Symmetries and Scale Invariance in Global Maps of Quantum Circuits †
Abstract
1. Introduction
2. Materials and Methods
2.1. Vectorization of Sequential Kronecker Products
2.2. Global Maps
2.3. Sequential Products and Sums of Roots-of-Unity
2.4. Gray Codes and Multipliers
3. Some Concrete Examples
3.1. Numerical Explorations
3.2. Applications
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
DAG | Directed Acyclic Graph |
LUT | Look-Up Table |
PQC | Parametric Quantum Circuits |
QML | Quantum Machine Learning |
RVQC | Relativistic Variational Quantum Computing |
VQC | Variational Quantum Computing |
References
- Gruska, J. Quantum Computing; McGraw-Hill: London, UK, 1999. [Google Scholar]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Benedetti, M.; Lloyd, E.; Sack, S.; Fiorentini, M. Parameterized quantum circuits as machine learning models. Quantum Sci. Technol. 2019, 4, 043001. [Google Scholar] [CrossRef]
- Barthe, A.; Grossi, M.; Vallecorsa, S.; Tura, J.; Dunjko, V. Parameterized quantum circuits as universal generative models for continuous multivariate distributions. Quantum Inf. 2025, 11, 121. [Google Scholar] [CrossRef]
- Cerezo, M.; Arrasmith, A.; Babbush, R.; Benjamin, S.C.; Endo, S.; Fujii, K.; McClean, J.R.; Mitarai, K.; Yuan, X.; Cincio, L.; et al. Variational quantum algorithms. Nature Rev. Phys. 2021, 3, 625–644. [Google Scholar] [CrossRef]
- Bruschi, D.E.; Sabín, C.; Kok, P.; Johannson, G.; Delsing, P.; Fuentes, I. Towards universal quantum computation through relativistic motion. Sci. Rep. 2016, 6, 18349. [Google Scholar] [CrossRef] [PubMed]
- LeMaitre, P.A.; Perche, T.R.; Krumm, M.; Briegel, H.J. Universal Quantum Computer from Relativistic Motion. Phys. Rev. Lett. 2025, 134, 190601. [Google Scholar] [CrossRef]
- Biamonte, J.; Wittek, P.; Pancotti, N.; Rebentrost, P.; Wiebe, N.; Lloyd, S. Quantum machine learning. Nature 2017, 549, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Marco, M.; Lorenzo, M.; Lorenzo, R.; Enrico, P. Quantum Compiling. arXiv 2021, arXiv:2112.00187. [Google Scholar]
- Daskin, A. Quantum compiler design method by using linear combinations of permutations. arXiv 2024, arXiv:2112.00187. [Google Scholar] [CrossRef]
- Agrawal, U.; Zabalo, A.; Chen, K.; Wilson, J.H.; Potter, A.C.; Pixley, J.H.; Gopalakrishnan, S.; Vasseur, R. Entanglement and Charge-Sharpening Transitions in U(1) Symmetric Monitored Quantum Circuits. Phys. Rev. A 2022, 12, 041002. [Google Scholar] [CrossRef]
- Zhuang, J.Z.; Wu, Y.K.; Duan, L.M. Dynamical phase transitions of information flow in random quantum circuits. Phys. Rev. Res. 2023, 5, L042043. [Google Scholar] [CrossRef]
- Niroula, P.; White, C.D.; Wang, Q.; Johri, S.; Zhu, D.; Monroe, C.; Noel, C.; Gullans, M.J. Phase transition in magic with random quantum circuits. Nat. Phys. 2024, 20, 1786–1792. [Google Scholar] [CrossRef]
- Clark, J.; Humble, T.; Thapliyal, H. TDAG: Tree-based Directed Acyclic Graph Partitioning for Quantum Circuits. In Proceedings of the Great Lakes Symposium on VLSI 2023 Conference, Knoxville, TN, USA, 5–7 June 2023; pp. 587–592. [Google Scholar]
- Beaudoin, C.; Phalak, K.; Ghosh, S. AltGraph: Redesigning Quantum Circuits Using Generative Graph Models for Efficient Optimization. In Proceedings of the Great Lakes Symposium on VLSI 2024, Clearwater, FL, USA, 12–14 June 2024; pp. 44–49. [Google Scholar]
- Clark, J.; Humble, T.; Thapliyal, H. A comparison of quantum compilers using a DAG-based or phase polynomial-based intermediate representation. J. Syst. Soft. 2025, 221, 112224. [Google Scholar]
- Arrighi, P.; Durbec, A.; Wilson, M. Quantum networks theory. Quantum 2024, 8, 1508. [Google Scholar] [CrossRef]
- DeCross, M.; Haghshenas, R.; Liu, M.; Rinaldi, E.; Gray, J.; Alexeev, Y.; Baldwin, C.H.; Bartolotta, J.P.; Bohn, M. Computational Power of Random Quantum Circuits in Arbitrary Geometries. Phys. Rev. X 2025, 15, 021052. [Google Scholar] [CrossRef]
- Park, J.; Pham, H.T. A proof of the Kahn–Kalai conjecture. J. Am. Math. Soc. 2023, 37, 235–243. [Google Scholar] [CrossRef]
- Magnus, J.R.; Neudecker, H. Matrix differential calculus with applications to simple, Hadamard, and Kronecker products. J. Math. Psych. 1985, 29, 474–492. [Google Scholar] [CrossRef]
- Tropf, H.; Herzog, H. Multidimensional Range Search in Dynamically Balanced Trees. Angew. Inform. 1981, 2, 71–77. [Google Scholar]
- Bern, M.; Eppstein, D.; Teng, S.H. Parallel construction of quadtrees and quality triangulations. Int. J. Comput. Geom. Appl. 1999, 2, 517–532. [Google Scholar] [CrossRef]
- Hendricus van Lindt, J. Introduction to Coding Theory, 1st ed.; Springer: Berlin, NY, USA, 1999. [Google Scholar]
- Astashkin, S.V. The Rademacher System in Function Spaces, 1st ed.; Birkhäuser: Cham, Switzerland, 2020. [Google Scholar]
- Berry, M.; Marzoli, I.; Schleich, W. Quantum carpets, carpets of light. Phys. World 2001, 14, 39. [Google Scholar] [CrossRef]
- Gilbert, E.N. Gray Codes and Paths on the n-Cube. Bell System Tech. J. 1958, 37, 815–826. [Google Scholar] [CrossRef]
- Herter, F.; Rote, G. Loopless Gray code enumeration and the Tower of Bucharest. Theor. Comput. Sci. 2018, 748, 40–54. [Google Scholar] [CrossRef]
- Mourya, S.; Cour, B.R.L.; Sahoo, B.D. Emulation of Quantum Algorithms Using CMOS Analog Circuits. IEEE Trans. Quant. Eng. 2023, 4, 1–16. [Google Scholar] [CrossRef]
- Pouse, W.; Peeters, L.; Hsueh, C.L.; Gennser, U.; Cavanna, A.; Kastner, M.A.; Mitchell, A.K.; Goldhaber-Gordon, D. Quantum simulation of an exotic quantum critical point in a two-site charge Kondo circuit. Nature Phys. 2023, 19, 492–499. [Google Scholar] [CrossRef]
- Meher, A.; Liu, Y.; Zhou, H. Error Mitigation of Hamiltonian Simulations from an Analog-Based Compiler (SimuQ). In Proceedings of the IEEE International Conference on Quantum Computing and Engineering (QCE), Montreal, QC, Canada, 15–20 September 2024; Volume 3. [Google Scholar]
- Bak, P. How Nature Works: The Science of Self-Organised Criticality; Copernicus Press: New York, NY, USA, 1996. [Google Scholar]
- Paoletti, G. Deterministic Abelian Sandpile Models and Patterns. Ph.D. Thesis, Universita de Pisa, Pisa, Italy, 2014. [Google Scholar]
- Perkinson, D.; Corry, S. Divisors and Sandpiles: An Introduction to Chip-Firing; American Mathematical Society: Providence, RI, USA, 2018. [Google Scholar]
- Li, B.; Yu, Z.H.; Fei, S.M. Geometry of Quantum Computation with Qutrits. Sci. Rep. 2013, 3, 2594. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.X.; Chen, X.B.; Yang, Y.X.; Wang, X. Geometry of Quantum Computation with Qudits. Sci. Rep. 2014, 4, 4044. [Google Scholar] [CrossRef] [PubMed]
- Wiersema, R.; Lewis, D.; Wierichs, D.; Carrasquilla, J.; Killoran, N. Here comes the SU(N): Multivariate quantum gates and gradients. Quantum 2024, 8, 1275. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raptis, T.; Raptis, V. Symmetries and Scale Invariance in Global Maps of Quantum Circuits. Proceedings 2025, 123, 5. https://doi.org/10.3390/proceedings2025123005
Raptis T, Raptis V. Symmetries and Scale Invariance in Global Maps of Quantum Circuits. Proceedings. 2025; 123(1):5. https://doi.org/10.3390/proceedings2025123005
Chicago/Turabian StyleRaptis, Theophanes, and Vasilios Raptis. 2025. "Symmetries and Scale Invariance in Global Maps of Quantum Circuits" Proceedings 123, no. 1: 5. https://doi.org/10.3390/proceedings2025123005
APA StyleRaptis, T., & Raptis, V. (2025). Symmetries and Scale Invariance in Global Maps of Quantum Circuits. Proceedings, 123(1), 5. https://doi.org/10.3390/proceedings2025123005