3HT). The studied surface is the relevant interface between the P3HT and the electrolyte acting as gate dielectric for in-liquid detection of an analyte. AFM and XPS characterizations were employed to study the effect of two solvents (toluene and 1,2-dichlorobenzene) and of the adhesion promoter (Ti prime) on the morphological structure and electronic properties of P3HT film. Combining the results from the surface characterizations with electrical measurements, we investigate the changes on the EGOFET performances and stability in DI water with an Ag/AgCl gate electrode. Full article
(This article belongs to the Proceedings of 7th International Symposium on Sensor Science)
Show Figures

Figure 1

24 pages, 8735 KiB  
Review
Transistors for Chemical Monitoring of Living Cells
by Benoît Piro, Giorgio Mattana and Steeve Reisberg
Biosensors 2018, 8(3), 65; https://doi.org/10.3390/bios8030065 - 4 Jul 2018
Cited by 14 | Viewed by 9478
Abstract
We review here the chemical sensors for pH, glucose, lactate, and neurotransmitters, such as acetylcholine or glutamate, made of organic thin-film transistors (OTFTs), including organic electrochemical transistors (OECTs) and electrolyte-gated OFETs (EGOFETs), for the monitoring of cell activity. First, the various chemicals that [...] Read more.
We review here the chemical sensors for pH, glucose, lactate, and neurotransmitters, such as acetylcholine or glutamate, made of organic thin-film transistors (OTFTs), including organic electrochemical transistors (OECTs) and electrolyte-gated OFETs (EGOFETs), for the monitoring of cell activity. First, the various chemicals that are produced by living cells and are susceptible to be sensed in-situ in a cell culture medium are reviewed. Then, we discuss the various materials used to make the substrate onto which cells can be grown, as well as the materials used for making the transistors. The main part of this review discusses the up-to-date transistor architectures that have been described for cell monitoring to date. Full article
(This article belongs to the Special Issue Cell-based Biosensors)
Show Figures

Figure 1

24 pages, 8968 KiB  
Review
Electrolytic Gated Organic Field-Effect Transistors for Application in Biosensors—A Review
by Denjung Wang, Vincent Noël and Benoît Piro
Electronics 2016, 5(1), 9; https://doi.org/10.3390/electronics5010009 - 25 Feb 2016
Cited by 140 | Viewed by 23838
Abstract
Electrolyte-gated organic field-effect transistors have emerged in the field of biosensors over the last five years, due to their attractive simplicity and high sensitivity to interfacial changes, both on the gate/electrolyte and semiconductor/electrolyte interfaces, where a target-specific bioreceptor can be immobilized. This article [...] Read more.
Electrolyte-gated organic field-effect transistors have emerged in the field of biosensors over the last five years, due to their attractive simplicity and high sensitivity to interfacial changes, both on the gate/electrolyte and semiconductor/electrolyte interfaces, where a target-specific bioreceptor can be immobilized. This article reviews the recent literature concerning biosensing with such transistors, gives clues to understanding the basic principles under which electrolyte-gated organic field-effect transistors work, and details the transduction mechanisms that were investigated to convert a receptor/target association into a change in drain current. Full article
(This article belongs to the Special Issue Recent Advances in Organic Bioelectronics and Sensors)
Show Figures

Figure 1

Back to TopTop