Abstract
Plants are ideal for soft robot design due to their favourable ability to adapt and respond to the environment. Here, three different motile plants, bird of paradise (Strelitzia reginae), the waterwheel plant (Aldrovanda vesiculosa), and the Venus flytrap (Dionaea muscipula), are introduced. They may deform following the physics predetermined by the structure. As a decentralised species, plants respond under environmental stimulation without a controlling unit like a brain and motor-like muscles. The mechanism behind the movement of the plant should enlighten more intelligent robotics. In this study, movable plants are compared for their actuating principle, and, based on their deformation model, three pneumatic actuators are designed. The bird of paradise opens its petals when the sunbirds sit on another petal, which inspires the structure utilising the bending of the midrib to open lobes. Similarly, the waterwheel plant stores energy in the bending midrib and releases it when it closes. But, the Venus flytrap takes advantage of snapping to achieve rapid closure. Using three-dimensional (3D) printing, pneumatic actuators, which are ruled by the mechanism of plants with silicon rubber surfaces, are fabricated and tested. Under air pressure, the actuator deforms, mimicking the plant cells expanding under the turgor pressure. The hingeless actuator performs well while interacting with dedicated projects.
Author Contributions
Conceptualization, X.Z.; methodology, X.Z.; software, X.Z.; writing—original draft preparation, X.Z.; writing—review and editing, X.Z.; supervision, K.M.; project administration, K.M.; funding acquisition, X.Z. All authors have read and agreed to the published version of the manuscript.
Funding
This study was supported by JST SPRING, Grant Number J219713005; JST SPRING, Grant Number JPMJSP2138; KAKENHI, Grant Number 21K18700; and KAKENHI, Grant Number 22H04951.
Institutional Review Board Statement
Not applicable.
Informed Consent Statement
Not applicable.
Data Availability Statement
The data are contained within the article.
Conflicts of Interest
The authors declare no conflicts of interest.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).