Characterisation of Damaged Tubular Composites by Acoustic Emission, Thermal Diffusivity Mapping, and TSR-RGB Projection Technique †
1. Introduction
2. Experimental Methodology
3. Results
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rose, J.L. Ultrasonic Guided Waves in Structural Health Monitoring. Key Eng. Mater. 2004, 270–273, 14–21. [Google Scholar] [CrossRef]
- Cheng, L.; Tian, G.Y. Surface crack detection for carbon fiber reinforced plastic (CFRP) materials using pulsed eddy current thermography. IEEE Sens. J. 2011, 11, 3261–3268. [Google Scholar] [CrossRef]
- Cawley, P. The rapid non-destructive inspection of large composite structures. Composites 1994, 25, 351–357. [Google Scholar] [CrossRef]
- Hung, Y. Shearography for non-destructive evaluation of composite structures. Opt. Lasers Eng. 1996, 24, 161–182. [Google Scholar] [CrossRef]
- Hung, Y.; Chen, Y.; Ng, S.; Liu, L.; Huang, Y.; Luk, B.; Ip, R.; Wu, C.; Chung, P. Review and comparison of shearography and active thermography for nondestructive evaluation. Mater. Sci. Eng. R Rep. 2009, 64, 73–112. [Google Scholar] [CrossRef]
- Meola, C.; Carlomagno, G.M. Recent advances in the use of infrared thermography. Meas. Sci. Technol. 2004, 15, R27–R58. [Google Scholar] [CrossRef]
- Meola, C.; Carlomagno, G.M.; Giorleo, L. Geometrical limitations to detection of defects in composites by means of infrared thermography. J. Nondestruct. Eval. 2004, 23, 125–132. [Google Scholar] [CrossRef]
- Mayr, G.; Hendorfer, G. Porosity Determination by Pulsed Thermography in Reflection Mode. In Proceedings of the 10th International Conference on Quantitative InfraRed Thermography (QIRT 2010), Quebec City, QC, Canada, 24–29 June 2010. [Google Scholar] [CrossRef]
- Mayr, G.; Plank, B.; Sekelja, J.; Hendorfer, G. Active thermography as a quantitative method for non-destructive evaluation of porous carbon fiber reinforced polymers. NDT E Int. 2011, 44, 537–543. [Google Scholar] [CrossRef]
- Kordatos, E.Z.; Aggelis, D.G.; Matikas, T.E. Monitoring mechanical damage in structural materials using complimentary NDE techniques based on thermography and acoustic emission. Compos. B Eng. 2012, 43, 2676–2686. [Google Scholar] [CrossRef]
- Maldague, X.P.V. Introduction to NDT by active infrared thermography. Mater Eval. 2002, 60, 1060–1073. Available online: https://www.scribd.com/document/359584380/Introduction-To-Ndt-By-Active-Infrared-Thermography-pdf (accessed on 1 January 2015).
- Usamentiaga, R.; Venegas, P.; Guerediaga, J.; Vega, L.; López, I. Feature extraction and analysis for automatic characterization of impact damage in carbon fiber composites using active thermography. NDT E Int. 2013, 54, 123–132. [Google Scholar] [CrossRef]
- Ley, O.; Godinez, V. Non-destructive evaluation (NDE) of aerospace composites: Application of infrared (IR) thermography. In Non-Destructive Evaluation (NDE) of Polymer Matrix Composites; Karbhari, V.M., Ed.; Woodhead Publishing Ltd.: Cambridge, UK, 2013; pp. 309–336e. [Google Scholar] [CrossRef]
- Bagavathiappan, S.; Lahiri, B.; Saravanan, T.; Philip, J.; Jayakumar, T. Infrared thermography for condition monitoring—A review. Infrared Phys. Technol. 2013, 60, 35–55. [Google Scholar] [CrossRef]
- Avdelidis, N.P.; Gan, T.-H. Non-destructive evaluation (NDE) of Composites: Infrared (IR) thermography of wind turbine blades. In Non-Destructive Evaluation (NDE) of Polymer Matrix Composites; Karbhari, V.M., Ed.; Woodhead Publishing Ltd.: Cambridge, UK, 2013; pp. 634–650e. [Google Scholar] [CrossRef]
- Munoz, V.; Valès, B.; Perrin, M.; Pastor, M.L.; Welemane, H.; Cantarel, A.; Karama, M. Damage detection in CFRP by coupling acoustic emission and infrared thermography. Compos. Part B Eng. 2016, 85, 68–75. [Google Scholar] [CrossRef]
- Montesano, J.; Fawaz, Z.; Bougherara, H. Use of infrared thermography to investigate the fatigue behavior of a carbon fiber reinforced polymer composite. Compos. Struct. 2013, 97, 76–83. [Google Scholar] [CrossRef]
- Gresil, M.; Giurgiutiu, V. Guided wave propagation in composite laminates using piezoelectric wafer active sensor. Aeronaut. J. 2013, 117, 971–995. [Google Scholar] [CrossRef]
- Sánchez, D.M.; Gresil, M.; Soutis, C. Distributed internal strain measurement during composite manufacturing using optical fibre sensors. Compos. Sci. Technol. 2015, 120, 49–57. [Google Scholar] [CrossRef]
- Gresil, M.; Saleh, M.N.; Soutis, C. Transverse crack detection in 3d angle interlock glass fibre composites using acoustic emission. Materials 2016, 9, 699. [Google Scholar] [CrossRef] [PubMed]
- Güemes, A.; Fernández-López, A.; Fernandez, P. Damage Detection in Composite Structures from Fibre Optic Distributed Strain Measurements. In Proceedings of the 7th European Workshop on Structural Health Monitoring, Nantes, France, 8–11 July 2014; pp. 528–535. [Google Scholar]
- Fu, T.; Liu, Y.; Lau, K.-T.; Leng, J. Impact source identification in a carbon fiber reinforced polymer plate by using embedded fiber optic acoustic emission sensors. Compos. Part B Eng. 2014, 66, 420–429. [Google Scholar] [CrossRef]
- Di Sante, R. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications. Sensors 2015, 15, 18666–18713. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chandarana, N.; Lansiaux, H.; Gresil, M. Characterisation of Damaged Tubular Composites by Acoustic Emission, Thermal Diffusivity Mapping, and TSR-RGB Projection Technique. Proceedings 2025, 129, 47. https://doi.org/10.3390/proceedings2025129047
Chandarana N, Lansiaux H, Gresil M. Characterisation of Damaged Tubular Composites by Acoustic Emission, Thermal Diffusivity Mapping, and TSR-RGB Projection Technique. Proceedings. 2025; 129(1):47. https://doi.org/10.3390/proceedings2025129047
Chicago/Turabian StyleChandarana, Neha, Henri Lansiaux, and Matthieu Gresil. 2025. "Characterisation of Damaged Tubular Composites by Acoustic Emission, Thermal Diffusivity Mapping, and TSR-RGB Projection Technique" Proceedings 129, no. 1: 47. https://doi.org/10.3390/proceedings2025129047
APA StyleChandarana, N., Lansiaux, H., & Gresil, M. (2025). Characterisation of Damaged Tubular Composites by Acoustic Emission, Thermal Diffusivity Mapping, and TSR-RGB Projection Technique. Proceedings, 129(1), 47. https://doi.org/10.3390/proceedings2025129047